9L 2s (3/1-equivalent)
↖ 8L 1s⟨3/1⟩ | ↑ 9L 1s⟨3/1⟩ | 10L 1s⟨3/1⟩ ↗ |
← 8L 2s⟨3/1⟩ | 9L 2s (3/1-equivalent) | 10L 2s⟨3/1⟩ → |
↙ 8L 3s⟨3/1⟩ | ↓ 9L 3s⟨3/1⟩ | 10L 3s⟨3/1⟩ ↘ |
┌╥╥╥╥╥┬╥╥╥╥┬┐ │║║║║║│║║║║││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLsLLLLL
9L 2s⟨3/1⟩, also called sub-Arcturus, is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 9 large steps and 2 small steps, repeating every interval of 3/1 (1902.0¢). Generators that produce this scale range from 1037.4¢ to 1056.6¢, or from 845.3¢ to 864.5¢. This MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.
Scale tree
Generator(edt) | Cents | Step ratio | Comments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | ||||||||
6\11 | 1037.430 | 864.525 | 1:1 | 1.000 | Equalized 9L 2s⟨3/1⟩ | ||||||
41\75 | 1039.735 | 862.220 | 7:6 | 1.167 | |||||||
35\64 | 1040.132 | 861.823 | 6:5 | 1.200 | |||||||
64\117 | 1040.386 | 861.569 | 11:9 | 1.222 | |||||||
29\53 | 1040.692 | 861.263 | 5:4 | 1.250 | |||||||
81\148 | 1040.935 | 861.020 | 14:11 | 1.273 | |||||||
52\95 | 1041.070 | 860.885 | 9:7 | 1.286 | |||||||
75\137 | 1041.216 | 860.739 | 13:10 | 1.300 | |||||||
23\42 | 1041.547 | 860.408 | 4:3 | 1.333 | Supersoft 9L 2s⟨3/1⟩ | ||||||
86\157 | 1041.835 | 860.120 | 15:11 | 1.364 | |||||||
63\115 | 1041.941 | 860.014 | 11:8 | 1.375 | |||||||
103\188 | 1042.029 | 859.926 | 18:13 | 1.385 | |||||||
40\73 | 1042.167 | 859.788 | 7:5 | 1.400 | |||||||
97\177 | 1042.314 | 859.641 | 17:12 | 1.417 | |||||||
57\104 | 1042.418 | 859.537 | 10:7 | 1.429 | |||||||
74\135 | 1042.553 | 859.402 | 13:9 | 1.444 | |||||||
17\31 | 1043.008 | 858.947 | 3:2 | 1.500 | Soft 9L 2s⟨3/1⟩ | ||||||
79\144 | 1043.434 | 858.521 | 14:9 | 1.556 | |||||||
62\113 | 1043.551 | 858.404 | 11:7 | 1.571 | |||||||
107\195 | 1043.637 | 858.318 | 19:12 | 1.583 | |||||||
45\82 | 1043.756 | 858.199 | 8:5 | 1.600 | |||||||
118\215 | 1043.864 | 858.091 | 21:13 | 1.615 | Golden Sub-Arcturus is near here | ||||||
73\133 | 1043.930 | 858.025 | 13:8 | 1.625 | |||||||
101\184 | 1044.008 | 857.947 | 18:11 | 1.636 | |||||||
28\51 | 1044.211 | 857.744 | 5:3 | 1.667 | Semisoft 9L 2s⟨3/1⟩ | ||||||
95\173 | 1044.426 | 857.529 | 17:10 | 1.700 | |||||||
67\122 | 1044.516 | 857.439 | 12:7 | 1.714 | |||||||
106\193 | 1044.597 | 857.358 | 19:11 | 1.727 | |||||||
39\71 | 1044.736 | 857.219 | 7:4 | 1.750 | |||||||
89\162 | 1044.901 | 857.054 | 16:9 | 1.778 | |||||||
50\91 | 1045.030 | 856.925 | 9:5 | 1.800 | |||||||
61\111 | 1045.219 | 856.736 | 11:6 | 1.833 | |||||||
11\20 | 1046.075 | 855.880 | 2:1 | 2.000 | Basic 9L 2s⟨3/1⟩ Scales with tunings softer than this are proper | ||||||
60\109 | 1046.948 | 855.007 | 11:5 | 2.200 | |||||||
49\89 | 1047.144 | 854.811 | 9:4 | 2.250 | |||||||
87\158 | 1047.279 | 854.676 | 16:7 | 2.286 | |||||||
38\69 | 1047.453 | 854.502 | 7:3 | 2.333 | |||||||
103\187 | 1047.601 | 854.354 | 19:8 | 2.375 | |||||||
65\118 | 1047.687 | 854.268 | 12:5 | 2.400 | |||||||
92\167 | 1047.784 | 854.171 | 17:7 | 2.429 | |||||||
27\49 | 1048.016 | 853.939 | 5:2 | 2.500 | Semihard 9L 2s⟨3/1⟩ | ||||||
97\176 | 1048.237 | 853.718 | 18:7 | 2.571 | |||||||
70\127 | 1048.322 | 853.633 | 13:5 | 2.600 | |||||||
113\205 | 1048.395 | 853.560 | 21:8 | 2.625 | |||||||
43\78 | 1048.514 | 853.441 | 8:3 | 2.667 | |||||||
102\185 | 1048.645 | 853.310 | 19:7 | 2.714 | |||||||
59\107 | 1048.742 | 853.213 | 11:4 | 2.750 | |||||||
75\136 | 1048.872 | 853.083 | 14:5 | 2.800 | |||||||
16\29 | 1049.354 | 852.601 | 3:1 | 3.000 | Hard 9L 2s⟨3/1⟩ | ||||||
69\125 | 1049.879 | 852.076 | 13:4 | 3.250 | |||||||
53\96 | 1050.038 | 851.917 | 10:3 | 3.333 | |||||||
90\163 | 1050.159 | 851.796 | 17:5 | 3.400 | |||||||
37\67 | 1050.333 | 851.622 | 7:2 | 3.500 | |||||||
95\172 | 1050.498 | 851.457 | 18:5 | 3.600 | |||||||
58\105 | 1050.604 | 851.351 | 11:3 | 3.667 | |||||||
79\143 | 1050.730 | 851.225 | 15:4 | 3.750 | |||||||
21\38 | 1051.080 | 850.875 | 4:1 | 4.000 | Superhard 9L 2s⟨3/1⟩ | ||||||
68\123 | 1051.487 | 850.468 | 13:3 | 4.333 | |||||||
47\85 | 1051.669 | 850.286 | 9:2 | 4.500 | |||||||
73\132 | 1051.839 | 850.116 | 14:3 | 4.667 | |||||||
26\47 | 1052.145 | 849.810 | 5:1 | 5.000 | |||||||
57\103 | 1052.538 | 849.417 | 11:2 | 5.500 | |||||||
31\56 | 1052.868 | 849.087 | 6:1 | 6.000 | |||||||
36\65 | 1053.390 | 848.565 | 7:1 | 7.000 | |||||||
5\9 | 1056.642 | 845.313 | 1:0 | → ∞ | Collapsed 9L 2s⟨3/1⟩ |