Porwell temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Text replacement - "{{Technical data page}}<br><br>" to "{{Technical data page}}"
Xenllium (talk | contribs)
No edit summary
Line 25: Line 25:


== Hendecatonic ==
== Hendecatonic ==
{{see also|11th-octave temperaments}}
The hendecatonic temperament has a period of 1/11 octave, which represents [[16/15]] and four times of which represent [[9/7]].
The hendecatonic temperament has a period of 1/11 octave, which represents [[16/15]] and four times of which represent [[9/7]].


Line 33: Line 35:
{{Mapping|legend=1| 11 0 43 -4 | 0 1 -1 2 }}
{{Mapping|legend=1| 11 0 43 -4 | 0 1 -1 2 }}


: mapping generators: ~16/15, ~3
: Mapping generators: ~16/15, ~3


{{Multival|legend=1| 11 -11 22 -43 4 82 }}
{{Multival|legend=1| 11 -11 22 -43 4 82 }}
Line 48: Line 50:
Comma list: 121/120, 176/175, 10976/10935
Comma list: 121/120, 176/175, 10976/10935


Mapping: {{mapping| 11 0 43 -4 38 | 0 1 -1 2 0 }}
{{Mapping|legend=1| 11 0 43 -4 38 | 0 1 -1 2 0 }}


Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636


{{Optimal ET sequence|legend=1| 22, 55, 77, 99, 176e, 275e }}
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e, 275e }}


Badness: 0.046088
Badness: 0.046088
Line 61: Line 63:
Comma list: 121/120, 176/175, 351/350, 4459/4455
Comma list: 121/120, 176/175, 351/350, 4459/4455


Mapping: {{mapping| 11 0 43 -4 38 93 | 0 1 -1 2 0 -3 }}
{{Mapping|legend=1| 11 0 43 -4 38 93 | 0 1 -1 2 0 -3 }}


Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291


{{Optimal ET sequence|legend=1| 22, 55, 77, 99, 176e }}
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e }}


Badness: 0.040099
Badness: 0.040099
Line 74: Line 76:
Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023
Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023


Mapping: {{mapping| 11 0 43 -4 38 93 45 | 0 1 -1 2 0 -3 0 }}
{{Mapping|legend=1| 11 0 43 -4 38 93 45 | 0 1 -1 2 0 -3 0 }}


Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301


{{Optimal ET sequence|legend=1| 22, 55, 77, 99, 176eg }}
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176eg }}


Badness: 0.029054
Badness: 0.029054
Line 87: Line 89:
Comma list: 540/539, 896/891, 4375/4356
Comma list: 540/539, 896/891, 4375/4356


Mapping: {{mapping| 11 0 43 -4 73 | 0 1 -1 2 -2 }}
{{Mapping|legend=1| 11 0 43 -4 73 | 0 1 -1 2 -2 }}


Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686


{{Optimal ET sequence|legend=1| 22, 77e, 99e, 121, 220e }}
{{Optimal ET sequence|legend=0| 22, 77e, 99e, 121, 220e }}


Badness: 0.038042
Badness: 0.038042
Line 100: Line 102:
Comma list: 352/351, 364/363, 540/539, 625/624
Comma list: 352/351, 364/363, 540/539, 625/624


Mapping: {{mapping| 11 0 43 -4 73 128 | 0 1 -1 2 -2 -5 }}
{{Mapping|legend=1| 11 0 43 -4 73 128 | 0 1 -1 2 -2 -5 }}


Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888


{{Optimal ET sequence|legend=1| 22, 77eff, 99ef, 121, 341bdeeff }}
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 341bdeeff }}


Badness: 0.036112
Badness: 0.036112
Line 113: Line 115:
Comma list: 256/255, 352/351, 364/363, 375/374, 540/539
Comma list: 256/255, 352/351, 364/363, 375/374, 540/539


Mapping: {{mapping| 11 0 43 -4 73 128 45 | 0 1 -1 2 -2 -5 0 }}
{{Mapping|legend=1| 11 0 43 -4 73 128 45 | 0 1 -1 2 -2 -5 0 }}


Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877


{{Optimal ET sequence|legend=1| 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg }}
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg }}


Badness: 0.022590
Badness: 0.022590
Line 126: Line 128:
Comma list: 3388/3375, 6144/6125, 9801/9800
Comma list: 3388/3375, 6144/6125, 9801/9800


Mapping: {{mapping| 22 0 86 -8 111 | 0 1 -1 2 -1 }}
{{Mapping|legend=1| 22 0 86 -8 111 | 0 1 -1 2 -1 }}


: mapping generators: ~33/32, ~3
: Mapping generators: ~33/32, ~3


Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914
Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914


{{Optimal ET sequence|legend=1| 22, 154, 176, 198 }}
{{Optimal ET sequence|legend=0| 22, 154, 176, 198 }}


Badness: 0.057725
Badness: 0.057725
Line 143: Line 145:
{{Mapping|legend=1| 1 3 2 4 | 0 -13 3 -11 }}
{{Mapping|legend=1| 1 3 2 4 | 0 -13 3 -11 }}


: mapping generators: ~2, ~15/14
: Mapping generators: ~2, ~15/14


{{Multival|legend=1| 13 -3 11 -35 -19 34 }}
{{Multival|legend=1| 13 -3 11 -35 -19 34 }}
Line 188: Line 190:
{{Mapping|legend=1| 1 -2 1 3 | 0 19 7 -1 }}
{{Mapping|legend=1| 1 -2 1 3 | 0 19 7 -1 }}


: mapping generators: ~2, ~8/7
: Mapping generators: ~2, ~8/7


{{Multival|legend=1| 19 7 -1 -33 -55 -22 }}
{{Multival|legend=1| 19 7 -1 -33 -55 -22 }}
Line 235: Line 237:
{{Mapping|legend=1| 3 2 5 10 | 0 7 5 -4 }}
{{Mapping|legend=1| 3 2 5 10 | 0 7 5 -4 }}


: mapping generators: ~63/50, ~35/32
: Mapping generators: ~63/50, ~35/32


{{Multival|legend=1| 21 15 -12 -25 -78 -70 }}
{{Multival|legend=1| 21 15 -12 -25 -78 -70 }}
Line 295: Line 297:
{{Mapping|legend=1| 1 6 -7 19 | 0 -9 19 -33 }}
{{Mapping|legend=1| 1 6 -7 19 | 0 -9 19 -33 }}


: mapping generators: ~2, ~45/32
: Mapping generators: ~2, ~45/32


{{Multival|legend=1| 9 -19 33 -51 27 130 }}
{{Multival|legend=1| 9 -19 33 -51 27 130 }}
Line 368: Line 370:
{{Mapping|legend=1| 1 17 14 -7 | 0 -33 -25 21 }}
{{Mapping|legend=1| 1 17 14 -7 | 0 -33 -25 21 }}


: mapping generators: ~2, ~441/320
: Mapping generators: ~2, ~441/320


{{Multival|legend=1| 33 25 -21 -37 -126 -119 }}
{{Multival|legend=1| 33 25 -21 -37 -126 -119 }}
Line 402: Line 404:
{{Mapping|legend=1| 1 0 -31 52 | 0 1 21 -31 }}
{{Mapping|legend=1| 1 0 -31 52 | 0 1 21 -31 }}


: mapping generators: ~2, ~3
: Mapping generators: ~2, ~3


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.174
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.174
Line 459: Line 461:
{{Mapping|legend=1| 23 0 17 101 | 0 1 1 -1 }}
{{Mapping|legend=1| 23 0 17 101 | 0 1 1 -1 }}


: mapping generators: ~1323/1280, ~3
: Mapping generators: ~1323/1280, ~3


{{Multival|legend=1| 23 23 -23 -17 -101 -118 }}
{{Multival|legend=1| 23 23 -23 -17 -101 -118 }}
Line 543: Line 545:
{{Mapping|legend=1| 1 4 3 3 | 0 -25 -7 -2 }}
{{Mapping|legend=1| 1 4 3 3 | 0 -25 -7 -2 }}


