List of superparticular intervals: Difference between revisions
+23-limit monzos and improve some factorizations |
Update |
||
Line 33: | Line 33: | ||
| 3/2 | | 3/2 | ||
| {{monzo|-1 1}} | | {{monzo|-1 1}} | ||
| [[perfect fifth]], 3rd harmonic | | [[perfect fifth]], octave-reduced 3rd harmonic, diapente | ||
| | | | ||
|- | |- | ||
Line 40: | Line 40: | ||
| 2<sup>2</sup>/3 | | 2<sup>2</sup>/3 | ||
| {{monzo|2 -1}} | | {{monzo|2 -1}} | ||
| perfect fourth, 3rd subharmonic | | perfect fourth, octave-reduced 3rd subharmonic, diatessaron | ||
| S2 | | S2 | ||
|- | |- | ||
Line 47: | Line 47: | ||
| 3<sup>2</sup>/2<sup>3</sup> | | 3<sup>2</sup>/2<sup>3</sup> | ||
| {{monzo|-3 2}} | | {{monzo|-3 2}} | ||
| (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth | | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, octave-reduced 9th harmonic or harmonic ninth | ||
| S3 | | S3 | ||
|- | |- | ||
Line 56: | Line 56: | ||
| 5/2<sup>2</sup> | | 5/2<sup>2</sup> | ||
| {{monzo|-2 0 1}} | | {{monzo|-2 0 1}} | ||
| classic/just major third, 5th harmonic | | classic(al)/just major third, octave-reduced 5th harmonic | ||
| | | | ||
|- | |- | ||
Line 63: | Line 63: | ||
| (2*3)/5 | | (2*3)/5 | ||
| {{monzo|1 1 -1}} | | {{monzo|1 1 -1}} | ||
| classic/just minor third | | classic(al)/just minor third | ||
| | | | ||
|- | |- | ||
Line 70: | Line 70: | ||
| (2*5)/3<sup>2</sup> | | (2*5)/3<sup>2</sup> | ||
| {{monzo|1 -2 1}} | | {{monzo|1 -2 1}} | ||
| classic (whole) tone, classic major second, minor whole tone | | classic(al) (whole) tone, classic major second, minor whole tone | ||
| | | | ||
|- | |- | ||
Line 77: | Line 77: | ||
| 2<sup>4</sup>/(3*5) | | 2<sup>4</sup>/(3*5) | ||
| {{monzo|4 -1 -1}} | | {{monzo|4 -1 -1}} | ||
| classic/just diatonic semitone, 15th subharmonic | | classic(al)/just diatonic semitone, 15th subharmonic | ||
| S4 | | S4 | ||
|- | |- | ||
Line 84: | Line 84: | ||
| 5<sup>2</sup>/(2<sup>3</sup>*3) | | 5<sup>2</sup>/(2<sup>3</sup>*3) | ||
| {{monzo|-3 -1 2}} | | {{monzo|-3 -1 2}} | ||
| classic/just chromatic semitone, chroma, Zarlinian semitone | | classic(al)/just chromatic semitone, chroma, Zarlinian semitone | ||
| S5 | | S5 | ||
|- | |- | ||
Line 107: | Line 107: | ||
| 2<sup>3</sup>/7 | | 2<sup>3</sup>/7 | ||
| {{monzo|3 0 0 -1}} | | {{monzo|3 0 0 -1}} | ||
| (septimal) supermajor second, septimal whole tone, 7th subharmonic | | (septimal) supermajor second, septimal whole tone, octave-reduced 7th subharmonic | ||
| | | | ||
|- | |- | ||
Line 214: | Line 214: | ||
| (3*11)/2<sup>5</sup> | | (3*11)/2<sup>5</sup> | ||
| {{monzo|-5 1 0 0 1}} | | {{monzo|-5 1 0 0 1}} | ||
| undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic | | undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, octave-reduced 33rd harmonic | ||
| | | | ||
|- | |- | ||
Line 228: | Line 228: | ||
| (5*11)/(2*3<sup>3</sup>) | | (5*11)/(2*3<sup>3</sup>) | ||
| {{monzo|-1 -3 1 0 1}} | | {{monzo|-1 -3 1 0 1}} | ||
| undecimal diasecundal | | telepathma, eleventyfive comma, undecimal diasecundal comma | ||
| | | | ||
|- | |- | ||
Line 370: | Line 370: | ||
| (7*13)/(2*3<sup>2</sup>*5) | | (7*13)/(2*3<sup>2</sup>*5) | ||
| {{monzo|-1 -2 -1 1 0 1}} | | {{monzo|-1 -2 -1 1 0 1}} | ||
| | | Biome comma, superleap comma | ||
| | | | ||
|- | |- | ||
Line 398: | Line 398: | ||
| (2*7)<sup>2</sup>/(3*5*13) | | (2*7)<sup>2</sup>/(3*5*13) | ||
| {{monzo|2 -1 -1 2 0 -1}} | | {{monzo|2 -1 -1 2 0 -1}} | ||
| mynucuma | |||
| S14 | | S14 | ||
|- | |- | ||
Line 405: | Line 405: | ||
| (5<sup>2</sup>*13)/(2<sup>2</sup>*3<sup>4</sup>) | | (5<sup>2</sup>*13)/(2<sup>2</sup>*3<sup>4</sup>) | ||
| {{monzo|-2 -4 2 0 0 1}} | | {{monzo|-2 -4 2 0 0 1}} | ||
| marveltwin comma | |||
| | | | ||
