8L 3s (3/1-equivalent)
↖ 7L 2s⟨3/1⟩ | ↑ 8L 2s⟨3/1⟩ | 9L 2s⟨3/1⟩ ↗ |
← 7L 3s⟨3/1⟩ | 8L 3s (3/1-equivalent) | 9L 3s⟨3/1⟩ → |
↙ 7L 4s⟨3/1⟩ | ↓ 8L 4s⟨3/1⟩ | 9L 4s⟨3/1⟩ ↘ |
┌╥╥╥┬╥╥╥┬╥╥┬┐ │║║║│║║║│║║││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLLsLLL
8L 3s⟨3/1⟩ is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 8 large steps and 3 small steps, repeating every interval of 3/1 (1902.0 ¢). Generators that produce this scale range from 691.6 ¢ to 713.2 ¢, or from 1188.7 ¢ to 1210.3 ¢. 8L 3s⟨3/1⟩ scale pattern includes the well-known 5L 2s pattern within it.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 172.9 ¢ |
Major 1-mosstep | M1ms | L | 172.9 ¢ to 237.7 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 237.7 ¢ to 345.8 ¢ |
Major 2-mosstep | M2ms | 2L | 345.8 ¢ to 475.5 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 475.5 ¢ to 518.7 ¢ |
Major 3-mosstep | M3ms | 3L | 518.7 ¢ to 713.2 ¢ | |
4-mosstep | Diminished 4-mosstep | d4ms | 2L + 2s | 475.5 ¢ to 691.6 ¢ |
Perfect 4-mosstep | P4ms | 3L + s | 691.6 ¢ to 713.2 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 713.2 ¢ to 864.5 ¢ |
Major 5-mosstep | M5ms | 4L + s | 864.5 ¢ to 951.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 951.0 ¢ to 1037.4 ¢ |
Major 6-mosstep | M6ms | 5L + s | 1037.4 ¢ to 1188.7 ¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 5L + 2s | 1188.7 ¢ to 1210.3 ¢ |
Augmented 7-mosstep | A7ms | 6L + s | 1210.3 ¢ to 1426.5 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 5L + 3s | 1188.7 ¢ to 1383.2 ¢ |
Major 8-mosstep | M8ms | 6L + 2s | 1383.2 ¢ to 1426.5 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 6L + 3s | 1426.5 ¢ to 1556.1 ¢ |
Major 9-mosstep | M9ms | 7L + 2s | 1556.1 ¢ to 1664.2 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 7L + 3s | 1664.2 ¢ to 1729.1 ¢ |
Major 10-mosstep | M10ms | 8L + 2s | 1729.1 ¢ to 1902.0 ¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 8L + 3s | 1902.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
18 | Augmented 6-mosdegree | A6md |
17 | Augmented 2-mosdegree | A2md |
16 | Augmented 9-mosdegree | A9md |
15 | Augmented 5-mosdegree | A5md |
14 | Augmented 1-mosdegree | A1md |
13 | Augmented 8-mosdegree | A8md |
12 | Augmented 4-mosdegree | A4md |
11 | Augmented 0-mosdegree | A0md |
10 | Augmented 7-mosdegree | A7md |
9 | Major 3-mosdegree | M3md |
8 | Major 10-mosdegree | M10md |
7 | Major 6-mosdegree | M6md |
6 | Major 2-mosdegree | M2md |
5 | Major 9-mosdegree | M9md |
4 | Major 5-mosdegree | M5md |
3 | Major 1-mosdegree | M1md |
2 | Major 8-mosdegree | M8md |
1 | Perfect 4-mosdegree | P4md |
0 | Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md |