: mapping generators: ~2, ~343/320
: Mapping generators: ~2, ~343/320


{{Multival|legend=1| 25 7 2 -47 -67 -15 }}
{{Multival|legend=1| 25 7 2 -47 -67 -15 }}
Line 692: Line 694:
{{Mapping|legend=1| 7 0 -17 64 | 0 1 3 -4 }}
{{Mapping|legend=1| 7 0 -17 64 | 0 1 3 -4 }}


: mapping generators: ~972/875, ~3
: Mapping generators: ~972/875, ~3


[[Optimal tuning]] ([[POTE]]): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)
[[Optimal tuning]] ([[POTE]]): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)
Line 755: Line 757:
Subgroup: 2.3.5.7.11.13.17.19.23
Subgroup: 2.3.5.7.11.13.17.19.23


Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494, 276/275
Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494


{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 | 0 1 3 -4 -9 -1 7 -3 -4 }}
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 | 0 1 3 -4 -9 -1 7 -3 -4 }}
Line 761: Line 763:
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)


{{Optimal ET sequence|legend=1| 77, 84, 161 }}
{{Optimal ET sequence|legend=0| 77, 84, 161 }}


=== 29-limit ===
=== 29-limit ===
Line 767: Line 769:
Subgroup: 2.3.5.7.11.13.17.19.23
Subgroup: 2.3.5.7.11.13.17.19.23


Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494, 276/275, 261/260
Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494


{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 34 | 0 1 3 -4 -9 -1 7 -3 -4 0 }}
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 34 | 0 1 3 -4 -9 -1 7 -3 -4 0 }}
Line 773: Line 775:
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)


{{Optimal ET sequence|legend=1| 77, 84, 161 }}
{{Optimal ET sequence|legend=0| 77, 84, 161 }}


== Dodifo ==
== Dodifo ==

Revision as of 12:00, 15 April 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

This is a collection of temperaments that tempers out the porwell comma, [11 1 -3 -2 (6144/6125), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.

Discussed elsewhere are:

Hendecatonic

The hendecatonic temperament has a period of 1/11 octave, which represents 16/15 and four times of which represent 9/7.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 10976/10935

Mapping[11 0 43 -4], 0 1 -1 2]]

Mapping generators: ~16/15, ~3

Wedgie⟨⟨ 11 -11 22 -43 4 82 ]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.054

Optimal ET sequence22, 55, 77, 99

Badness: 0.041081

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 10976/10935

Mapping[11 0 43 -4 38], 0 1 -1 2 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636

Optimal ET sequence: 22, 55, 77, 99, 176e, 275e

Badness: 0.046088

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 4459/4455

Mapping[11 0 43 -4 38 93], 0 1 -1 2 0 -3]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291

Optimal ET sequence: 22, 55, 77, 99, 176e

Badness: 0.040099

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023

Mapping[11 0 43 -4 38 93 45], 0 1 -1 2 0 -3 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301

Optimal ET sequence: 22, 55, 77, 99, 176eg

Badness: 0.029054

Cohendecatonic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 896/891, 4375/4356

Mapping[11 0 43 -4 73], 0 1 -1 2 -2]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686

Optimal ET sequence: 22, 77e, 99e, 121, 220e

Badness: 0.038042

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363, 540/539, 625/624

Mapping[11 0 43 -4 73 128], 0 1 -1 2 -2 -5]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888

Optimal ET sequence: 22, 77eff, 99ef, 121, 341bdeeff

Badness: 0.036112

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 352/351, 364/363, 375/374, 540/539

Mapping[11 0 43 -4 73 128 45], 0 1 -1 2 -2 -5 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877

Optimal ET sequence: 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg

Badness: 0.022590

Icosidillic

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 6144/6125, 9801/9800

Mapping[22 0 86 -8 111], 0 1 -1 2 -1]]