|- | |- | ||
Line 512: | Line 512: | ||
| 17/2<sup>4</sup> | | 17/2<sup>4</sup> | ||
| {{monzo|-4 0 0 0 0 0 1}} | | {{monzo|-4 0 0 0 0 0 1}} | ||
| large septendecimal semitone, 17th harmonic | | large septendecimal semitone, octave-reduced 17th harmonic | ||
| | | | ||
|- | |- | ||
Line 594: | Line 594: | ||
| [[256/255]] | | [[256/255]] | ||
| 6.7759 | | 6.7759 | ||
| | | 2<sup>8</sup>/(3*5*17) | ||
| {{monzo|8 -1 -1 0 0 0 -1}} | | {{monzo|8 -1 -1 0 0 0 -1}} | ||
| septendecimal kleisma, 255th subharmonic | | septendecimal kleisma, octave-reduced 255th subharmonic | ||
| S16 | | S16 | ||
|- | |- | ||
Line 645: | Line 645: | ||
| (5*11*13)/(2*3*7*17) | | (5*11*13)/(2*3*7*17) | ||
| {{monzo|-1 -1 1 -1 1 1 -1}} | | {{monzo|-1 -1 1 -1 1 1 -1}} | ||
| | | september comma, septembrisma | ||
| | | | ||
|- | |- | ||
Line 652: | Line 652: | ||
| (7<sup>2</sup>*17)/(2<sup>6</sup>*13) | | (7<sup>2</sup>*17)/(2<sup>6</sup>*13) | ||
| {{monzo|-6 0 0 2 0 -1 1}} | | {{monzo|-6 0 0 2 0 -1 1}} | ||
| horizon comma | | horizma, horizon comma | ||
| | | | ||
|- | |- | ||
Line 664: | Line 664: | ||
| [[1089/1088]] | | [[1089/1088]] | ||
| 1.5905 | | 1.5905 | ||
| (3 | | (3*11)<sup>2</sup>/(2<sup>6</sup>*17) | ||
| {{monzo|-6 2 0 0 2 0 -1}} | | {{monzo|-6 2 0 0 2 0 -1}} | ||
| twosquare comma | | twosquare comma | ||
Line 671: | Line 671: | ||
| [[1156/1155]] | | [[1156/1155]] | ||
| 1.4983 | | 1.4983 | ||
| (2 | | (2*17)<sup>2</sup>/(3*5*7*11) | ||
| {{monzo|2 -1 -1 -1 -1 0 2}} | | {{monzo|2 -1 -1 -1 -1 0 2}} | ||
| septendecimal 1/4-tones comma | | septendecimal 1/4-tones comma | ||
Line 678: | Line 678: | ||
| [[1225/1224]] | | [[1225/1224]] | ||
| 1.4138 | | 1.4138 | ||
| (5 | | (5*7)<sup>2</sup>/(2<sup>3</sup>*3<sup>2</sup>*17) | ||
| {{monzo|-3 -2 2 2 0 0 -1}} | | {{monzo|-3 -2 2 2 0 0 -1}} | ||
| noellisma | | noellisma | ||
Line 694: | Line 694: | ||
| (3<sup>5</sup>*7)/[(2*5)<sup>2</sup>*17] | | (3<sup>5</sup>*7)/[(2*5)<sup>2</sup>*17] | ||
| {{monzo|-2 5 -2 1 0 0 -1}} | | {{monzo|-2 5 -2 1 0 0 -1}} | ||
| palingenetic comma, palingenesis | | palingenetic comma, palingenesis | ||
| | | | ||
|- | |- | ||
Line 713: | Line 713: | ||
| [[2500/2499]] | | [[2500/2499]] | ||
| 0.69263 | | 0.69263 | ||
| (2<sup>2</sup> | | (2*5<sup>2</sup>)<sup>2</sup>/(3*7<sup>2</sup>*17) | ||
| {{monzo|2 -1 4 -2 0 0 -1}} | | {{monzo|2 -1 4 -2 0 0 -1}} | ||
| sperasma | | sperasma | ||
Line 720: | Line 720: | ||
| [[2601/2600]] | | [[2601/2600]] | ||
| 0.66573 | | 0.66573 | ||
| (3 | | (3*17)<sup>2</sup>/(2<sup>3</sup>*5<sup>2</sup>*13) | ||
| {{monzo|-3 2 -2 0 0 -1 2}} | | {{monzo|-3 2 -2 0 0 -1 2}} | ||
| septendecimal 1/6-tones comma | | septendecimal 1/6-tones comma | ||
Line 727: | Line 727: | ||
| 4914/4913 | | 4914/4913 | ||
| 0.35234 | | 0.35234 | ||
| (2*3<sup>3</sup>*7*13)/ | | (2*3<sup>3</sup>*7*13)/17<sup>3</sup> | ||
| {{monzo|1 3 0 1 0 1 -3}} | | {{monzo|1 3 0 1 0 1 -3}} | ||
| | | | ||
Line 734: | Line 734: | ||
| [[5832/5831]] | | [[5832/5831]] | ||
| 0.29688 | | 0.29688 | ||
| (2<sup> | | (2*3<sup>2</sup>)<sup>3</sup>/(7<sup>3</sup>*17) | ||
| {{monzo|3 6 0 -3 0 0 -1}} | | {{monzo|3 6 0 -3 0 0 -1}} | ||
| chlorisma | | chlorisma | ||
Line 748: | Line 748: | ||
| [[sparkisma|14400/14399]] | | [[sparkisma|14400/14399]] | ||
| 0.12023 | | 0.12023 | ||
| (2<sup> | | (2<sup>3</sup>*3*5)<sup>2</sup>/(7*11<sup>2</sup>*17) | ||
| {{monzo|6 2 2 -1 -2 0 -1}} | | {{monzo|6 2 2 -1 -2 0 -1}} | ||
| sparkisma | | sparkisma | ||
Line 755: | Line 755: | ||
| 28561/28560 | | 28561/28560 | ||
| 0.060616 | | 0.060616 | ||
| | | 13<sup>4</sup>/(2<sup>4</sup>*3*5*7*17) | ||
| {{monzo|-4 -1 -1 -1 0 4 -1}} | | {{monzo|-4 -1 -1 -1 0 4 -1}} | ||
| | | | ||
Line 776: | Line 776: | ||
| 194481/194480 | | 194481/194480 | ||
