List of superparticular intervals: Difference between revisions
Cmloegcmluin (talk | contribs) add column to indicate if superparticulars are the interval between two consecutive superparticulars (are meta-superparticular) |
m +links |
||
Line 16: | Line 16: | ||
! [[Monzo]] | ! [[Monzo]] | ||
! Name(s) | ! Name(s) | ||
! | ! Meta | ||
|- | |- | ||
! colspan="6" | 2-limit (complete) | ! colspan="6" | 2-limit (complete) | ||
Line 41: | Line 41: | ||
| {{monzo|2 -1}} | | {{monzo|2 -1}} | ||
| perfect fourth, 3rd subharmonic (octave reduced), diatessaron | | perfect fourth, 3rd subharmonic (octave reduced), diatessaron | ||
|3/2 to 2/1 | | 3/2 to 2/1 | ||
|- | |- | ||
| [[9/8]] | | [[9/8]] | ||
Line 48: | Line 48: | ||
| {{monzo|-3 2}} | | {{monzo|-3 2}} | ||
| (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | ||
|4/3 to 3/2 | | 4/3 to 3/2 | ||
|- | |- | ||
! colspan="6" | 5-limit (complete) | ! colspan="6" | 5-limit (complete) | ||
Line 78: | Line 78: | ||
| {{monzo|4 -1 -1}} | | {{monzo|4 -1 -1}} | ||
| classic/just diatonic semitone, 15th subharmonic | | classic/just diatonic semitone, 15th subharmonic | ||
|5/4 to 4/3 | | 5/4 to 4/3 | ||
|- | |- | ||
| [[25/24]] | | [[25/24]] | ||
Line 85: | Line 85: | ||
| {{monzo|-3 -1 2}} | | {{monzo|-3 -1 2}} | ||
| classic/just chromatic semitone, chroma, Zarlinian semitone | | classic/just chromatic semitone, chroma, Zarlinian semitone | ||
|6/5 to 5/4 | | 6/5 to 5/4 | ||
|- | |- | ||
| [[81/80]] | | [[81/80]] | ||
Line 92: | Line 92: | ||
| {{monzo|-4 4 -1}} | | {{monzo|-4 4 -1}} | ||
| syntonic comma, Didymus comma | | syntonic comma, Didymus comma | ||
|10/9 to 9/8 | | 10/9 to 9/8 | ||
|- | |- | ||
! colspan="6" | 7-limit (complete) | ! colspan="6" | 7-limit (complete) | ||
Line 136: | Line 136: | ||
| {{monzo|2 2 -1 -1}} | | {{monzo|2 2 -1 -1}} | ||
| septimal 1/4-tone, septimal diesis | | septimal 1/4-tone, septimal diesis | ||
|7/6 to 6/5 | | 7/6 to 6/5 | ||
|- | |- | ||
| [[49/48]] | | [[49/48]] | ||
Line 143: | Line 143: | ||
| {{monzo|-4 -1 0 2}} | | {{monzo|-4 -1 0 2}} | ||
| slendro diesis, large septimal diesis, large septimal 1/6-tone | | slendro diesis, large septimal diesis, large septimal 1/6-tone | ||
|8/7 to 7/6 | | 8/7 to 7/6 | ||
|- | |- | ||
| [[50/49]] | | [[50/49]] | ||
Line 157: | Line 157: | ||
| {{monzo|6 -2 0 -1}} | | {{monzo|6 -2 0 -1}} | ||
| septimal comma, Archytas' comma | | septimal comma, Archytas' comma | ||
|9/8 to 8/7 | | 9/8 to 8/7 | ||
|- | |- | ||
| [[126/125]] | | [[126/125]] | ||
Line 171: | Line 171: | ||
| {{monzo|-5 2 2 -1}} | | {{monzo|-5 2 2 -1}} | ||
| marvel comma, septimal kleisma | | marvel comma, septimal kleisma | ||
|16/15 to 15/14 | | 16/15 to 15/14 | ||
|- | |- | ||
| [[2401/2400]] | | [[2401/2400]] | ||
Line 178: | Line 178: | ||
| {{monzo|-5 -1 -2 4}} | | {{monzo|-5 -1 -2 4}} | ||
| breedsma | | breedsma | ||
|50/49 to 49/48 | | 50/49 to 49/48 | ||
|- | |- | ||
| [[4375/4374]] | | [[4375/4374]] | ||
Line 250: | Line 250: | ||
| {{monzo|2 -2 2 0 -1}} | | {{monzo|2 -2 2 0 -1}} | ||
| ptolemisma, Ptolemy's comma | | ptolemisma, Ptolemy's comma | ||
|11/10 to 10/9 | | 11/10 to 10/9 | ||
|- | |- | ||
| [[121/120]] | | [[121/120]] | ||
Line 257: | Line 257: | ||
| {{monzo|-3 -1 -1 0 2}} | | {{monzo|-3 -1 -1 0 2}} | ||
| biyatisma, undecimal seconds comma | | biyatisma, undecimal seconds comma | ||
|12/11 to 11/10 | | 12/11 to 11/10 | ||
|- | |- | ||
| [[176/175]] | | [[176/175]] | ||
