# 58edo

(Redirected from 58et)

The 58 equal temperament, often abbreviated 58-tET, 58-EDO, or 58-ET, is the scale derived by dividing the octave into 58 equally-sized steps. Each step represents a frequency ratio of 20.69 cents. It tempers out 2048/2025, 126/125, 1728/1715, 144/143, 176/175, 896/891, 243/242, 5120/5103, 351/350, 364/363, 441/440, and 540/539, and is a strong system in the 11, 13 and 17-limits. It is the smallest equal temperament which is consistent through the 17-limit, and is also the first et to map the entire 11-limit tonality diamond to distinct scale steps, and hence the first et which can define a version of the famous 43-note Genesis scale of Harry Partch. It supports hemififths, myna, diaschismic, harry, mystery, buzzard and thuja temperaments, and supplies the optimal patent val for 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank three temperaments thrush, bluebird, aplonis and jofur.

While the 17th harmonic is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. 58 = 2*29, and 58 shares the same excellent fifth with 29edo.

# Scales

## Intervals

 degree of 58edo cents value pions 7mus ratios 0 1/1 1 20.69 21.93 26.48 (1A.7C16) 56/55, 64/63, 81/80, 128/125 2 41.38 43.86 52.97 (34.F716) 36/35, 49/48, 50/49, 55/54 3 62.07 65.79 79.45 (4F.7216) 25/24, 26/25, 27/26, 28/27, 33/32 4 82.76 87.72 105.93 (69.EE16) 21/20, 22/21 5 103.45 109.655 132.41 (84.6916) 16/15, 17/16, 18/17 6 124.14 131.59 158.9 (9E.E5816) 14/13, 15/14, 27/25 7 144.83 153.52 185.38 (B9.6116) 12/11, 13/12 8 165.52 175.45 211.86 (D3.DD16) 11/10 9 186.21 197.38 238.345 (EE.5816) 10/9 10 206.9 219.31 264.83 (108.D316) 9/8, 17/15 11 227.59 241.24 291.31 (123.4F16) 8/7 12 248.28 263.17 317.79 (13D.CB16) 15/13 13 268.97 285.1 344.28 (158.4716) 7/6 14 289.655 307.035 370.76 (172.C216) 13/11, 20/17 15 310.345 328.97 397.24 (18D.3E16) 6/5 16 331.035 350.9 423.72 (1A7.B916) 17/14 17 351.72 372.83 450.21 (1C2.3516) 11/9, 16/13 18 372.41 394.76 476.69 (1DC.B116) 21/17 19 393.1 416.69 503.17 (1F7.2C16) 5/4 20 413.79 438.62 529.655 (211.A716) 14/11 21 434.48 460.55 556.14 (22C.2316) 9/7 22 455.17 482.48 582.62 (246.9F16) 13/10, 17/13, 22/17 23 475.86 504.41 609.1 (261.1A816) 21/16 24 496.55 526.345 635.59 (27B.9616) 4/3 25 517.24 548.28 662.07 (296.1216) 27/20 26 537.93 570.21 688.55 (2B0.5D16) 15/11 27 558.62 592.14 715.035 (2CB.0916) 11/8, 18/13 28 579.31 614.07 741.52 (2F5.8416) 7/5 29 600 636 768 (30016) 17/12, 24/17 30 620.69 657.93 794.48 (31A.7C16) 10/7 31 641.38 679.86 820.97 (334.F716) 13/9, 16/11 32 662.07 701.79 847.45 (34F.7216) 22/15 33 682.76 723.72 873.93 (369.EE16) 40/27 34 703.45 745.655 900.41 (384.6916) 3/2 35 724.14 767.59 926.9 (39E.E5816) 32/21 36 744.83 789.52 953.38 (3B9.6116) 20/13, 26/17, 17/11 37 765.52 811.45 979.86 (3D3.DD16) 14/9 38 786.21 833.38 1006.345 (3EE.5816) 11/7 39 806.9 855.31 1032.83 (408.D316) 8/5 40 827.59 877.24 1059.31 (423.4F16) 34/21 41 848.28 899.17 1085.79 (43D.CB16) 13/8, 18/11 42 868.97 921.1 1112.28 (458.4716) 28/17 43 889.655 943.035 1138.76 (472.C216) 5/3 44 910.345 964.97 1165.24 (48D.3E16) 22/13, 17/10 45 931.035 986.9 1191.72 (4A7.B916) 12/7 46 951.72 1008.83 1218.21 (4C2.3516) 26/15 47 972.41 1030.76 1244.69 (4DC.B116) 7/4 48 993.1 1052.69 1271.17 (4F7.2C16) 16/9 49 1013.79 1074.62 1297.655 (511.A716) 9/5 50 1034.48 1096.55 1324.14 (52C.2316) 20/11 51 1055.17 1118.48 1350.62 (546.9F16) 11/6, 24/13 52 1075.86 1140.41 1377.1 (561.1A816) 13/7, 28/15 53 1096.55 1162.345 1403.59 (57B.9616) 15/8, 32/17, 17/9 54 1117.24 1184.28 1430.07 (596.1216) 40/21, 21/11 55 1137.93 1206.21 1456.55 (5B0.5D16) 48/25, 25/13, 52/27, 27/14, 64/33 56 1158.62 1228.14 1483.035 (5CB.0916) 35/18, 96/49, 49/25, 108/55 57 1179.31 1250.07 1509.52 (5F5.8416) 55/28, 63/32, 160/81, 125/64

## Rank two temperaments

Period Generator Name
1\1 1\58
3\58
5\58
7\58
9\58
11\58 Gorgik
13\58
15\58 Myna
17\58 Hemififths
19\58
21\58
23\58 Buzzard
25\58
27\58 Thuja
1\2 1\58
2\58
3\58
4\58 Harry
5\58 Srutal/Diaschismic
6\58
7\58
8\58 Echidna, Supers
9\58 Secant
10\58
11\58
12\58 Sruti
13\58
14\58
1\29 1\58 Mystery