Mapping generators: ~33/32, ~3

Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914

Optimal ET sequence: 22, 154, 176, 198

Badness: 0.057725

Twothirdtonic

Subgroup: 2.3.5.7

Comma list: 686/675, 6144/6125

Mapping[1 3 2 4], 0 -13 3 -11]]

Mapping generators: ~2, ~15/14

Wedgie⟨⟨ 13 -3 11 -35 -19 34 ]]

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.401

Optimal ET sequence9, 28b, 37, 46

Badness: 0.099601

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 686/675

Mapping: [1 3 2 4 4], 0 -13 3 -11 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430

Optimal ET sequence9, 28b, 37, 46

Badness: 0.040768

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 169/168, 176/175

Mapping: [1 3 2 4 4 5], 0 -13 3 -11 -5 -12]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409

Optimal ET sequence9, 28b, 37, 46

Badness: 0.025941

Semaja

Cryptically named by Petr Pařízek in 2011, semaja adds the gariboh comma to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10[1].

Subgroup: 2.3.5.7

Comma list: 3125/3087, 6144/6125

Mapping[1 -2 1 3], 0 19 7 -1]]

Mapping generators: ~2, ~8/7

Wedgie⟨⟨ 19 7 -1 -33 -55 -22 ]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4834

Optimal ET sequence16, 37, 53, 196d

Badness: 0.107023

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 3125/3087

Mapping: [1 -2 1 3 1], 0 19 7 -1 13]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856

Optimal ET sequence16, 37, 53

Badness: 0.059838

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 275/273

Mapping: [1 -2 1 3 1 2], 0 19 7 -1 13 9]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794

Optimal ET sequence16, 37, 53

Badness: 0.032564

Nessafof

For the 5-limit version, see Miscellaneous_5-limit_temperaments#Nessafof.

Cryptically named by Petr Pařízek in 2011[2], nessafof adds the landscape comma and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 250047/250000

Mapping[3 2 5 10], 0 7 5 -4]]

Mapping generators: ~63/50, ~35/32

Wedgie⟨⟨ 21 15 -12 -25 -78 -70 ]]

Optimal tuning (POTE): ~63/50 = 1\3, ~35/32 = 157.480

Optimal ET sequence15, 54b, 69, 84, 99, 282, 381

Badness: 0.045048

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 250047/250000

Mapping: [3 2 5 10 8], 0 7 5 -4 6]]

Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520

Optimal ET sequence15, 54be, 69e, 84e, 99

Badness: 0.068427

Nessa

Subgroup: 2.3.5.7.11

Comma list: 441/440, 1344/1331, 4375/4356

Mapping: [3 2 5 10 10], 0 7 5 -4 1]]

Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539

Optimal ET sequence15, 54b, 69, 84, 99e

Badness: 0.048836

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 364/363, 441/440, 625/624

Mapping: [3 2 5 10 10 6], 0 7 5 -4 1 13]]

Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429

Optimal ET sequence15, 54bf, 69, 84, 99ef, 183ef, 282eeff

Badness: 0.037409

Aufo

For the 5-limit version, see High badness temperaments #Untriton.

Also named by Petr Pařízek in 2011, aufo refers to the augmented fourth, which is a generator of this temperament[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175616

Mapping[1 6 -7 19], 0 -9 19 -33]]

Mapping generators: ~2, ~45/32

Wedgie⟨⟨ 9 -19 33 -51 27 130 ]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.782

Optimal ET sequence53, 161, 214

Badness: 0.121428

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 177147/175616

Mapping: [1 6 -7 19 1], 0 -9 19 -33 5]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811

Optimal ET sequence53, 108e, 161e

Badness: 0.088631

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 58806/57967

Mapping: [1 6 -7 19 1 -12], 0 -9 19 -33 5 32]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788

Optimal ET sequence53, 108e, 161e, 214ee

Badness: 0.058507

Aufic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5632/5625, 72171/71680

Mapping: [1 6 -7 19 -25], 0 -9 19 -33 58]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800

Optimal ET sequence53, 108, 161, 214, 375

Badness: 0.075149

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 847/845, 4096/4095

Mapping: [1 6 -7 19 -25 -12], 0 -9 19 -33 58 32]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796

Optimal ET sequence53, 108, 161, 214, 375, 589be

Badness: 0.039050

Whoops

For the 5-limit version, see Very high accuracy temperaments #Whoosh.