Line 285: | Line 285: | ||
| {{monzo|-3 2 -1 2 -1}} | | {{monzo|-3 2 -1 2 -1}} | ||
| werckisma, Werckmeister's undecimal septenarian schisma | | werckisma, Werckmeister's undecimal septenarian schisma | ||
|22/21 to 21/20 | | 22/21 to 21/20 | ||
|- | |- | ||
| [[540/539]] | | [[540/539]] | ||
Line 299: | Line 299: | ||
| {{monzo|-4 -3 2 -1 2}} | | {{monzo|-4 -3 2 -1 2}} | ||
| lehmerisma | | lehmerisma | ||
|56/55 to 55/54 | | 56/55 to 55/54 | ||
|- | |- | ||
| [[9801/9800]] | | [[9801/9800]] | ||
Line 306: | Line 306: | ||
| {{monzo|-3 4 -2 -2 2}} | | {{monzo|-3 4 -2 -2 2}} | ||
| kalisma, Gauss comma | | kalisma, Gauss comma | ||
|100/99 to 99/98 | | 100/99 to 99/98 | ||
|- | |- | ||
! colspan="6" | 13-limit (complete) | ! colspan="6" | 13-limit (complete) | ||
Line 385: | Line 385: | ||
| {{monzo|4 2 0 0 -1 -1}} | | {{monzo|4 2 0 0 -1 -1}} | ||
| grossma | | grossma | ||
|13/12 to 12/11 | | 13/12 to 12/11 | ||
|- | |- | ||
| [[169/168]] | | [[169/168]] | ||
Line 392: | Line 392: | ||
| {{monzo|-3 -1 0 -1 0 2}} | | {{monzo|-3 -1 0 -1 0 2}} | ||
| buzurgisma, dhanvantarisma | | buzurgisma, dhanvantarisma | ||
|14/13 to 13/12 | | 14/13 to 13/12 | ||
|- | |- | ||
| [[196/195]] | | [[196/195]] | ||
Line 399: | Line 399: | ||
| {{monzo|2 -1 -1 2 0 -1}} | | {{monzo|2 -1 -1 2 0 -1}} | ||
| [[Mynucumic_chords|mynucuma]] | | [[Mynucumic_chords|mynucuma]] | ||
|15/14 to 14/13 | | 15/14 to 14/13 | ||
|- | |- | ||
| [[325/324]] | | [[325/324]] | ||
Line 434: | Line 434: | ||
| {{monzo|-4 -1 4 0 0 -1}} | | {{monzo|-4 -1 4 0 0 -1}} | ||
| tunbarsma | | tunbarsma | ||
|26/25 to 25/24 | | 26/25 to 25/24 | ||
|- | |- | ||
| [[676/675]] | | [[676/675]] | ||
Line 441: | Line 441: | ||
| {{monzo|2 -3 -2 0 0 2}} | | {{monzo|2 -3 -2 0 0 2}} | ||
| island comma | | island comma | ||
|27/26 to 26/25 | | 27/26 to 26/25 | ||
|- | |- | ||
| [[729/728]] | | [[729/728]] | ||
Line 448: | Line 448: | ||
| {{monzo|-3 6 0 -1 0 -1}} | | {{monzo|-3 6 0 -1 0 -1}} | ||
| squbema | | squbema | ||
|28/27 to 27/26 | | 28/27 to 27/26 | ||
|- | |- | ||
| [[1001/1000]] | | [[1001/1000]] | ||
Line 476: | Line 476: | ||
| {{monzo|12 -2 -1 -1 0 -1}} | | {{monzo|12 -2 -1 -1 0 -1}} | ||
| schismina, tridecimal schisma | | schismina, tridecimal schisma | ||
|65/64 to 64/63 | | 65/64 to 64/63 | ||
|- | |- | ||
| [[4225/4224]] | | [[4225/4224]] | ||
Line 483: | Line 483: | ||
| {{monzo|-7 -1 2 0 -1 2}} | | {{monzo|-7 -1 2 0 -1 2}} | ||
| leprechaun comma | | leprechaun comma | ||
|66/65 to 65/64 | | 66/65 to 65/64 | ||
|- | |- | ||
| [[6656/6655]] | | [[6656/6655]] | ||
Line 504: | Line 504: | ||
| {{monzo|-6 6 -2 -1 -1 2}} | | {{monzo|-6 6 -2 -1 -1 2}} | ||
| chalmersia | | chalmersia | ||
|352/351 to 351/350 | | 352/351 to 351/350 | ||
|- | |- | ||
! colspan="6" | 17-limit (complete) | ! colspan="6" | 17-limit (complete) | ||
Line 597: | Line 597: | ||
| {{monzo|8 -1 -1 0 0 0 -1}} | | {{monzo|8 -1 -1 0 0 0 -1}} | ||
| septendecimal kleisma, 255th subharmonic | | septendecimal kleisma, 255th subharmonic | ||
|17/16 to 16/15 | | 17/16 to 16/15 | ||
|- | |- | ||
| [[273/272]] | | [[273/272]] | ||
Line 611: | Line 611: | ||
| {{monzo|-5 -2 0 0 0 0 2}} | | {{monzo|-5 -2 0 0 0 0 2}} | ||
| septendecimal 6-cent comma | | septendecimal 6-cent comma | ||
|18/17 to 17/16 | | 18/17 to 17/16 | ||
|- | |- | ||
| 375/374 | | 375/374 | ||
Line 667: | Line 667: | ||
| {{monzo|-6 2 0 0 2 0 -1}} | | {{monzo|-6 2 0 0 2 0 -1}} | ||
| twosquare comma | | twosquare comma | ||