−1 | Perfect 7-mosdegree | P7md |
−2 | Minor 3-mosdegree | m3md |
−3 | Minor 10-mosdegree | m10md |
−4 | Minor 6-mosdegree | m6md |
−5 | Minor 2-mosdegree | m2md |
−6 | Minor 9-mosdegree | m9md |
−7 | Minor 5-mosdegree | m5md |
−8 | Minor 1-mosdegree | m1md |
−9 | Minor 8-mosdegree | m8md |
−10 | Diminished 4-mosdegree | d4md |
−11 | Diminished 11-mosdegree | d11md |
−12 | Diminished 7-mosdegree | d7md |
−13 | Diminished 3-mosdegree | d3md |
−14 | Diminished 10-mosdegree | d10md |
−15 | Diminished 6-mosdegree | d6md |
−16 | Diminished 2-mosdegree | d2md |
−17 | Diminished 9-mosdegree | d9md |
−18 | Diminished 5-mosdegree | d5md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||
10|0 | 1 | LLLsLLLsLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Perf. |
9|1 | 5 | LLLsLLsLLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
8|2 | 9 | LLsLLLsLLLs | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
7|3 | 2 | LLsLLLsLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Perf. |
6|4 | 6 | LLsLLsLLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
5|5 | 10 | LsLLLsLLLsL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
4|6 | 3 | LsLLLsLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
3|7 | 7 | LsLLsLLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
2|8 | 11 | sLLLsLLLsLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
1|9 | 4 | sLLLsLLsLLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
0|10 | 8 | sLLsLLLsLLL | Perf. | Min. | Min. | Min. | Dim. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
Theory
By dividing the 5L 2s of LLsLLLs into A=LLs and B=LLLs, and combining them as ABBABB..., it becomes 8L 3s⟨3/1⟩. This scale has octaves that are too frequent for the listener to feel a tritave equivalence. The range of possible dark generators will likely feel sufficiently pseudo-octave. Similar to Angel, it would be good to utilize a finite-length chain of octaves and make use of existing diatonic music theory.
Low harmonic entropy scales
- Pythagorean tuning (period = 3/1, generator = 3/2): L/s = 2.260
- Tritave-equivalent meantone tunings:
- 1/6-comma pure-tritave meantone tuning (unchanged-intervals: {3/1, 5/4}): L/s = 1.625
Tuning ranges
Simple tunings
Scale degree | Abbrev. | Basic (2:1) 19edt |
Hard (3:1) 27edt |
Soft (3:2) 30edt | |||
---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | ||
Perfect 0-mosdegree | P0md | 0\19 | 0.0 | 0\27 | 0.0 | 0\30 | 0.0 |
Minor 1-mosdegree | m1md | 1\19 | 100.1 | 1\27 | 70.4 | 2\30 | 126.8 |
Major 1-mosdegree | M1md | 2\19 | 200.2 | 3\27 | 211.3 | 3\30 | 190.2 |