Also named by Petr Pařízek in 2011, whoops is a relatively simple extension to the otherwise very accurate microtemperament known as whoosh[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 244140625/243045684

Mapping[1 17 14 -7], 0 -33 -25 21]]

Mapping generators: ~2, ~441/320

Wedgie⟨⟨ 33 25 -21 -37 -126 -119 ]]

Optimal tuning (POTE): ~2 = 1\1, ~441/320 = 560.519

Optimal ET sequence15, 122d, 137, 152, 608d, 623bd, 775bcd

Badness: 0.175840

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 6144/6125

Mapping: [1 17 14 -7 10], 0 -33 -25 21 -14]]

Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519

Optimal ET sequence15, 122d, 137, 152, 608de, 623bde, 775bcde

Badness: 0.043743

Polypyth

For the 5-limit version, see High badness temperaments #Leapday.

Polypyth (46 & 121) tempers out the same 5-limit comma as the leapday temperament (29 & 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 179200/177147

Mapping[1 0 -31 52], 0 1 21 -31]]

Mapping generators: ~2, ~3

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.174

Optimal ET sequence46, 121, 167, 288b, 455bcd, 743bcd

Badness: 0.137995

11-limit

Subgroup: 2.3.5.7.11

Comma list: 896/891, 2200/2187, 6144/6125

Mapping: [1 0 -31 52 59], 0 1 21 -31 -35]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177

Optimal ET sequence46, 121, 167, 288be, 455bcde

Badness: 0.051131

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64], 0 1 21 -31 -35 -38]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168

Optimal ET sequence46, 121, 167, 288be

Badness: 0.030292

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64 39], 0 1 21 -31 -35 -38 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168

Optimal ET sequence46, 121, 167, 288beg

Badness: 0.019051

Icositritonic

The icositritonic temperament (46 & 161) has a period of 1/23 octave, so six period represents 6/5 and nine period represents 21/16.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 9920232/9765625

Mapping[23 0 17 101], 0 1 1 -1]]

Mapping generators: ~1323/1280, ~3

Wedgie⟨⟨ 23 23 -23 -17 -101 -118 ]]

Optimal tuning (POTE): ~1323/1280 = 1\23, ~64/63 = 29.3586

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.196622

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 35937/35840

Mapping: [23 0 17 101 116], 0 1 1 -1 -1]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.064613

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 847/845, 3584/3575

Mapping: [23 0 17 101 116 158], 0 1 1 -1 -1 -2]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.040484

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088

Mapping: [23 0 17 101 116 158 94], 0 1 1 -1 -1 -2 0]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.024676

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845

Mapping: [23 0 17 101 116 158 94 207], 0 1 1 -1 -1 -2 0 -3]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.021579

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845

Mapping: [23 0 17 101 116 158 94 207 104], 0 1 1 -1 -1 -2 0 -3 0]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471

Optimal ET sequence46, 115, 161, 207, 368ci

Badness: 0.017745

Countermiracle

The countermiracle temperament (31 & 145) tempers out the trimyna, 50421/50000 and the quince comma, 823543/819200.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 50421/50000

Mapping[1 4 3 3], 0 -25 -7 -2]]

Mapping generators: ~2, ~343/320

Wedgie⟨⟨ 25 7 2 -47 -67 -15 ]]

Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9169

Optimal ET sequence31, 114, 145, 176, 559cc, 735cc

Badness: 0.102326

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8], 0 -25 -7 -2 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158