|34/33 to 33/32 | | 34/33 to 33/32 | ||
|- | |- | ||
| 1156/1155 | | 1156/1155 | ||
Line 674: | Line 674: | ||
| {{monzo|2 -1 -1 -1 -1 0 2}} | | {{monzo|2 -1 -1 -1 -1 0 2}} | ||
| septendecimal 1/4-tones comma | | septendecimal 1/4-tones comma | ||
|35/34 to 34/33 | | 35/34 to 34/33 | ||
|- | |- | ||
| [[1225/1224]] | | [[1225/1224]] | ||
Line 681: | Line 681: | ||
| {{monzo|-3 -2 2 2 0 0 -1}} | | {{monzo|-3 -2 2 2 0 0 -1}} | ||
| noema | | noema | ||
|36/35 to 35/34 | | 36/35 to 35/34 | ||
|- | |- | ||
| 1275/1274 | | 1275/1274 | ||
Line 716: | Line 716: | ||
| {{monzo|2 -1 4 -2 0 0 -1}} | | {{monzo|2 -1 4 -2 0 0 -1}} | ||
| | | | ||
|51/50 to 50/49 | | 51/50 to 50/49 | ||
|- | |- | ||
| 2601/2600 | | [[2601/2600]] | ||
| 0.66573 | | 0.66573 | ||
| (3<sup>2</sup>*17<sup>2</sup>)/(2<sup>3</sup>*5<sup>2</sup>*13) | | (3<sup>2</sup>*17<sup>2</sup>)/(2<sup>3</sup>*5<sup>2</sup>*13) | ||
| {{monzo|-3 2 -2 0 0 -1 2}} | | {{monzo|-3 2 -2 0 0 -1 2}} | ||
| septendecimal 1/6-tones comma | | septendecimal 1/6-tones comma | ||
|52/51 to 51/50 | | 52/51 to 51/50 | ||
|- | |- | ||
| 4914/4913 | | 4914/4913 | ||
Line 751: | Line 751: | ||
| {{monzo|6 2 2 -1 -2 0 -1}} | | {{monzo|6 2 2 -1 -2 0 -1}} | ||
| sparkisma | | sparkisma | ||
|121/120 to 120/119 | | 121/120 to 120/119 | ||
|- | |- | ||
| 28561/28560 | | 28561/28560 | ||
Line 758: | Line 758: | ||
| {{monzo|-4 -1 -1 -1 0 4 -1}} | | {{monzo|-4 -1 -1 -1 0 4 -1}} | ||
| | | | ||
|170/169 to 169/168 | | 170/169 to 169/168 | ||
|- | |- | ||
| 31213/31212 | | 31213/31212 | ||
Line 779: | Line 779: | ||
| {{monzo|-4 4 -1 4 -1 -1 -1}} | | {{monzo|-4 4 -1 4 -1 -1 -1}} | ||
| scintillisma | | scintillisma | ||
|442/441 to 441/440 | | 442/441 to 441/440 | ||
|- | |- | ||
| 336141/336140 | | 336141/336140 | ||
Line 893: | Line 893: | ||
| {{monzo|2 4 0 0 0 0 -1 -1}} | | {{monzo|2 4 0 0 0 0 -1 -1}} | ||
| nusu comma | | nusu comma | ||
|19/18 to 18/17 | | 19/18 to 18/17 | ||
|- | |- | ||
| 343/342 | | 343/342 | ||
Line 907: | Line 907: | ||
| {{monzo|-3 -2 -1 0 0 0 0 2}} | | {{monzo|-3 -2 -1 0 0 0 0 2}} | ||
| go comma | | go comma | ||
|20/19 to 19/18 | | 20/19 to 19/18 | ||
|- | |- | ||
| 400/399 | | 400/399 | ||
Line 914: | Line 914: | ||
| {{monzo|4 -1 2 -1 0 0 0 -1}} | | {{monzo|4 -1 2 -1 0 0 0 -1}} | ||
| | | | ||
|21/20 to 20/19 | | 21/20 to 20/19 | ||
|- | |- | ||
| 456/455 | | 456/455 | ||
Line 977: | Line 977: | ||
| {{monzo|-4 2 -1 0 0 2 0 -1}} | | {{monzo|-4 2 -1 0 0 2 0 -1}} | ||
| pinkanberry | | pinkanberry | ||
|40/39 to 39/38 | | 40/39 to 39/38 | ||
|- | |- | ||
| 1540/1539 | | 1540/1539 | ||
Line 986: | Line 986: | ||
| | | | ||
|- | |- | ||
| 1729/1728 | | [[1729/1728]] | ||
| 1.0016 | | 1.0016 | ||
| (7*13*19)/(2<sup>6</sup>*3<sup>3</sup>) | | (7*13*19)/(2<sup>6</sup>*3<sup>3</sup>) | ||
Line 1,019: | Line 1,019: | ||
| {{monzo|6 -1 -1 2 -1 0 0 -1}} | | {{monzo|6 -1 -1 2 -1 0 0 -1}} | ||
| | | | ||
|57/56 to 56/55 | | 57/56 to 56/55 | ||
|- | |- | ||
| 3250/3249 | | 3250/3249 | ||
Line 1,040: | Line 1,040: | ||
| {{monzo|4 -1 -2 -1 -1 0 0 2}} | | {{monzo|4 -1 -2 -1 -1 0 0 2}} | ||
| | | | ||
|77/76 to 76/75 | | 77/76 to 76/75 | ||
|- | |- | ||
| 5929/5928 | | 5929/5928 | ||
Line 1,047: | Line 1,047: | ||
| {{monzo|-3 -1 0 2 2 -1 0 -1}} | | {{monzo|-3 -1 0 2 2 -1 0 -1}} | ||
| | | | ||
|78/77 to 77/76 | | 78/77 to 77/76 | ||
|- | |- | ||
| 5985/5984 | | 5985/5984 | ||
Line 1,117: | Line 1,117: | ||