| 0.008902 | | 0.008902 | ||
| (3 | | (3*7)<sup>4</sup>/(2<sup>4</sup>*5*11*13*17) | ||
| {{monzo|-4 4 -1 4 -1 -1 -1}} | | {{monzo|-4 4 -1 4 -1 -1 -1}} | ||
| scintillisma | | scintillisma | ||
Line 890: | Line 890: | ||
| [[324/323]] | | [[324/323]] | ||
| 5.3516 | | 5.3516 | ||
| (2<sup>2</sup> | | (2*3<sup>2</sup>)<sup>2</sup>/(17*19) | ||
| {{monzo|2 4 0 0 0 0 -1 -1}} | | {{monzo|2 4 0 0 0 0 -1 -1}} | ||
| nusu comma | | nusu comma | ||
Line 911: | Line 911: | ||
| 400/399 | | 400/399 | ||
| 4.3335 | | 4.3335 | ||
| (2<sup> | | (2<sup>2</sup>*5)<sup>2</sup>/(3*7*19) | ||
| {{monzo|4 -1 2 -1 0 0 0 -1}} | | {{monzo|4 -1 2 -1 0 0 0 -1}} | ||
| | | | ||
Line 988: | Line 988: | ||
| [[1729/1728]] | | [[1729/1728]] | ||
| 1.0016 | | 1.0016 | ||
| (7*13*19)/(2<sup> | | (7*13*19)/(2<sup>2</sup>*3)<sup>3</sup> | ||
| {{monzo|-6 -3 0 1 0 1 0 1}} | | {{monzo|-6 -3 0 1 0 1 0 1}} | ||
| ramanujanisma | | ramanujanisma | ||
Line 1,016: | Line 1,016: | ||
| 3136/3135 | | 3136/3135 | ||
| 0.5521 | | 0.5521 | ||
| (2<sup> | | (2<sup>3</sup>*7)<sup>2</sup>/(3*5*11*19) | ||
| {{monzo|6 -1 -1 2 -1 0 0 -1}} | | {{monzo|6 -1 -1 2 -1 0 0 -1}} | ||
| | | | ||
Line 1,023: | Line 1,023: | ||
| 3250/3249 | | 3250/3249 | ||
| 0.5328 | | 0.5328 | ||
| (2*5<sup>3</sup>*13)/(3 | | (2*5<sup>3</sup>*13)/(3*19)<sup>2</sup> | ||
| {{monzo|1 -2 3 0 0 1 0 -2}} | | {{monzo|1 -2 3 0 0 1 0 -2}} | ||
| | | | ||
Line 1,037: | Line 1,037: | ||
| 5776/5775 | | 5776/5775 | ||
| 0.2998 | | 0.2998 | ||
| (2<sup> | | (2<sup>2</sup>*19)<sup>2</sup>/(3*5<sup>2</sup>*7*11) | ||
| {{monzo|4 -1 -2 -1 -1 0 0 2}} | | {{monzo|4 -1 -2 -1 -1 0 0 2}} | ||
| | | | ||
Line 1,044: | Line 1,044: | ||
| 5929/5928 | | 5929/5928 | ||
| 0.2920 | | 0.2920 | ||
| (7 | | (7*11)<sup>2</sup>/(2<sup>3</sup>*3*13*19) | ||
| {{monzo|-3 -1 0 2 2 -1 0 -1}} | | {{monzo|-3 -1 0 2 2 -1 0 -1}} | ||
| | | | ||
Line 1,065: | Line 1,065: | ||
| 6860/6859 | | 6860/6859 | ||
| 0.2524 | | 0.2524 | ||
| (2<sup>2</sup>*5*7<sup>3</sup>)/ | | (2<sup>2</sup>*5*7<sup>3</sup>)/19<sup>3</sup> | ||
| {{monzo|2 0 1 3 0 0 0 -3}} | | {{monzo|2 0 1 3 0 0 0 -3}} | ||
| | | | ||
Line 1,114: | Line 1,114: | ||
| 23409/23408 | | 23409/23408 | ||
| 0.07396 | | 0.07396 | ||
| (3<sup> | | (3<sup>2</sup>*17)<sup>2</sup>/(2<sup>4</sup>*7*11*19) | ||
| {{monzo|-4 4 0 -1 -1 0 1 -1}} | | {{monzo|-4 4 0 -1 -1 0 1 -1}} | ||
| | | | ||
Line 1,121: | Line 1,121: | ||
| 27456/27455 | | 27456/27455 | ||
| 0.06306 | | 0.06306 | ||
| (2<sup>6</sup>*3*11 | | (2<sup>6</sup>*3*11)/(5*17<sup>2</sup>*19) | ||
| {{monzo|6 1 -1 0 1 0 -2 -1}} | | {{monzo|6 1 -1 0 1 0 -2 -1}} | ||
| | | | ||
Line 1,128: | Line 1,128: | ||
| 28900/28899 | | 28900/28899 | ||
| 0.05991 | | 0.05991 | ||
| (2 | | (2*5*17)<sup>2</sup>/(3<sup>2</sup>*13<sup>2</sup>*19) | ||
| {{monzo|2 -2 2 0 0 -2 2 -1}} | | {{monzo|2 -2 2 0 0 -2 2 -1}} | ||
| | | | ||
Line 1,135: | Line 1,135: | ||
| 43681/43680 | | 43681/43680 | ||
| 0.03963 | | 0.03963 | ||
| (11 | | (11*19)<sup>2</sup>/(2<sup>5</sup>*3*5*7*13) | ||
| {{monzo|-5 -1 -1 -1 2 -1 0 2}} | | {{monzo|-5 -1 -1 -1 2 -1 0 2}} | ||
| | | | ||
Line 1,149: | Line 1,149: | ||
| 104976/104975 | | 104976/104975 | ||
| 0.01649 | | 0.01649 | ||
| (2<sup> | | (2*3<sup>2</sup>)<sup>4</sup>/(5<sup>2</sup>*13*17*19) | ||
| {{monzo|4 8 -2 0 0 0 -1 -1 -1}} | | {{monzo|4 8 -2 0 0 0 -1 -1 -1}} | ||
| | | | ||
Line 1,191: | Line 1,191: | ||
| 5909761/5909760 | | 5909761/5909760 | ||
| 0.0002929 | | 0.0002929 | ||
| (11 | | (11*13*17)<sup>2</sup>/(2<sup>8</sup>*3<sup>5</sup>*5*19) | ||
| {{monzo|-8 -5 -1 0 2 2 2 -1}} | | {{monzo|-8 -5 -1 0 2 2 2 -1}} | ||
| | | |
Revision as of 08:04, 23 February 2023
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 23-limit.