Minor 2-mosdegree | m2md | 3\19 | 300.3 | 4\27 | 281.8 | 5\30 | 317.0 |
Major 2-mosdegree | M2md | 4\19 | 400.4 | 6\27 | 422.7 | 6\30 | 380.4 |
Minor 3-mosdegree | m3md | 5\19 | 500.5 | 7\27 | 493.1 | 8\30 | 507.2 |
Major 3-mosdegree | M3md | 6\19 | 600.6 | 9\27 | 634.0 | 9\30 | 570.6 |
Diminished 4-mosdegree | d4md | 6\19 | 600.6 | 8\27 | 563.5 | 10\30 | 634.0 |
Perfect 4-mosdegree | P4md | 7\19 | 700.7 | 10\27 | 704.4 | 11\30 | 697.4 |
Minor 5-mosdegree | m5md | 8\19 | 800.8 | 11\27 | 774.9 | 13\30 | 824.2 |
Major 5-mosdegree | M5md | 9\19 | 900.9 | 13\27 | 915.8 | 14\30 | 887.6 |
Minor 6-mosdegree | m6md | 10\19 | 1001.0 | 14\27 | 986.2 | 16\30 | 1014.4 |
Major 6-mosdegree | M6md | 11\19 | 1101.1 | 16\27 | 1127.1 | 17\30 | 1077.8 |
Perfect 7-mosdegree | P7md | 12\19 | 1201.2 | 17\27 | 1197.5 | 19\30 | 1204.6 |
Augmented 7-mosdegree | A7md | 13\19 | 1301.3 | 19\27 | 1338.4 | 20\30 | 1268.0 |
Minor 8-mosdegree | m8md | 13\19 | 1301.3 | 18\27 | 1268.0 | 21\30 | 1331.4 |
Major 8-mosdegree | M8md | 14\19 | 1401.4 | 20\27 | 1408.9 | 22\30 | 1394.8 |
Minor 9-mosdegree | m9md | 15\19 | 1501.5 | 21\27 | 1479.3 | 24\30 | 1521.6 |
Major 9-mosdegree | M9md | 16\19 | 1601.6 | 23\27 | 1620.2 | 25\30 | 1585.0 |
Minor 10-mosdegree | m10md | 17\19 | 1701.7 | 24\27 | 1690.6 | 27\30 | 1711.8 |
Major 10-mosdegree | M10md | 18\19 | 1801.9 | 26\27 | 1831.5 | 28\30 | 1775.2 |
Perfect 11-mosdegree | P11md | 19\19 | 1902.0 | 27\27 | 1902.0 | 30\30 | 1902.0 |
Soft-of-basic tunings
Scale degree | Abbrev. | 5:4 52edt |
Supersoft (4:3) 41edt |
Soft (3:2) 30edt |
Semisoft (5:3) 49edt | ||||
---|---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | Steps | ¢ | ||
Perfect 0-mosdegree | P0md | 0\52 | 0.0 | 0\41 | 0.0 | 0\30 | 0.0 | 0\49 | 0.0 |
Minor 1-mosdegree | m1md | 4\52 | 146.3 | 3\41 | 139.2 | 2\30 | 126.8 | 3\49 | 116.4 |
Major 1-mosdegree | M1md | 5\52 | 182.9 | 4\41 | 185.6 | 3\30 | 190.2 | 5\49 | 194.1 |
Minor 2-mosdegree | m2md | 9\52 | 329.2 | 7\41 | 324.7 | 5\30 | 317.0 | 8\49 | 310.5 |
Major 2-mosdegree | M2md | 10\52 | 365.8 | 8\41 | 371.1 | 6\30 | 380.4 | 10\49 | 388.2 |
Minor 3-mosdegree | m3md | 14\52 | 512.1 | 11\41 | 510.3 | 8\30 | 507.2 | 13\49 | 504.6 |
Major 3-mosdegree | M3md | 15\52 | 548.6 | 12\41 | 556.7 | 9\30 | 570.6 | 15\49 | 582.2 |
Diminished 4-mosdegree | d4md | 18\52 | 658.4 | 14\41 | 649.4 | 10\30 | 634.0 | 16\49 | 621.0 |
Perfect 4-mosdegree | P4md | 19\52 | 694.9 | 15\41 | 695.8 | 11\30 | 697.4 | 18\49 | 698.7 |
Minor 5-mosdegree | m5md | 23\52 | 841.2 | 18\41 | 835.0 | 13\30 | 824.2 | 21\49 | 815.1 |
Major 5-mosdegree | M5md | 24\52 | 877.8 | 19\41 | 881.4 | 14\30 | 887.6 | 23\49 | 892.8 |