| {{monzo|-4 4 0 -1 -1 0 1 -1}} | | {{monzo|-4 4 0 -1 -1 0 1 -1}} | ||
| | | | ||
|154/153 to 153/152 | | 154/153 to 153/152 | ||
|- | |- | ||
| 27456/27455 | | 27456/27455 | ||
Line 1,131: | Line 1,131: | ||
| {{monzo|2 -2 2 0 0 -2 2 -1}} | | {{monzo|2 -2 2 0 0 -2 2 -1}} | ||
| | | | ||
|171/170 to 170/169 | | 171/170 to 170/169 | ||
|- | |- | ||
| 43681/43680 | | 43681/43680 | ||
Line 1,138: | Line 1,138: | ||
| {{monzo|-5 -1 -1 -1 2 -1 0 2}} | | {{monzo|-5 -1 -1 -1 2 -1 0 2}} | ||
| | | | ||
|210/209 to 209/208 | | 210/209 to 209/208 | ||
|- | |- | ||
| 89376/89375 | | 89376/89375 | ||
Line 1,152: | Line 1,152: | ||
| {{monzo|4 8 -2 0 0 0 -1 -1 -1}} | | {{monzo|4 8 -2 0 0 0 -1 -1 -1}} | ||
| | | | ||
|325/324 to 324/323 | | 325/324 to 324/323 | ||
|- | |- | ||
| 165376/165375 | | 165376/165375 | ||
Line 1,194: | Line 1,194: | ||
| {{monzo|-8 -5 -1 0 2 2 2 -1}} | | {{monzo|-8 -5 -1 0 2 2 2 -1}} | ||
| | | | ||
|2432/2431 to 2431/2430 | | 2432/2431 to 2431/2430 | ||
|- | |- | ||
| 11859211/11859210 | | 11859211/11859210 | ||
Line 1,336: | Line 1,336: | ||
| | | | ||
| | | | ||
|23/22 to 22/21 | | 23/22 to 22/21 | ||
|- | |- | ||
| 507/506 | | 507/506 | ||
Line 1,350: | Line 1,350: | ||
| | | | ||
| | | | ||
|24/23 to 23/22 | | 24/23 to 23/22 | ||
|- | |- | ||
| 576/575 | | 576/575 | ||
Line 1,357: | Line 1,357: | ||
| | | | ||
| | | | ||
|25/24 to 24/23 | | 25/24 to 24/23 | ||
|- | |- | ||
|736/735 | | 736/735 | ||
|2.3538 | | 2.3538 | ||
|(2<sup>5</sup>*23)/(3*5*7<sup>2</sup>) | | (2<sup>5</sup>*23)/(3*5*7<sup>2</sup>) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|760/759 | | 760/759 | ||
|2.2794 | | 2.2794 | ||
|(2<sup>3</sup>*5*19)/(3*11*23) | | (2<sup>3</sup>*5*19)/(3*11*23) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|875/874 | | 875/874 | ||
|1.9797 | | 1.9797 | ||
|(5<sup>3</sup>*7)/(2*19*23) | | (5<sup>3</sup>*7)/(2*19*23) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|897/896 | | 897/896 | ||
|1.9311 | | 1.9311 | ||
|(3*13*23)/(2<sup>7</sup>*7) | | (3*13*23)/(2<sup>7</sup>*7) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|1105/1104 | | 1105/1104 | ||
|1.5674 | | 1.5674 | ||
|(5*13*17)/(2<sup>4</sup>*3*23) | | (5*13*17)/(2<sup>4</sup>*3*23) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|1197/1196 | | 1197/1196 | ||
|1.4469 | | 1.4469 | ||
|(3<sup>2</sup>*17*19)/(2<sup>2</sup>*13*23) | | (3<sup>2</sup>*17*19)/(2<sup>2</sup>*13*23) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|1288/1287 | | 1288/1287 | ||
|1.3446 | | 1.3446 | ||
|(2<sup>3</sup>*7*23)/(3<sup>2</sup>*11*13) | | (2<sup>3</sup>*7*23)/(3<sup>2</sup>*11*13) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|1496/1495 | | 1496/1495 | ||
|1.1576 | | 1.1576 | ||
|(2<sup>3</sup>*11*17)/(5*13*23) | | (2<sup>3</sup>*11*17)/(5*13*23) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|1863/1862 | | 1863/1862 | ||
|0.92952 | | 0.92952 | ||
|(3<sup>4</sup>*23)/(2*7<sup>2</sup>*19) | | (3<sup>4</sup>*23)/(2*7<sup>2</sup>*19) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|2024/2023 | | 2024/2023 | ||
|0.85556 | | 0.85556 | ||
|(2<sup>3</sup>*11*23)/(7*17<sup>2</sup>) | | (2<sup>3</sup>*11*23)/(7*17<sup>2</sup>) | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|2185/2184 | | 2185/2184 | ||
|0.79251 | | 0.79251 | ||
|(5*19*23)/(2<sup>3</sup>*3*7*13) | | (5*19*23)/(2<sup>3</sup>*3*7*13) | ||
| | | | ||
| | | |
Revision as of 15:08, 3 January 2022
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 19-limit.