Superparticular numbers are ratios of the form (n + 1)/n, or 1 + 1/n, where n is a whole number other than 1. They appear frequently in just intonation and harmonic series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22×32)/(5×7), while 37/36 would belong to the 37-limit.
Størmer's theorem states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS: A002071 gives the number of superparticular ratios in each prime limit, OEIS: A145604 shows the increment from limit to limit, and OEIS: A117581 gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from the Scala website.
Ratio | Cents | Factorization | Monzo | Name(s) | Meta[1] |
---|---|---|---|---|---|
2-limit (complete) | |||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic | |
3-limit (complete) | |||||
3/2 | 701.955 | 3/2 | [-1 1⟩ | perfect fifth, octave-reduced 3rd harmonic, diapente | |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, octave-reduced 3rd subharmonic, diatessaron | S2 |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, octave-reduced 9th harmonic or harmonic ninth | S3 |
5-limit (complete) | |||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | classic(al)/just major third, octave-reduced 5th harmonic | |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | classic(al)/just minor third | |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic(al) (whole) tone, classic major second, minor whole tone | |
16/15 | 111.731 | 24/(3*5) | [4 -1 -1⟩ | classic(al)/just diatonic semitone, 15th subharmonic | S4 |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | classic(al)/just chromatic semitone, chroma, Zarlinian semitone | S5 |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma | S9 |
7-limit (complete) | |||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third | |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, octave-reduced 7th subharmonic | |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal major semitone, septimal diatonic semitone | |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | septimal minor semitone, large septimal chroma | |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal 1/3-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma | |
36/35 | 48.770 | (22*32)/(5*7) | [2 2 -1 -1⟩ | septimal 1/4-tone, septimal diesis | S6 |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | slendro diesis, large septimal diesis, large septimal 1/6-tone | S7 |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | jubilisma, small septimal diesis, small septimal 1/6-tone, tritonic diesis, Erlich's decatonic comma | |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma | S8 |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma | |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma | S15 |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma | S49 |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma | |
11-limit (complete) | |||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) undecimal neutral second, undecimal submajor second, Ptolemy's second | |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) undecimal neutral second | |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone | |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, octave-reduced 33rd harmonic | |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | undecimal 1/5-tone | |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | telepathma, eleventyfive comma, undecimal diasecundal comma | |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma | |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | mothwellsma, small undecimal comma | |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | ptolemisma, Ptolemy's comma | S10 |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | biyatisma, undecimal seconds comma | S11 |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma | |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | rastma, neutral thirds comma | |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma | |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | werckisma, Werckmeister's undecimal septenarian schisma | S21 |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | swetisma, Swets' comma | |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | lehmerisma | S55 |
9801/9800 | 0.17665 | (11/(5*7))2*34/23 | [-3 4 -2 -2 2⟩ | kalisma, Gauss comma | S99 |
