|
|
(13 intermediate revisions by 9 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-09 15:10:01 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>565776209</tt>.<br>
| | | nLargeSteps = 10 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 1 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 1 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, having a generator of a diatonic semitone between 1/11edo (109.09 cents) and 1/10edo (120), functions as the superdiatonic scale of the Miracle temperment and its unnamed close neighbors.
| | | Pattern = LLLLLLLLLLs |
| || 1/11 || || || || || 109.091 || | | }} |
| || || || || || 5/54 || 111.111 || | | {{MOS intro}} |
| || || || || 4/43 || || 111.628 || | | This MOS functions as the superdiatonic scale{{Clarify}} of [[Miracle]] temperament. Its generator range spans the interval range of [[secor]]s, and therefore the name '''secoric''' has been proposed for this MOS pattern independently by [[Praveen Venkataramana]] and [[User:Lériendil|Lériendil]]. |
| || || || || || 7/75 || 112 || | |
| || || || 3/32 || || || 112.5 || | |
| || || || || || || 112.818 || | |
| || || || || || 8/85 || 112.941 ||
| |
| || || || || || || 113.15 ||
| |
| || || || || 5/53 || || 113.2075 ||
| |
| || || || || || || 113.45 ||
| |
| || || || || || 7/74 || 113.5135 ||
| |
| || || 2/21 || || || || 114.286 ||
| |
| || || || || || 7/73 || 115.0685 ||
| |
| || || || || 5/52 || || 115.308 ||
| |
| || || || || || || 115.585 ||
| |
| || || || || || 8/83 || 115.663 ||
| |
| || || || || || || 115.742 ||
| |
| || || || 3/31 || || || 116.129 ||
| |
| || || || || || || 116.298 ||
| |
| || || || || || 7/72 || 116.667 ||
| |
| || || || || 4/41 || || 117.073 ||
| |
| || || || || || 5/51 || 117.647 ||
| |
| || 1/10 || || || || || 120 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>10L 1s</title></head><body>This MOS, having a generator of a diatonic semitone between 1/11edo (109.09 cents) and 1/10edo (120), functions as the superdiatonic scale of the Miracle temperment and its unnamed close neighbors.<br />
| |
|
| |
|
| | == Modes == |
| | {{MOS modes}} |
|
| |
|
| <table class="wiki_table">
| | == Intervals == |
| <tr>
| | {{MOS intervals}} |
| <td>1/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>109.091<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/54<br />
| |
| </td>
| |
| <td>111.111<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/43<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>111.628<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/75<br />
| |
| </td>
| |
| <td>112<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>112.5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>112.818<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/85<br />
| |
| </td>
| |
| <td>112.941<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>113.15<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/53<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>113.2075<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>113.45<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/74<br />
| |
| </td>
| |
| <td>113.5135<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>2/21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>114.286<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/73<br />
| |
| </td>
| |
| <td>115.0685<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/52<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.308<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.585<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/83<br />
| |
| </td>
| |
| <td>115.663<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>115.742<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.129<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.298<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/72<br />
| |
| </td>
| |
| <td>116.667<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>117.073<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/51<br />
| |
| </td>
| |
| <td>117.647<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 7/2 = [[Miracle]] |
| | | 2/1 = Simplest tuning for miracle |
| | }} |
| | |
| | [[Category:11-tone scales]] |
10L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 1 small step, repeating every octave. 10L 1s is a child scale of 1L 9s, expanding it by 1 tones. Generators that produce this scale range from 109.1 ¢ to 120 ¢, or from 1080 ¢ to 1090.9 ¢. Scales of this form are always proper because there is only one small step.
This MOS functions as the superdiatonic scale[clarification needed] of Miracle temperament. Its generator range spans the interval range of secors, and therefore the name secoric has been proposed for this MOS pattern independently by Praveen Venkataramana and Lériendil.