Superparticular numbers are ratios of the form (n + 1)/n, or 1 + 1/n, where n is a whole number other than 1. They appear frequently in just intonation and harmonic series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22×32)/(5×7), while 37/36 would belong to the 37-limit.
Størmer's theorem states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS: A002071 gives the number of superparticular ratios in each prime limit, OEIS: A145604 shows the increment from limit to limit, and OEIS: A117581 gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from the Scala website.
Ratio | Cents | Factorization | Monzo | Name(s) | Meta |
---|---|---|---|---|---|
2-limit (complete) | |||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic | |
3-limit (complete) | |||||
3/2 | 701.955 | 3/2 | [-1 1⟩ | perfect fifth, 3rd harmonic (octave reduced), diapente | |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, 3rd subharmonic (octave reduced), diatessaron | 3/2 to 2/1 |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | 4/3 to 3/2 |
5-limit (complete) | |||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | classic/just major third, 5th harmonic (octave reduced) | |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | classic/just minor third | |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic (whole) tone, classic major second, minor whole tone | |
16/15 | 111.731 | 24/(3*5) | [4 -1 -1⟩ | classic/just diatonic semitone, 15th subharmonic | 5/4 to 4/3 |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | classic/just chromatic semitone, chroma, Zarlinian semitone | 6/5 to 5/4 |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma | 10/9 to 9/8 |
7-limit (complete) | |||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third | |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, 7th subharmonic | |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal major semitone, septimal diatonic semitone | |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | septimal minor semitone, large septimal chroma | |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal 1/3-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma | |
36/35 | 48.770 | (22*33)/(5*7) | [2 2 -1 -1⟩ | septimal 1/4-tone, septimal diesis | 7/6 to 6/5 |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | slendro diesis, large septimal diesis, large septimal 1/6-tone | 8/7 to 7/6 |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | jubilisma, small septimal diesis, small septimal 1/6-tone, tritonic diesis, Erlich's decatonic comma | |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma | 9/8 to 8/7 |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma | |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma | 16/15 to 15/14 |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma | 50/49 to 49/48 |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma | |
11-limit (complete) | |||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) undecimal neutral second, undecimal submajor second, Ptolemy's second | |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) undecimal neutral second | |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone | |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | undecimal 1/5-tone | |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | undecimal diasecundal comma, eleventyfive comma | |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma | |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | mothwellsma, small undecimal comma | |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | ptolemisma, Ptolemy's comma | 11/10 to 10/9 |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | biyatisma, undecimal seconds comma | 12/11 to 11/10 |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma | |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | rastma, neutral thirds comma | |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma | |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | werckisma, Werckmeister's undecimal septenarian schisma | 22/21 to 21/20 |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | swetisma, Swets' comma | |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | lehmerisma | 56/55 to 55/54 |
9801/9800 | 0.17665 | (11/(5*7))2*34/23 | [-3 4 -2 -2 2⟩ | kalisma, Gauss comma | 100/99 to 99/98 |