13-limit (complete) | |||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | (large) tridecimal 2/3-tone, tridecimal neutral second | |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | (small) tridecimal 2/3-tone, trienthird | |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | (large) tridecimal 1/3-tone | |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | (small) tridecimal 1/3-tone | |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis | |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma | |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma | |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma | |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma | |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | animist comma, small tridecimal comma | |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma | S12 |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma | S13 |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | mynucuma | S14 |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | marveltwin comma | |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma | |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma | |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma | |
625/624 | 2.7722 | (5/2)4/(3*13) | [-4 -1 4 0 0 -1⟩ | tunbarsma | S25 |
676/675 | 2.5629 | (2*13/5)2/33 | [2 -3 -2 0 0 2⟩ | island comma | S26 |
729/728 | 2.3764 | (32/2)3/(7*13) | [-3 6 0 -1 0 -1⟩ | squbema | S27 |
1001/1000 | 1.7304 | 7*11*13/(2*5)3 | [-3 0 -3 1 1 1⟩ | sinbadma | |
1716/1715 | 1.0092 | 22*3*11*13/(5*73) | [2 1 -1 -3 1 1⟩ | lummic comma | |
2080/2079 | 0.83252 | 25*5*13/(33*7*11) | [5 -3 1 -1 -1 1⟩ | ibnsinma | |
4096/4095 | 0.42272 | (26/3)2/(5*7*13) | [12 -2 -1 -1 0 -1⟩ | schismina, tridecimal schisma | S65 |
4225/4224 | 0.40981 | (5*13)2/(27*3*11) | [-7 -1 2 0 -1 2⟩ | leprechaun comma | S66 |
6656/6655 | 0.26012 | (23/11)3*13/5 | [9 0 -1 0 -3 1⟩ | jacobin comma | |
10648/10647 | 0.16260 | (2*11)3/((3*13)2*7) | [3 -2 0 -1 3 -2⟩ | harmonisma | |
123201/123200 | 0.014052 | (3/2)6*(13/5)2/(7*11) | [-6 6 -2 -1 -1 2⟩ | chalmersia | S351 |
17-limit (complete) | |||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | large septendecimal semitone, octave-reduced 17th harmonic | |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | small septendecimal semitone, Arabic lute index finger | |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | large septendecimal 1/4-tone | |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | small septendecimal 1/4-tone | |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | large septendecimal 1/6-tone | |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | small septendecimal 1/6-tone | |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | septendecimal comma (?) | |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | lynchisma | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | septendecimal major second comma | |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | ||
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | ||
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | ||
256/255 | 6.7759 | 28/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | septendecimal kleisma, octave-reduced 255th subharmonic | S16 |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | tannisma | |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | septendecimal 6-cent comma | S17 |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | ursulisma | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | ||
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | ||
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | dakotisma | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | september comma, septembrisma | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | horizma, horizon comma | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | ainos comma, ainma | |
1089/1088 | 1.5905 | (3*11)2/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma | S33 |
1156/1155 | 1.4983 | (2*17)2/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | septendecimal 1/4-tones comma | S34 |
1225/1224 | 1.4138 | (5*7)2/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | noellisma | S35 |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | ||
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | palingenetic comma, palingenesis | |
2058/2057 | 0.84143 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma | |
2431/2430 | 0.71230 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | ||
2500/2499 | 0.69263 | (2*52)2/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | sperasma | S50 |
2601/2600 | 0.66573 | (3*17)2/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | septendecimal 1/6-tones comma | S51 |
4914/4913 | 0.35234 | (2*33*7*13)/173 | [1 3 0 1 0 1 -3⟩ | ||