Minor 6-mosdegree | m6md | 28\52 | 1024.1 | 22\41 | 1020.6 | 16\30 | 1014.4 | 26\49 | 1009.2 |
Major 6-mosdegree | M6md | 29\52 | 1060.7 | 23\41 | 1067.0 | 17\30 | 1077.8 | 28\49 | 1086.8 |
Perfect 7-mosdegree | P7md | 33\52 | 1207.0 | 26\41 | 1206.1 | 19\30 | 1204.6 | 31\49 | 1203.3 |
Augmented 7-mosdegree | A7md | 34\52 | 1243.6 | 27\41 | 1252.5 | 20\30 | 1268.0 | 33\49 | 1280.9 |
Minor 8-mosdegree | m8md | 37\52 | 1353.3 | 29\41 | 1345.3 | 21\30 | 1331.4 | 34\49 | 1319.7 |
Major 8-mosdegree | M8md | 38\52 | 1389.9 | 30\41 | 1391.7 | 22\30 | 1394.8 | 36\49 | 1397.4 |
Minor 9-mosdegree | m9md | 42\52 | 1536.2 | 33\41 | 1530.8 | 24\30 | 1521.6 | 39\49 | 1513.8 |
Major 9-mosdegree | M9md | 43\52 | 1572.8 | 34\41 | 1577.2 | 25\30 | 1585.0 | 41\49 | 1591.4 |
Minor 10-mosdegree | m10md | 47\52 | 1719.1 | 37\41 | 1716.4 | 27\30 | 1711.8 | 44\49 | 1707.9 |
Major 10-mosdegree | M10md | 48\52 | 1755.7 | 38\41 | 1762.8 | 28\30 | 1775.2 | 46\49 | 1785.5 |
Perfect 11-mosdegree | P11md | 52\52 | 1902.0 | 41\41 | 1902.0 | 30\30 | 1902.0 | 49\49 | 1902.0 |
Hard-of-basic tunings
Scale degree | Abbrev. | Semihard (5:2) 46edt |
Hard (3:1) 27edt |
Superhard (4:1) 35edt |
5:1 43edt | ||||
---|---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | Steps | ¢ | ||
Perfect 0-mosdegree | P0md | 0\46 | 0.0 | 0\27 | 0.0 | 0\35 | 0.0 | 0\43 | 0.0 |
Minor 1-mosdegree | m1md | 2\46 | 82.7 | 1\27 | 70.4 | 1\35 | 54.3 | 1\43 | 44.2 |
Major 1-mosdegree | M1md | 5\46 | 206.7 | 3\27 | 211.3 | 4\35 | 217.4 | 5\43 | 221.2 |
Minor 2-mosdegree | m2md | 7\46 | 289.4 | 4\27 | 281.8 | 5\35 | 271.7 | 6\43 | 265.4 |
Major 2-mosdegree | M2md | 10\46 | 413.5 | 6\27 | 422.7 | 8\35 | 434.7 | 10\43 | 442.3 |
Minor 3-mosdegree | m3md | 12\46 | 496.2 | 7\27 | 493.1 | 9\35 | 489.1 | 11\43 | 486.5 |
Major 3-mosdegree | M3md | 15\46 | 620.2 | 9\27 | 634.0 | 12\35 | 652.1 | 15\43 | 663.5 |
Diminished 4-mosdegree | d4md | 14\46 | 578.9 | 8\27 | 563.5 | 10\35 | 543.4 | 12\43 | 530.8 |
Perfect 4-mosdegree | P4md | 17\46 | 702.9 | 10\27 | 704.4 | 13\35 | 706.4 | 16\43 | 707.7 |
Minor 5-mosdegree | m5md | 19\46 | 785.6 | 11\27 | 774.9 | 14\35 | 760.8 | 17\43 | 751.9 |
Major 5-mosdegree | M5md | 22\46 | 909.6 | 13\27 | 915.8 | 17\35 | 923.8 | 21\43 | 928.9 |
Minor 6-mosdegree | m6md | 24\46 | 992.3 | 14\27 | 986.2 | 18\35 | 978.1 | 22\43 | 973.1 |
Major 6-mosdegree | M6md | 27\46 | 1116.4 | 16\27 | 1127.1 | 21\35 | 1141.2 | 26\43 | 1150.0 |
Perfect 7-mosdegree | P7md | 29\46 | 1199.1 | 17\27 | 1197.5 | 22\35 | 1195.5 | 27\43 | 1194.3 |
Augmented 7-mosdegree | A7md | 32\46 | 1323.1 | 19\27 | 1338.4 | 25\35 | 1358.5 | 31\43 | 1371.2 |