Modes
Modes of 10L 1s
UDP |
Cyclic order |
Step pattern
|
10|0 |
1 |
LLLLLLLLLLs
|
9|1 |
2 |
LLLLLLLLLsL
|
8|2 |
3 |
LLLLLLLLsLL
|
7|3 |
4 |
LLLLLLLsLLL
|
6|4 |
5 |
LLLLLLsLLLL
|
5|5 |
6 |
LLLLLsLLLLL
|
4|6 |
7 |
LLLLsLLLLLL
|
3|7 |
8 |
LLLsLLLLLLL
|
2|8 |
9 |
LLsLLLLLLLL
|
1|9 |
10 |
LsLLLLLLLLL
|
0|10 |
11 |
sLLLLLLLLLL
|
Intervals
Intervals of 10L 1s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Diminished 1-mosstep
|
d1ms
|
s
|
0.0 ¢ to 109.1 ¢
|
Perfect 1-mosstep
|
P1ms
|
L
|
109.1 ¢ to 120.0 ¢
|
2-mosstep
|
Minor 2-mosstep
|
m2ms
|
L + s
|
120.0 ¢ to 218.2 ¢
|
Major 2-mosstep
|
M2ms
|
2L
|
218.2 ¢ to 240.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
2L + s
|
240.0 ¢ to 327.3 ¢
|
Major 3-mosstep
|
M3ms
|
3L
|
327.3 ¢ to 360.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
3L + s
|
360.0 ¢ to 436.4 ¢
|
Major 4-mosstep
|
M4ms
|
4L
|
436.4 ¢ to 480.0 ¢
|
5-mosstep
|
Minor 5-mosstep
|
m5ms
|
4L + s
|
480.0 ¢ to 545.5 ¢
|
Major 5-mosstep
|
M5ms
|
5L
|
545.5 ¢ to 600.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
5L + s
|
600.0 ¢ to 654.5 ¢
|
Major 6-mosstep
|
M6ms
|
6L
|
654.5 ¢ to 720.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
6L + s
|
720.0 ¢ to 763.6 ¢
|
Major 7-mosstep
|
M7ms
|
7L
|
763.6 ¢ to 840.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
7L + s
|
840.0 ¢ to 872.7 ¢
|
Major 8-mosstep
|
M8ms
|
8L
|
872.7 ¢ to 960.0 ¢
|
9-mosstep
|
Minor 9-mosstep
|
m9ms
|
8L + s
|
960.0 ¢ to 981.8 ¢
|
Major 9-mosstep
|
M9ms
|
9L
|
981.8 ¢ to 1080.0 ¢
|
10-mosstep
|
Perfect 10-mosstep
|
P10ms
|
9L + s
|
1080.0 ¢ to 1090.9 ¢
|
Augmented 10-mosstep
|
A10ms
|
10L
|
1090.9 ¢ to 1200.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
10L + s
|
1200.0 ¢
|
Scale tree
Scale tree and tuning spectrum of 10L 1s
Generator(edo)
|
Cents
|
Step ratio
|
Comments(always proper)
|
Bright
|
Dark
|
L:s
|
Hardness
|
1\11
|
|
|
|
|
|
109.091
|
1090.909
|
1:1
|
1.000
|
Equalized 10L 1s
|
|
|
|
|
|
6\65
|
110.769
|
1089.231
|
6:5
|
1.200
|
|
|
|
|
|
5\54
|
|
111.111
|
1088.889
|
5:4
|
1.250
|
|
|
|
|
|
|
9\97
|
111.340
|
1088.660
|
9:7
|
1.286
|
|
|
|
|
4\43
|
|
|
111.628
|
1088.372
|
4:3
|
1.333
|
Supersoft 10L 1s
|
|
|
|
|
|
11\118
|
111.864
|
1088.136
|
11:8
|
1.375
|
|
|
|
|
|
7\75
|
|
112.000
|
1088.000
|
7:5
|
1.400
|
|
|
|
|
|
|
10\107
|
112.150
|
1087.850
|
10:7
|
1.429
|
|
|
|
3\32
|
|
|
|
112.500
|
1087.500
|
3:2
|
1.500
|
Soft 10L 1s
|
|
|
|
|
|
11\117
|
112.821
|
1087.179
|
11:7
|
1.571
|
|
|
|
|
|
8\85
|
|
112.941
|
1087.059
|
8:5
|
1.600
|
|
|
|
|
|
|
13\138
|
113.043
|
1086.957
|
13:8
|
1.625
|
|
|
|
|
5\53
|
|
|
113.208
|
1086.792
|
5:3
|
1.667
|
Semisoft 10L 1s
|
|
|
|
|
|
12\127
|
113.386
|
1086.614
|
12:7
|
1.714
|
|
|
|
|
|
7\74
|
|
113.514
|
1086.486
|
7:4
|
1.750
|
|
|
|
|
|
|
9\95
|
113.684
|
1086.316
|
9:5
|
1.800
|
|
|
2\21
|
|
|
|
|
114.286
|
1085.714
|
2:1
|
2.000
|
Basic 10L 1s Simplest tuning for miracle
|
|
|
|
|
|
9\94
|
114.894
|
1085.106
|
9:4
|
2.250
|
|
|
|
|
|
7\73
|
|
115.068
|
1084.932
|
7:3
|
2.333
|
|
|
|
|
|
|
12\125
|
115.200
|
1084.800
|
12:5
|
2.400
|
|
|
|
|
5\52
|
|
|
115.385
|
1084.615
|
5:2
|
2.500
|
Semihard 10L 1s
|
|
|
|
|
|
13\135
|
115.556
|
1084.444
|
13:5
|
2.600
|
|
|
|
|
|
8\83
|
|
115.663
|
1084.337
|
8:3
|
2.667
|
|
|
|
|
|
|
11\114
|
115.789
|
1084.211
|
11:4
|
2.750
|
|
|
|
3\31
|
|
|
|
116.129
|
1083.871
|
3:1
|
3.000
|
Hard 10L 1s
|
|
|
|
|
|
10\103
|
116.505
|
1083.495
|
10:3
|
3.333
|
|
|
|
|
|
7\72
|
|
116.667
|
1083.333
|
7:2
|
3.500
|
Miracle
|
|
|
|
|
|
11\113
|
116.814
|
1083.186
|
11:3
|
3.667
|
|
|
|
|
4\41
|
|
|
117.073
|
1082.927
|
4:1
|
4.000
|
Superhard 10L 1s
|
|
|
|
|
|
9\92
|
117.391
|
1082.609
|
9:2
|
4.500
|
|
|
|
|
|
5\51
|
|
117.647
|
1082.353
|
5:1
|
5.000
|
|
|
|
|
|
|
6\61
|
118.033
|
1081.967
|
6:1
|
6.000
|
|
1\10
|
|
|
|
|
|
120.000
|
1080.000
|
1:0
|
→ ∞
|
Collapsed 10L 1s
|