5832/5831 | 0.29688 | (2*32)3/(73*17) | [3 6 0 -3 0 0 -1⟩ | chlorisma | |
12376/12375 | 0.13989 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | flashma | |
14400/14399 | 0.12023 | (23*3*5)2/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | sparkisma | S120 |
28561/28560 | 0.060616 | 134/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | S169 | |
31213/31212 | 0.055466 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | ||
37180/37179 | 0.046564 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | ||
194481/194480 | 0.008902 | (3*7)4/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma | S441 |
336141/336140 | 0.005150 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | ||
19-limit (complete) | |||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | large undevicesimal semitone | |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone | |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | undevicesimal 2/9-tone | |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | hendrix comma | |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | large undevicesimal 1/9-tone | |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | small undevicesimal 1/9-tone | |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | 19th-partial chroma | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | ||
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | ganassisma, Ganassi's comma | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | ||
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | ||
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | yama comma | |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | spleen comma | |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | ||
324/323 | 5.3516 | (2*32)2/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | nusu comma | S18 |
343/342 | 5.0547 | 73/(2*32*19) | [-1 -2 0 3 0 0 0 -1⟩ | ||
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | go comma | S19 |
400/399 | 4.3335 | (22*5)2/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | S20 | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | ||
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | ||
495/494 | 3.5010 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | ||
513/512 | 3.3780 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | undevicesimal comma, undevicesimal schisma, Boethius' comma, 513th harmonic | |
969/968 | 1.7875 | (3*17*19)/(23*112) | [-3 1 0 0 -2 0 1 1⟩ | ||
1216/1215 | 1.4243 | (26*19)/(35*5) | [6 -5 -1 0 0 0 0 1⟩ | password comma, Eratosthenes' comma | |
1331/1330 | 1.3012 | 113/(2*5*7*19) | [-1 0 -1 -1 3 0 0 -1⟩ | ||
1445/1444 | 1.1985 | 5*(17/(2*19))2 | [-2 0 1 0 0 0 2 -2⟩ | aureusma | |
1521/1520 | 1.1386 | (3*13)2/(24*5*19) | [-4 2 -1 0 0 2 0 -1⟩ | pinkanberry | S39 |
1540/1539 | 1.1245 | (22*5*7*11)/(34*19) | [2 -4 1 1 1 0 0 -1⟩ | ||
1729/1728 | 1.0016 | (7*13*19)/(22*3)3 | [-6 -3 0 1 0 1 0 1⟩ | ramanujanisma | |
2376/2375 | 0.7288 | (23*33*11)/(53*19) | [3 3 -3 0 1 0 0 -1⟩ | ||
2432/2431 | 0.7120 | (27*19)/(11*13*17) | [7 0 0 0 -1 -1 -1 1⟩ | Blumeyer comma | |
2926/2925 | 0.5918 | (2*7*11*19)/(32*52*13) | [1 -2 -2 1 1 -1 0 1⟩ | ||
3136/3135 | 0.5521 | (23*7)2/(3*5*11*19) | [6 -1 -1 2 -1 0 0 -1⟩ | S56 | |
3250/3249 | 0.5328 | (2*53*13)/(3*19)2 | [1 -2 3 0 0 1 0 -2⟩ | ||
4200/4199 | 0.4123 | (23*3*52*7)/(13*17*19) | [3 1 2 1 0 -1 -1 -1⟩ | ||
5776/5775 | 0.2998 | (22*19)2/(3*52*7*11) | [4 -1 -2 -1 -1 0 0 2⟩ | S76 | |
5929/5928 | 0.2920 | (7*11)2/(23*3*13*19) | [-3 -1 0 2 2 -1 0 -1⟩ | S77 | |
5985/5984 | 0.2893 | (32*5*7*19)/(25*11*17) | [-5 2 1 1 -1 0 -1 1⟩ | ||
6175/6174 | 0.2804 | (52*13*19)/(2*32*73) | [-1 -2 2 -3 0 1 0 1⟩ | ||
6860/6859 | 0.2524 | (22*5*73)/193 | [2 0 1 3 0 0 0 -3⟩ | ||
10241/10240 | 0.1691 | (72*11*19)/(211*5) | [-11 0 -1 2 1 0 0 1⟩ | ||
10830/10829 | 0.1599 | (2*3*5*192)/(72*13*17) | [1 1 1 -2 0 -1 -1 2⟩ | ||
12636/12635 | 0.1370 | (22*35*13)/(5*7*192) | [2 5 -1 -1 0 1 0 -2⟩ | ||
13377/13376 | 0.1294 | (3*73*13)/(26*11*19) | [-6 1 0 3 -1 1 0 -1⟩ | ||
14080/14079 | 0.1230 | (28*5*11)/(3*13*192) | [8 -1 1 0 1 -1 0 -2⟩ | ||
14365/14364 | 0.1205 | (5*132*17)/(22*33*7*19) | [-2 -3 1 -1 0 1 1 -1⟩ | ||
23409/23408 | 0.07396 | (32*17)2/(24*7*11*19) | [-4 4 0 -1 -1 0 1 -1⟩ | S153 | |
27456/27455 | 0.06306 | (26*3*11)/(5*172*19) | [6 1 -1 0 1 0 -2 -1⟩ | ||
28900/28899 | 0.05991 | (2*5*17)2/(32*132*19) | [2 -2 2 0 0 -2 2 -1⟩ | S170 | |
43681/43680 | 0.03963 | (11*19)2/(25*3*5*7*13) | [-5 -1 -1 -1 2 -1 0 2⟩ | S209 | |
89376/89375 | 0.01937 | (25*3*72*19)/(54*11*13) | [5 1 -4 2 -1 -1 0 1⟩ | ||