13-limit (complete) | |||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | (large) tridecimal 2/3-tone, tridecimal neutral second | |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | (small) tridecimal 2/3-tone, trienthird | |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | (large) tridecimal 1/3-tone | |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | (small) tridecimal 1/3-tone | |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis | |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma | |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma | |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma | |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma | |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | animist comma, small tridecimal comma | |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma | 13/12 to 12/11 |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma | 14/13 to 13/12 |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | mynucuma | 15/14 to 14/13 |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | marveltwin comma | |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma | |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma | |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma | |
625/624 | 2.7722 | (5/2)4/(3*13) | [-4 -1 4 0 0 -1⟩ | tunbarsma | 26/25 to 25/24 |
676/675 | 2.5629 | (2*13/5)2/33 | [2 -3 -2 0 0 2⟩ | island comma | 27/26 to 26/25 |
729/728 | 2.3764 | (32/2)3/(7*13) | [-3 6 0 -1 0 -1⟩ | squbema | 28/27 to 27/26 |
1001/1000 | 1.7304 | 7*11*13/(2*5)3 | [-3 0 -3 1 1 1⟩ | sinbadma | |
1716/1715 | 1.0092 | 22*3*11*13/(5*73) | [2 1 -1 -3 1 1⟩ | lummic comma | |
2080/2079 | 0.83252 | 25*5*13/(33*7*11) | [5 -3 1 -1 -1 1⟩ | ibnsinma | |
4096/4095 | 0.42272 | (26/3)2/(5*7*13) | [12 -2 -1 -1 0 -1⟩ | schismina, tridecimal schisma | 65/64 to 64/63 |
4225/4224 | 0.40981 | (5*13)2/(27*3*11) | [-7 -1 2 0 -1 2⟩ | leprechaun comma | 66/65 to 65/64 |
6656/6655 | 0.26012 | (23/11)3*13/5 | [9 0 -1 0 -3 1⟩ | jacobin comma | |
10648/10647 | 0.16260 | (2*11)3/((3*13)2*7) | [3 -2 0 -1 3 -2⟩ | harmonisma | |
123201/123200 | 0.014052 | (3/2)6*(13/5)2/(7*11) | [-6 6 -2 -1 -1 2⟩ | chalmersia | 352/351 to 351/350 |
17-limit (complete) | |||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | large septendecimal semitone, 17th harmonic (octave reduced) | |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | small septendecimal semitone, Arabic lute index finger | |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | large septendecimal 1/4-tone | |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | small septendecimal 1/4-tone | |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | large septendecimal 1/6-tone | |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | small septendecimal 1/6-tone | |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | septendecimal comma (?) | |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | ||
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | septendecimal major second comma | |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | ||
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | ||
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | ||
256/255 | 6.7759 | (28)/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | septendecimal kleisma, 255th subharmonic | 17/16 to 16/15 |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | tannisma | |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | septendecimal 6-cent comma | 18/17 to 17/16 |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | ||
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | ||
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | ||
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | ||
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | September comma, septembrisma, septendecimal bridge comma | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | horizon comma | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | ainos comma, ainma | |
1089/1088 | 1.5905 | (32*112)/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma | 34/33 to 33/32 |
1156/1155 | 1.4983 | (22*172)/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | septendecimal 1/4-tones comma | 35/34 to 34/33 |
1225/1224 | 1.4138 | (52*72)/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | noema | 36/35 to 35/34 |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | ||
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | palingenesis comma, palingenetic comma, palingenesma | |
2058/2057 | 0.84143 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma | |
2431/2430 | 0.71230 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | ||
2500/2499 | 0.69263 | (22*54)/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | 51/50 to 50/49 | |
2601/2600 | 0.66573 | (32*172)/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | septendecimal 1/6-tones comma | 52/51 to 51/50 |
4914/4913 | 0.35234 | (2*33*7*13)/(173) | [1 3 0 1 0 1 -3⟩ | ||
