7L 11s (3/1-equivalent)
↖ 6L 10s⟨3/1⟩ | ↑ 7L 10s⟨3/1⟩ | 8L 10s⟨3/1⟩ ↗ |
← 6L 11s⟨3/1⟩ | 7L 11s (3/1-equivalent) | 8L 11s⟨3/1⟩ → |
↙ 6L 12s⟨3/1⟩ | ↓ 7L 12s⟨3/1⟩ | 8L 12s⟨3/1⟩ ↘ |
┌╥┬╥┬┬╥┬╥┬┬╥┬╥┬┬╥┬┬┐ │║│║││║│║││║│║││║│││ ││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLsLssLsLssLsL
7L 11s⟨3/1⟩ is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 7 large steps and 11 small steps, repeating every interval of 3/1 (1902.0¢). Generators that produce this scale range from 528.3¢ to 543.4¢, or from 1358.5¢ to 1373.6¢.
Temperaments
7L 11s⟨3/1⟩ MOS scales can be used for the Electra temperament, in which three generators down is approximately 13/11 and one generator up is approximately 15/11. If 11:13:15 is treated as the fundamental sonority of no-2's music, then Electra can be viewed as the analogue to meantone and 7L 11s⟨3/1⟩ can be viewed as the analogue to the diatonic scale. If twos are admitted, the hard end of the Electra heptatonic spectrum can be viewed as the subharmonic version of Pythagorean/Classical tuning.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
17|0 | 1 | LsLssLsLssLsLssLss |
16|1 | 6 | LsLssLsLssLssLsLss |
15|2 | 11 | LsLssLssLsLssLsLss |
14|3 | 16 | LssLsLssLsLssLsLss |
13|4 | 3 | LssLsLssLsLssLssLs |
12|5 | 8 | LssLsLssLssLsLssLs |
11|6 | 13 | LssLssLsLssLsLssLs |
10|7 | 18 | sLsLssLsLssLsLssLs |
9|8 | 5 | sLsLssLsLssLssLsLs |
8|9 | 10 | sLsLssLssLsLssLsLs |
7|10 | 15 | sLssLsLssLsLssLsLs |
6|11 | 2 | sLssLsLssLsLssLssL |
5|12 | 7 | sLssLsLssLssLsLssL |
4|13 | 12 | sLssLssLsLssLsLssL |
3|14 | 17 | ssLsLssLsLssLsLssL |
2|15 | 4 | ssLsLssLsLssLssLsL |
1|16 | 9 | ssLsLssLssLsLssLsL |
0|17 | 14 | ssLssLsLssLsLssLsL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 105.7¢ |
Major 1-mosstep | M1ms | L | 105.7¢ to 271.7¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 211.3¢ |
Major 2-mosstep | M2ms | L + s | 211.3¢ to 271.7¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 271.7¢ to 317.0¢ |
Major 3-mosstep | M3ms | 2L + s | 317.0¢ to 543.4¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 271.7¢ to 422.7¢ |
Major 4-mosstep | M4ms | 2L + 2s | 422.7¢ to 543.4¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | L + 4s | 271.7¢ to 528.3¢ |
Perfect 5-mosstep | P5ms | 2L + 3s | 528.3¢ to 543.4¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 543.4¢ to 634.0¢ |
Major 6-mosstep | M6ms | 3L + 3s | 634.0¢ to 815.1¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 2L + 5s | 543.4¢ to 739.6¢ |
Major 7-mosstep | M7ms | 3L + 4s | 739.6¢ to 815.1¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 815.1¢ to 845.3¢ |
Major 8-mosstep | M8ms | 4L + 4s | 845.3¢ to 1086.8¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 815.1¢ to 951.0¢ |
Major 9-mosstep | M9ms | 4L + 5s | 951.0¢ to 1086.8¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 3L + 7s | 815.1¢ to 1056.6¢ |
Major 10-mosstep | M10ms | 4L + 6s | 1056.6¢ to 1086.8¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 1086.8¢ to 1162.3¢ |