104976/104975 | 0.01649 | (2*32)4/(52*13*17*19) | [4 8 -2 0 0 0 -1 -1 -1⟩ | S324 | |
165376/165375 | 0.01047 | (29*17*19)/(33*53*72) | [9 -3 -3 -2 0 0 1 1⟩ | decimillisma | |
228096/228095 | 0.007590 | (28*34*11)/(5*74*19) | [8 4 -1 -4 1 0 0 -1⟩ | ||
601426/601425 | 0.002879 | (2*72*17*192)/(37*52*11) | [2 -7 -2 2 -1 0 1 2⟩ | ||
633556/633555 | 0.002733 | (22*7*113*17)/(33*5*13*192) | [2 -3 -1 1 3 -1 1 -2⟩ | ||
709632/709631 | 0.002440 | (210*32*7*11)/(133*17*19) | [10 2 0 1 1 -3 -1 -1⟩ | ||
5909761/5909760 | 0.0002929 | (11*13*17)2/(28*35*5*19) | [-8 -5 -1 0 2 2 2 -1⟩ | S2431 | |
11859211/11859210 | 0.0001460 | (7*13*194)/(2*34*5*114) | [-1 -4 -1 1 -4 1 0 4⟩ | ||
23-limit (complete) | |||||
23/22 | 76.956 | 23/(2*11) | [-1 0 0 0 -1 0 0 0 1⟩ | greater vicesimotertial semitone | |
24/23 | 73.681 | (23*3)/23 | [3 1 0 0 0 0 0 0 -1⟩ | small vicesimotertial semitone | |
46/45 | 38.051 | (2*23)/(32*5) | [1 -2 -1 0 0 0 0 0 1⟩ | vicesimotertial 1/5-tone | |
69/68 | 25.274 | (3*23)/(22*17) | [-2 1 0 0 0 0 -1 0 1⟩ | large vicesimotertial 1/8-tone | |
70/69 | 24.910 | (2*5*7)/(3*23) | [1 -1 1 1 0 0 0 0 -1⟩ | small vicesimotertial 1/8-tone | |
92/91 | 18.921 | (22*23)/(7*13) | [2 0 0 -1 0 -1 0 0 1⟩ | ||
115/114 | 15.120 | (5*23)/(2*3*19) | [-1 -1 1 0 0 0 0 -1 1⟩ | ||
161/160 | 10.787 | (7*23)/(25*5) | [-5 0 -1 1 0 0 0 0 1⟩ | ||
162/161 | 10.720 | (2*34)/(7*23) | [1 4 0 -1 0 0 0 0 -1⟩ | ||
208/207 | 8.3433 | (24*13)/(32*23) | [4 -2 0 0 0 1 0 0 -1⟩ | ||
231/230 | 7.5108 | (3*7*11)/(2*5*23) | [-1 1 -1 1 1 0 0 0 -1⟩ | ||
253/252 | 6.8564 | (11*23)/((2*3)2*7) | [-2 -2 0 -1 1 0 0 0 1⟩ | ||
276/275 | 6.2840 | (22*3*23)/(52*11) | [2 1 -2 0 -1 0 0 0 1⟩ | ||
300/299 | 5.7804 | ((2*5)2*3)/(13*23) | [2 1 2 0 0 -1 0 0 -1⟩ | ||
323/322 | 5.3682 | (17*19)/(2*7*23) | [-1 0 0 -1 0 0 1 1 -1⟩ | ||
391/390 | 4.4334 | (17*23)/(2*3*5*13) | [-1 -1 -1 0 0 -1 1 0 1⟩ | ||
392/391 | 4.4221 | (23*72)/(17*23) | [3 0 0 2 0 0 -1 0 -1⟩ | ||
460/459 | 3.7676 | (22*5*23)/(33*17) | [2 -3 1 0 0 0 -1 0 1⟩ | ||
484/483 | 3.5806 | (2*11)2/(3*7*23) | [2 -1 0 -1 2 0 0 0 -1⟩ | S22 | |
507/506 | 3.4180 | (3*132)/(2*11*23) | [-1 1 0 0 -1 2 0 0 -1⟩ | ||
529/528 | 3.2758 | 232/(24*3*11) | [-4 -1 0 0 -1 0 0 0 2⟩ | S23 | |
576/575 | 3.0082 | (23*3)2/(23*52) | [6 2 -2 0 0 0 0 0 -1⟩ | S24 | |
736/735 | 2.3538 | (25*23)/(3*5*72) | [5 -1 -1 -2 0 0 0 0 1⟩ | ||
760/759 | 2.2794 | (23*5*19)/(3*11*23) | [3 -1 1 0 -1 0 0 1 -1⟩ | ||
875/874 | 1.9797 | (53*7)/(2*19*23) | [-1 0 3 1 0 0 0 -1 -1⟩ | ||
897/896 | 1.9311 | (3*13*23)/(27*7) | [-7 1 0 -1 0 1 0 0 1⟩ | ||
1105/1104 | 1.5674 | (5*13*17)/(24*3*23) | [-4 -1 1 0 0 1 1 0 -1⟩ | ||
1197/1196 | 1.4469 | (32*17*19)/(22*13*23) | [-2 2 0 0 0 -1 1 1 -1⟩ | ||
1288/1287 | 1.3446 | (23*7*23)/(32*11*13) | [3 -2 0 1 -1 -1 0 0 1⟩ | ||
1496/1495 | 1.1576 | (23*11*17)/(5*13*23) | [3 0 -1 0 1 -1 1 0 -1⟩ | ||
1863/1862 | 0.92952 | (34*23)/(2*72*19) | [-1 4 0 -2 0 0 0 -1 1⟩ | ||
2024/2023 | 0.85556 | (23*11*23)/(7*172) | [3 0 0 -1 1 0 -2 0 1⟩ | ||
2025/2024 | 0.85514 | (32*5)2/(23*11*23) | [-3 4 2 0 -1 0 0 0 -1⟩ | S45 | |
2185/2184 | 0.79251 | (5*19*23)/(23*3*7*13) | [-3 -1 1 -1 0 -1 0 1 1⟩ | ||
2300/2299 | 0.75287 | (22*52*23)/(112*19) | [2 0 2 0 -2 0 0 -1 1⟩ | ||
2646/2645 | 0.65441 | (2*33*72)/(5*232) | [1 3 -1 2 0 0 0 0 -2⟩ | ||
2737/2736 | 0.63265 | (7*17*23)/(24*32*19) | [-4 -2 0 1 0 0 1 -1 1⟩ | ||
3060/3059 | 0.56586 | (22*32*5*17)/(7*19*23) | [2 2 1 -1 0 0 1 -1 -1⟩ | ||
3381/3380 | 0.51212 | (3*72*23)/(22*5*132) | [-2 1 -1 2 0 -2 0 0 1⟩ | ||
3520/3519 | 0.49190 | (26*5*11)/(32*17*23) | [6 -2 1 0 1 0 -1 0 -1⟩ | ||
3888/3887 | 0.44533 | (24*35)/(132*23) | [4 5 0 0 0 -2 0 0 -1⟩ | ||
4693/4692 | 0.36893 | (13*192)/(22*3*17*23) | [-2 -1 0 0 0 1 -1 2 -1⟩ | ||
4761/4760 | 0.36367 | (3*23)2/(23*5*7*17) | [-3 2 -1 -1 0 0 -1 0 2⟩ | S69 | |
5083/5082 | 0.34063 | (13*17*23)/(2*3*7*112) | [-1 -1 0 -1 -2 1 1 0 1⟩ | ||
7866/7865 | 0.22010 | (2*32*19*23)/(5*112*13) | [1 2 -1 0 -2 -1 0 1 1⟩ | ||
8281/8280 | 0.20907 | (7*13)2/(23*32*5*23) | [-3 -2 -1 2 0 2 0 0 -1⟩ | S91 | |
8625/8624 | 0.20073 | (3*53*23)/(24*72*11) | [-4 1 3 -2 -1 0 0 0 1⟩ | ||
10626/10625 | 0.16293 | (2*3*7*11*23)/(54*17) | [1 1 -4 1 1 0 -1 0 1⟩ | ||
11271/11270 | 0.15361 | (3*13*172)/(2*5*72*23) | [-1 1 -1 -2 0 1 2 0 -1⟩ | ||
11662/11661 | 0.14846 | (2*73*17)/(3*132*23) | [1 0 0 3 0 -2 1 0 -1⟩ | ||
12168/12167 | 0.14228 | (23*32*132)/(233) | [3 2 0 0 0 2 0 0 -3⟩ | ||
16929/16928 | 0.10227 | (34*11*19)/(25*232) | [-5 4 0 0 1 0 0 1 -2⟩ | ||
19551/19550 | 0.088552 | (3*73*19)/(2*52*17*23) | [-1 1 -2 3 0 0 -1 1 -1⟩ | ||
21505/21504 | 0.080506 | (5*11*17*23)/(210*3*7) | [-10 -1 1 -1 1 0 1 0 1⟩ | ||