5832/5831 | 0.29688 | (23*36)/(73*17) | [3 6 0 -3 0 0 -1⟩ | chlorisma | |
12376/12375 | 0.13989 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | flashma | |
14400/14399 | 0.12023 | (26*32*52)/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | sparkisma | 121/120 to 120/119 |
28561/28560 | 0.060616 | (134)/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | 170/169 to 169/168 | |
31213/31212 | 0.055466 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | ||
37180/37179 | 0.046564 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | ||
194481/194480 | 0.008902 | (34*74)/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma | 442/441 to 441/440 |
336141/336140 | 0.005150 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | ||
19-limit (complete) | |||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | large undevicesimal semitone | |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone | |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | undevicesimal 2/9-tone | |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | hendrix comma | |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | large undevicesimal 1/9-tone | |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | small undevicesimal 1/9-tone | |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | 19th-partial chroma | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | ||
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | ganassisma, Ganassi's comma | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | ||
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | ||
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | yama comma | |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | spleen comma | |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | ||
324/323 | 5.3516 | (22*34)/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | nusu comma | 19/18 to 18/17 |
343/342 | 5.0547 | 74/(2*33*19) | [-1 -2 0 3 0 0 0 -1⟩ | ||
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | go comma | 20/19 to 19/18 |
400/399 | 4.3335 | (24*52)/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | 21/20 to 20/19 | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | ||
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | ||
495/494 | 3.5010 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | ||
513/512 | 3.3780 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | undevicesimal comma, undevicesimal schisma, Boethius' comma, 513th harmonic | |
969/968 | 1.7875 | (3*17*19)/(23*112) | [-3 1 0 0 -2 0 1 1⟩ | ||
1216/1215 | 1.4243 | (26*19)/(35*5) | [6 -5 -1 0 0 0 0 1⟩ | password comma, Eratosthenes' comma | |
1331/1330 | 1.3012 | 113/(2*5*7*19) | [-1 0 -1 -1 3 0 0 -1⟩ | ||
1445/1444 | 1.1985 | 5*(17/(2*19))2 | [-2 0 1 0 0 0 2 -2⟩ | aureusma | |
1521/1520 | 1.1386 | (3*13)2/(24*5*19) | [-4 2 -1 0 0 2 0 -1⟩ | pinkanberry | 40/39 to 39/38 |
1540/1539 | 1.1245 | (22*5*7*11)/(34*19) | [2 -4 1 1 1 0 0 -1⟩ | ||
1729/1728 | 1.0016 | (7*13*19)/(26*33) | [-6 -3 0 1 0 1 0 1⟩ | ||
2376/2375 | 0.7288 | (53*19)/(23*33*11) | [-3 -3 3 0 -1 0 0 1⟩ | ||
2432/2431 | 0.7120 | (11*13*17)/(27*19) | [-7 0 0 0 1 1 1 -1⟩ | Blumeyer comma | |
2926/2925 | 0.5918 | (2*7*11*19)/(32*52*13) | [1 -2 -2 1 1 -1 0 1⟩ | ||
3136/3135 | 0.5521 | (26*72)/(3*5*11*19) | [6 -1 -1 2 -1 0 0 -1⟩ | 57/56 to 56/55 | |
3250/3249 | 0.5328 | (2*53*13)/(32*192) | [1 -2 3 0 0 1 0 -2⟩ | ||
4200/4199 | 0.4123 | (23*3*52*7)/(13*17*19) | [3 1 2 1 0 -1 -1 -1⟩ | ||
5776/5775 | 0.2998 | (24*192)/(3*52*7*11) | [4 -1 -2 -1 -1 0 0 2⟩ | 77/76 to 76/75 | |
5929/5928 | 0.2920 | (72*112)/(23*3*13*19) | [-3 -1 0 2 2 -1 0 -1⟩ | 78/77 to 77/76 | |
5985/5984 | 0.2893 | (25*11*17)/(32*5*7*19) | [5 -2 -1 -1 1 0 1 -1⟩ | ||
6175/6174 | 0.2804 | (52*13*19)/(2*32*73) | [-1 -2 2 -3 0 1 0 1⟩ | ||
6860/6859 | 0.2524 | (22*5*73)/(193) | [2 0 1 3 0 0 0 -3⟩ | ||
10241/10240 | 0.1691 | (72*11*19)/(211*5) | [-11 0 -1 2 1 0 0 1⟩ | ||
10830/10829 | 0.1599 | (2*3*5*192)/(72*13*17) | [1 1 1 -2 0 -1 -1 2⟩ | ||
12636/12635 | 0.1370 | (22*35*13)/(5*7*192) | [2 5 -1 -1 0 1 0 -2⟩ | ||
13377/13376 | 0.1294 | (3*73*13)/(26*11*19) | [-6 1 0 3 -1 1 0 -1⟩ | ||
14080/14079 | 0.1230 | (28*5*11)/(3*13*192) | [8 -1 1 0 1 -1 0 -2⟩ | ||
14365/14364 | 0.1205 | (5*132*17)/(22*33*7*19) | [-2 -3 1 -1 0 1 1 -1⟩ | ||
23409/23408 | 0.07396 | (34*172)/(24*7*11*19) | [-4 4 0 -1 -1 0 1 -1⟩ | 154/153 to 153/152 | |
27456/27455 | 0.06306 | (26*3*11*17)/(5*172*19) | [6 1 -1 0 1 0 -2 -1⟩ | ||
28900/28899 | 0.05991 | (22*52*172)/(32*132*19) | [2 -2 2 0 0 -2 2 -1⟩ | 171/170 to 170/169 | |
43681/43680 | 0.03963 | (112*192)/(25*3*5*7*13) | [-5 -1 -1 -1 2 -1 0 2⟩ | 210/209 to 209/208 | |