Minor 8-mosdegree | m8md | 31\46 | 1281.8 | 18\27 | 1268.0 | 23\35 | 1249.9 | 28\43 | 1238.5 |
Major 8-mosdegree | M8md | 34\46 | 1405.8 | 20\27 | 1408.9 | 26\35 | 1412.9 | 32\43 | 1415.4 |
Minor 9-mosdegree | m9md | 36\46 | 1488.5 | 21\27 | 1479.3 | 27\35 | 1467.2 | 33\43 | 1459.6 |
Major 9-mosdegree | M9md | 39\46 | 1612.5 | 23\27 | 1620.2 | 30\35 | 1630.2 | 37\43 | 1636.6 |
Minor 10-mosdegree | m10md | 41\46 | 1695.2 | 24\27 | 1690.6 | 31\35 | 1684.6 | 38\43 | 1680.8 |
Major 10-mosdegree | M10md | 44\46 | 1819.3 | 26\27 | 1831.5 | 34\35 | 1847.6 | 42\43 | 1857.7 |
Perfect 11-mosdegree | P11md | 46\46 | 1902.0 | 27\27 | 1902.0 | 35\35 | 1902.0 | 43\43 | 1902.0 |
Scale tree
Generator(edt) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
4\11 | 691.620 | 1210.335 | 1:1 | 1.000 | Equalized 8L 3s⟨3/1⟩ | |||||
23\63 | 694.365 | 1207.590 | 6:5 | 1.200 | ||||||
19\52 | 694.945 | 1207.010 | 5:4 | 1.250 | ||||||
34\93 | 695.338 | 1206.617 | 9:7 | 1.286 | ||||||
15\41 | 695.837 | 1206.118 | 4:3 | 1.333 | Supersoft 8L 3s⟨3/1⟩ | |||||
41\112 | 696.251 | 1205.704 | 11:8 | 1.375 | ||||||
26\71 | 696.491 | 1205.464 | 7:5 | 1.400 | ||||||
37\101 | 696.756 | 1205.199 | 10:7 | 1.429 | ||||||
11\30 | 697.384 | 1204.572 | 3:2 | 1.500 | Soft 8L 3s⟨3/1⟩ | |||||
40\109 | 697.965 | 1203.990 | 11:7 | 1.571 | ||||||
29\79 | 698.186 | 1203.769 | 8:5 | 1.600 | ||||||
47\128 | 698.374 | 1203.581 | 13:8 | 1.625 | ||||||
18\49 | 698.677 | 1203.278 | 5:3 | 1.667 | Semisoft 8L 3s⟨3/1⟩ | |||||
43\117 | 699.009 | 1202.946 | 12:7 | 1.714 | ||||||
25\68 | 699.248 | 1202.707 | 7:4 | 1.750 | ||||||
32\87 | 699.570 | 1202.385 | 9:5 | 1.800 | ||||||
7\19 | 700.720 | 1201.235 | 2:1 | 2.000 | Basic 8L 3s⟨3/1⟩ Scales with tunings softer than this are proper | |||||
31\84 | 701.912 | 1200.043 | 9:4 | 2.250 | Pythagorean tuning is around here | |||||
24\65 | 702.260 | 1199.695 | 7:3 | 2.333 | ||||||
41\111 | 702.524 | 1199.431 | 12:5 | 2.400 | ||||||
17\46 | 702.896 | 1199.059 | 5:2 | 2.500 | Semihard 8L 3s⟨3/1⟩ | |||||
44\119 | 703.244 | 1198.711 | 13:5 | 2.600 | ||||||
27\73 | 703.463 | 1198.492 | 8:3 | 2.667 | ||||||
37\100 | 703.723 | 1198.232 | 11:4 | 2.750 | ||||||
10\27 | 704.428 | 1197.527 | 3:1 | 3.000 | Hard 8L 3s⟨3/1⟩ | |||||
33\89 | 705.219 | 1196.736 | 10:3 | 3.333 | ||||||
23\62 | 705.564 | 1196.391 | 7:2 | 3.500 | ||||||
36\97 | 705.880 | 1196.075 | 11:3 | 3.667 | ||||||
13\35 | 706.440 | 1195.515 | 4:1 | 4.000 | Superhard 8L 3s⟨3/1⟩ | |||||
29\78 | 707.137 | 1194.818 | 9:2 | 4.500 | ||||||
16\43 | 707.704 | 1194.251 | 5:1 | 5.000 | ||||||
19\51 | 708.571 | 1193.384 | 6:1 | 6.000 | ||||||
3\8 | 713.233 | 1188.722 | 1:0 | → ∞ | Collapsed 8L 3s⟨3/1⟩ |