Optimal ET sequence31, 114e, 145, 176

Badness: 0.039162

Countermiraculous

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 1001/1000, 6144/6125

Mapping: [1 4 3 3 8 1], 0 -25 -7 -2 -47 28]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803

Optimal ET sequence31, 83e, 114e, 145, 321ceff

Badness: 0.039271

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224

Mapping: [1 4 3 3 8 1 1], 0 -25 -7 -2 -47 28 32]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756

Optimal ET sequence31, 83e, 114e, 145

Badness: 0.029496

Counterbenediction

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 3146/3125, 3584/3575

Mapping: [1 4 3 3 8 -2], 0 -25 -7 -2 -47 59]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335

Optimal ET sequence31, 114ef, 145f, 176, 207, 383c, 590cc

Badness: 0.045569

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125

Mapping: [1 4 3 3 8 -2 -2], 0 -25 -7 -2 -47 59 63]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391

Optimal ET sequence31, 114efg, 145fg, 176, 207

Badness: 0.036289

Countermanna

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8 15 0 -25 -7 -2 -47 -117]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898

Optimal ET sequence145, 176, 321ce

Badness: 0.053409

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375

Mapping: [1 4 3 3 8 15 15], 0 -25 -7 -2 -47 -117 -113]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832

Optimal ET sequence145, 321ce

Badness: 0.040898

Counterrevelation

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 50421/50000

Mapping: [1 4 3 3 5], 0 -25 -7 -2 -16]]

Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192

Optimal ET sequence31, 114, 145e, 176e

Badness: 0.064070

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 13750/13689

Mapping: [1 4 3 3 5 1], 0 -25 -7 -2 -16 28]]

Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624

Optimal ET sequence31, 83, 114, 145e

Badness: 0.057497

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625

Mapping: [1 4 3 3 5 1 1], 0 -25 -7 -2 -16 28 32]]

Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527

Optimal ET sequence31, 83, 114, 145e

Badness: 0.044043

Absurdity

For the 5-limit version, see Syntonic–chromatic equivalence continuum #Absurdity.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175000

Mapping[7 0 -17 64], 0 1 3 -4]]

Mapping generators: ~972/875, ~3

Optimal tuning (POTE): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)

Optimal ET sequence77, 84, 161

Badness: 0.133520

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 72171/71680

Mapping[7 0 -17 64 124], 0 1 3 -4 -9]]

Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497)

Optimal ET sequence77, 84, 161

Badness: 0.081564

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 1188/1183, 3584/3575

Mapping[7 0 -17 64 124 37], 0 1 3 -4 -9 -1]]

Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434)

Optimal ET sequence77, 84, 161

Badness: 0.041600

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625

Mapping[7 0 -17 64 124 37 -49], 0 1 3 -4 -9 -1 7]]

Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667)

Optimal ET sequence77, 161

Badness: 0.031783

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63], 0 1 3 -4 -9 -1 7 -3]]

Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708)

Optimal ET sequence77, 161

Badness: 0.022291

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63 76], 0 1 3 -4 -9 -1 7 -3 -4]]

Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)

Optimal ET sequence: 77, 84, 161

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63 76 34], 0 1 3 -4 -9 -1 7 -3 -4 0]]

Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)

Optimal ET sequence: 77, 84, 161

Dodifo

For the 5-limit version, see High badness temperaments #Dodifo.

Also named by Petr Pařízek in 2011, dodifo refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament[1]. The extension here is a less accurate 7-limit intepretation.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 2500000/2470629

Mapping[1 12 5 4], 0 -35 -9 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.070

Optimal ET sequence37, 84, 121, 205

Badness: 0.179692

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 2560/2541, 4375/4356

Mapping: [1 12 5 4 -1], 0 -35 -9 -4 15]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048

Optimal ET sequence37, 84, 121, 326dee

Badness: 0.081923

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 625/624, 640/637, 1375/1372

Mapping: [1 12 5 4 -1 4], 0 -35 -9 -4 15 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049

Optimal ET sequence37, 84, 121, 326deef

Badness: 0.039533

Notes