Major 11-mosstep | M11ms | 5L + 6s | 1162.3¢ to 1358.5¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 4L + 8s | 1086.8¢ to 1268.0¢ |
Major 12-mosstep | M12ms | 5L + 7s | 1268.0¢ to 1358.5¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 5L + 8s | 1358.5¢ to 1373.6¢ |
Augmented 13-mosstep | A13ms | 6L + 7s | 1373.6¢ to 1630.2¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 5L + 9s | 1358.5¢ to 1479.3¢ |
Major 14-mosstep | M14ms | 6L + 8s | 1479.3¢ to 1630.2¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 5L + 10s | 1358.5¢ to 1585.0¢ |
Major 15-mosstep | M15ms | 6L + 9s | 1585.0¢ to 1630.2¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 6L + 10s | 1630.2¢ to 1690.6¢ |
Major 16-mosstep | M16ms | 7L + 9s | 1690.6¢ to 1902.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 6L + 11s | 1630.2¢ to 1796.3¢ |
Major 17-mosstep | M17ms | 7L + 10s | 1796.3¢ to 1902.0¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 7L + 11s | 1902.0¢ |
Scale tree
Generator(edt) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
5\18 | 528.321 | 1373.634 | 1:1 | 1.000 | Equalized 7L 11s⟨3/1⟩ | |||||
27\97 | 529.410 | 1372.545 | 6:5 | 1.200 | ||||||
22\79 | 529.658 | 1372.297 | 5:4 | 1.250 | ||||||
39\140 | 529.830 | 1372.125 | 9:7 | 1.286 | ||||||
17\61 | 530.053 | 1371.902 | 4:3 | 1.333 | Supersoft 7L 11s⟨3/1⟩ | |||||
46\165 | 530.242 | 1371.713 | 11:8 | 1.375 | ||||||
29\104 | 530.353 | 1371.602 | 7:5 | 1.400 | ||||||
41\147 | 530.477 | 1371.478 | 10:7 | 1.429 | ||||||
12\43 | 530.778 | 1371.177 | 3:2 | 1.500 | Soft 7L 11s⟨3/1⟩ | |||||
43\154 | 531.065 | 1370.890 | 11:7 | 1.571 | ||||||
31\111 | 531.177 | 1370.778 | 8:5 | 1.600 | ||||||
50\179 | 531.272 | 1370.683 | 13:8 | 1.625 | ||||||
19\68 | 531.429 | 1370.526 | 5:3 | 1.667 | Semisoft 7L 11s⟨3/1⟩ | |||||
45\161 | 531.602 | 1370.353 | 12:7 | 1.714 | ||||||
26\93 | 531.729 | 1370.226 | 7:4 | 1.750 | ||||||
33\118 | 531.903 | 1370.052 | 9:5 | 1.800 | ||||||
7\25 | 532.547 | 1369.408 | 2:1 | 2.000 | Basic 7L 11s⟨3/1⟩ Scales with tunings softer than this are proper | |||||
30\107 | 533.258 | 1368.697 | 9:4 | 2.250 | ||||||
23\82 | 533.475 | 1368.480 | 7:3 | 2.333 | ||||||
39\139 | 533.642 | 1368.313 | 12:5 | 2.400 | ||||||
16\57 | 533.882 | 1368.073 | 5:2 | 2.500 | Semihard 7L 11s⟨3/1⟩ | |||||
41\146 | 534.111 | 1367.844 | 13:5 | 2.600 | ||||||
25\89 | 534.257 | 1367.698 | 8:3 | 2.667 | ||||||
34\121 | 534.434 | 1367.521 | 11:4 | 2.750 | ||||||
9\32 | 534.925 | 1367.030 | 3:1 | 3.000 | Hard 7L 11s⟨3/1⟩ | |||||
29\103 | 535.502 | 1366.453 | 10:3 | 3.333 | ||||||
20\71 | 535.762 | 1366.193 | 7:2 | 3.500 | ||||||
31\110 | 536.006 | 1365.950 | 11:3 | 3.667 | ||||||
11\39 | 536.449 | 1365.506 | 4:1 | 4.000 | Superhard 7L 11s⟨3/1⟩ | |||||
24\85 | 537.023 | 1364.932 | 9:2 | 4.500 | ||||||
13\46 | 537.509 | 1364.446 | 5:1 | 5.000 | ||||||
15\53 | 538.289 | 1363.666 | 6:1 | 6.000 | ||||||
2\7 | 543.416 | 1358.539 | 1:0 | → ∞ | Collapsed 7L 11s⟨3/1⟩ |