89376/89375 | 0.01937 | (25*3*72*19)/(54*11*13) | [5 1 -4 2 -1 -1 0 1⟩ | ||
104976/104975 | 0.01649 | (24*38)/(52*13*17*19) | [4 8 -2 0 0 0 -1 -1 -1⟩ | 325/324 to 324/323 | |
165376/165375 | 0.01047 | (29*17*19)/(33*53*72) | [9 -3 -3 -2 0 0 1 1⟩ | decimillisma | |
228096/228095 | 0.007590 | (28*34*11)/(5*74*19) | [8 4 -1 -4 1 0 0 -1⟩ | ||
601426/601425 | 0.002879 | (2*72*17*192)/(37*52*11) | [2 -7 -2 2 -1 0 1 2⟩ | ||
633556/633555 | 0.002733 | (22*7*113*17)/(33*5*13*192) | [2 -3 -1 1 3 -1 1 -2⟩ | ||
709632/709631 | 0.002440 | (210*32*7*11)/(133*17*19) | [10 2 0 1 1 -3 -1 -1⟩ | ||
5909761/5909760 | 0.0002929 | (112*132*172)/(28*35*5*19) | [-8 -5 -1 0 2 2 2 -1⟩ | 2432/2431 to 2431/2430 | |
11859211/11859210 | 0.0001460 | (7*13*194)/(2*34*5*114) | [-1 -4 -1 1 -4 1 0 4⟩ | ||
23-limit (incomplete) | |||||
23/22 | 76.956 | 23/(2*11) | greater vicesimotertial semitone | ||
24/23 | 73.681 | (23*3)/23 | small vicesimotertial semitone | ||
46/45 | 38.051 | (2*23)/(32*5) | vicesimotertial 1/5-tone | ||
69/68 | 25.274 | (3*23)/(22*17) | large vicesimotertial 1/8-tone | ||
70/69 | 24.910 | (2*5*7)/(3*23) | small vicesimotertial 1/8-tone | ||
92/91 | 18.921 | (22*23)/(7*13) | |||
115/114 | 15.120 | (5*23)/(2*3*19) | |||
161/160 | 10.787 | (7*23)/(25*5) | |||
162/161 | 10.720 | (2*34)/(7*23) | |||
208/207 | 8.3433 | (24*13)/(32*23) | |||
231/230 | 7.5108 | (3*7*11)/(2*5*23) | |||
253/252 | 6.8564 | (11*23)/((2*3)2*7) | |||
276/275 | 6.2840 | (22*3*23)/(52*11) | |||
300/299 | 5.7804 | ((2*5)2*3)/(13*23) | |||
323/322 | 5.3682 | (17*19)/(2*7*23) | |||
391/390 | 4.4334 | (17*23)/(2*3*5*13) | |||
392/391 | 4.4221 | (23*7*7)/(17*23) | |||
460/459 | 3.7676 | (22*5*23)/(33*17) | |||
484/483 | 3.5806 | (2*11)2/(3*7*23) | 23/22 to 22/21 | ||
507/506 | 3.4180 | (3*132)/(2*11*23) | |||
529/528 | 3.2758 | 232/(24*3*11) | 24/23 to 23/22 | ||
576/575 | 3.0082 | (26*32)/(23*52) | 25/24 to 24/23 | ||
736/735 | 2.3538 | (25*23)/(3*5*72) | |||
760/759 | 2.2794 | (23*5*19)/(3*11*23) | |||
875/874 | 1.9797 | (53*7)/(2*19*23) | |||
897/896 | 1.9311 | (3*13*23)/(27*7) | |||
1105/1104 | 1.5674 | (5*13*17)/(24*3*23) | |||
1197/1196 | 1.4469 | (32*17*19)/(22*13*23) | |||
1288/1287 | 1.3446 | (23*7*23)/(32*11*13) | |||
1496/1495 | 1.1576 | (23*11*17)/(5*13*23) | |||
1863/1862 | 0.92952 | (34*23)/(2*72*19) | |||
2024/2023 | 0.85556 | (23*11*23)/(7*172) | |||
2185/2184 | 0.79251 | (5*19*23)/(23*3*7*13) | |||
29-limit (incomplete) | |||||
29/28 | 60.751 | 29/(22*7) | |||
30/29 | 58.692 | (2*3*5)/29 | |||
58/57 | 30.109 | (2*29)/(3*19) | |||
88/87 | 19.786 | (23*11)/(3*29) | |||
116/115 | 14.989 | (22*29)/(5*23) | |||
117/116 | 14.860 | (33*13)/(22*29) | |||
145/144 | 11.981 | (5*29)/(24*32) | |||
31-limit (incomplete) | |||||
31/30 | 56.767 | 31/(2*3*5) | large tricesimoprimal 1/4-tone | ||
32/31 | 54.964 | 25/31 | small tricesimoprimal 1/4-tone, 31st subharmonic | ||
63/62 | 27.700 | (32*7)/(2*31) | |||
93/92 | 18.716 | (3*31)/(22*23) | |||
125/124 | 13.906 | (53)/(22*31) | Twizzler | ||
37-limit (incomplete) | |||||
37/36 | 47.434 | 37/(22*32) | |||
38/37 | 46.169 | (2*19)/37 | |||
75/74 | 23.238 | (3*52)/(2*37) | |||
41-limit (incomplete) | |||||
41/40 | 42.749 | 41/(23*5) | |||
42/41 | 41.719 | (2*3*7)/41 | |||
82/81 | 21.242 | (2*41)/34 | |||
43-limit (incomplete) | |||||
43/42 | 40.737 | 43/(2*3*7) | |||
44/43 | 39.800 | (22*11)/43 | |||
86/85 | 20.249 | (2*43)/(5*17) | |||
87/86 | 20.014 | (3*29)/(2*43) | |||
47-limit (incomplete) | |||||
47/46 | 37.232 | 47/(2*23) | |||
48/47 | 36.448 | (24*3)/47 | |||
94/93 | 18.516 | (2*47)/(3*31) | |||
95/94 | 18.320 | (5*19)/(2*47) | |||
53-limit (incomplete) | |||||
53/52 | 32.977 | 53/(22*13) | |||
54/53 | 32.360 | (2*33)/53 | |||
59-limit (incomplete) | |||||
59/58 | 29.594 | 59/(2*29) | |||
60/59 | 29.097 | (22*3*5)/59 | |||
61-limit (incomplete) | |||||
61/60 | 28.616 | 61/(22*3*5) | |||
62/61 | 28.151 | (2*31)/61 | |||
67-limit (incomplete) | |||||
67/66 | 26.034 | 67/(2*3*11) | |||
68/67 | 25.648 | (22*17)/67 | |||
71-limit (incomplete) | |||||
71/70 | 24.557 | 71/(2*5*7) | |||
72/71 | 24.213 | (23*32)/71 | |||
73-limit (incomplete) | |||||
73/72 | 23.879 | 73/(23*32) | |||
74/73 | 23.555 | (2*37)/73 | |||
79-limit (incomplete) | |||||
79/78 | 22.054 | 79/(2*3*13) | |||
80/79 | 21.777 | (24*5)/79 | |||
83-limit (incomplete) | |||||
83/82 | 20.985 | 83/(2*41) | |||
84/83 | 20.734 | (22*3*7)/83 | |||
89-limit (incomplete) | |||||
89/88 | 19.562 | 89/(23*11) | |||
90/89 | 19.344 | (2*32*5)/89 | |||
97-limit (incomplete) | |||||
97/96 | 17.940 | 97/(25*3) | |||
98/97 | 17.756 | (2*72)/97 | |||
101-limit (incomplete) | |||||
101/100 | 17.226 | 101/(22*52) | |||
102/101 | 17.057 | (2*3*17)/101 |