21736/21735 | 0.079650 | (23*11*13*19)/(33*5*7*23) | [3 -3 -1 -1 1 1 0 1 -1⟩ | ||
23276/23275 | 0.074380 | (22*11*232)/(52*72*19) | [2 0 -2 -2 1 0 0 -1 2⟩ | ||
25025/25024 | 0.069182 | (52*7*11*13)/(26*17*23) | [-6 0 2 1 1 1 -1 0 -1⟩ | ||
25921/25920 | 0.066790 | (7*23)2/(26*34*5) | [-6 -4 -1 2 0 0 0 0 2⟩ | S161 | |
43264/43263 | 0.040016 | (24*13)2/(32*11*19*23) | [8 -2 0 0 -1 2 0 -1 -1⟩ | S208 | |
52326/52325 | 0.033086 | (2*34*17*19)/(52*7*13*23) | [1 4 -2 -1 0 -1 1 1 -1⟩ | ||
71875/71874 | 0.024087 | (55*23)/(2*33*113) | [-1 -3 5 0 -3 0 0 0 1⟩ | ||
75141/75140 | 0.023040 | (33*112*23)/(22*5*13*172) | [-2 3 -1 0 2 -1 -2 0 1⟩ | ||
76545/76544 | 0.022617 | (37*5*7)/(28*13*23) | [-8 7 1 1 0 -1 0 0 -1⟩ | ||
104329/104328 | 0.016594 | (17*19)2/(23*34*7*23) | [-3 -4 0 -1 -1 0 2 2 -1⟩ | S323 | |
122452/122451 | 0.014138 | (22*113*23)/(3*74*17) | [2 -1 0 -4 3 0 -1 0 1⟩ | ||
126225/126224 | 0.013716 | (33*52*11*17)/(24*73*23) | [-4 3 2 -3 1 0 1 0 -1⟩ | ||
152881/152880 | 0.011324 | (17*23)2/(24*3*5*72*13) | [-4 -1 -1 -2 0 -1 2 0 2⟩ | S391 | |
202125/202124 | 0.0085652 | (3*53*72*11)/(22*133*23) | [-2 1 3 2 1 -3 0 0 -1⟩ | ||
264385/264384 | 0.0065482 | (5*112*19*23)/(26*35*17) | [-6 -5 1 0 2 0 -1 1 1⟩ | ||
282625/282624 | 0.0061256 | (53*7*17*19)/(212*3*23) | [-12 -1 3 1 0 0 1 1 -1⟩ | ||
328510/328509 | 0.0052700 | (2*5*7*13*192)/(3*23)3 | [1 -3 1 1 0 1 0 0 -3⟩ | ||
2023425/2023424 | 0.00085560 | (32*52*17*232)/(213*13*19) | [-13 2 2 0 0 -1 1 -1 2⟩ | ||
4096576/4096575 | 0.00042261 | (23*11*23)2/(34*52*7*172) | [6 -4 -2 -1 2 0 -2 0 2⟩ | S2024 | |
5142501/5142500 | 0.00033665 | (33*72*132*23)/(22*54*112*17) | [-2 3 -4 2 -2 2 -1 0 1⟩ | ||
29-limit (incomplete) | |||||
29/28 | 60.751 | 29/(22*7) | Large vicesimononal 1/4 tone | ||
30/29 | 58.692 | (2*3*5)/29 | Small vicesimononal 1/4 tone | ||
58/57 | 30.109 | (2*29)/(3*19) | |||
88/87 | 19.786 | (23*11)/(3*29) | |||
116/115 | 14.989 | (22*29)/(5*23) | |||
117/116 | 14.860 | (33*13)/(22*29) | |||
145/144 | 11.981 | (5*29)/(24*32) | |||
175/174 | 9.9211 | (52*7)/(2*3*29) | |||
204/203 | 8.5073 | ||||
232/231 | 7.4783 | ||||
261/260 | 6.6458 | ||||
290/289 | 5.9801 | ||||
320/319 | 5.4186 | ||||
378/377 | 4.5861 | ||||
406/405 | 4.2694 | ||||
494/493 | 3.5081 | ||||
551/550 | 3.1448 | ||||
552/551 | 3.1391 | ||||
609/608 | 2.8451 | ||||
638/637 | 2.7157 | ||||
726/725 | 2.3863 | ||||
31-limit (incomplete) | |||||
31/30 | 56.767 | 31/(2*3*5) | large tricesimoprimal 1/4-tone | ||
32/31 | 54.964 | 25/31 | small tricesimoprimal 1/4-tone, 31st subharmonic | ||
63/62 | 27.700 | (32*7)/(2*31) | |||
93/92 | 18.716 | (3*31)/(22*23) | |||
125/124 | 13.906 | (53)/(22*31) | twizzler | ||
621/620 | 2.7901 | (3³*23)/(2²*5*31) | owowhatsthisma | ||
3969/3968 | 0.43624 | (34*72)/(27*31) | yunzee comma | S63 | |
37-limit (incomplete) | |||||
37/36 | 47.434 | 37/(22*32) | Large 37-limit quarter tone, 37th-partial chroma | ||
38/37 | 46.169 | (2*19)/37 | Small 37-limit quarter tone | ||
75/74 | 23.238 | (3*52)/(2*37) | |||
41-limit (incomplete) | |||||
41/40 | 42.749 | 41/(23*5) | Large 41-limit fifth tone | ||
42/41 | 41.719 | (2*3*7)/41 | Small 41-limit fifth tone | ||
82/81 | 21.242 | (2*41)/34 | 41st-partial chroma | ||
43-limit (incomplete) | |||||
43/42 | 40.737 | 43/(2*3*7) | Large 43-limit fifth tone | ||
44/43 | 39.800 | (22*11)/43 | Small 43-limit fifth tone | ||
86/85 | 20.249 | (2*43)/(5*17) | |||
87/86 | 20.014 | (3*29)/(2*43) | |||
129/128 | 13.473 | (3*43)/27 | 43rd-partial chroma | ||
47-limit (incomplete) | |||||
47/46 | 37.232 | 47/(2*23) | |||
48/47 | 36.448 | (24*3)/47 | |||
94/93 | 18.516 | (2*47)/(3*31) | |||
95/94 | 18.320 | (5*19)/(2*47) | |||
53-limit (incomplete) | |||||
53/52 | 32.977 | 53/(22*13) | |||
54/53 | 32.360 | (2*33)/53 | |||
59-limit (incomplete) | |||||
59/58 | 29.594 | 59/(2*29) | |||
60/59 | 29.097 | (22*3*5)/59 | |||
61-limit (incomplete) | |||||
61/60 | 28.616 | 61/(22*3*5) | |||
62/61 | 28.151 | (2*31)/61 | |||
67-limit (incomplete) | |||||
67/66 | 26.034 | 67/(2*3*11) | |||
68/67 | 25.648 | (22*17)/67 | |||
71-limit (incomplete) | |||||
71/70 | 24.557 | 71/(2*5*7) | |||
72/71 | 24.213 | (23*32)/71 | |||
73-limit (incomplete) | |||||
73/72 | 23.879 | 73/(23*32) | |||
74/73 | 23.555 | (2*37)/73 | |||
79-limit (incomplete) | |||||
79/78 | 22.054 | 79/(2*3*13) | |||
80/79 | 21.777 | (24*5)/79 | |||
83-limit (incomplete) | |||||
83/82 | 20.985 | 83/(2*41) | |||
84/83 | 20.734 | (22*3*7)/83 | |||
89-limit (incomplete) | |||||
89/88 | 19.562 | 89/(23*11) | |||
90/89 | 19.344 | (2*32*5)/89 | |||
97-limit (incomplete) | |||||
97/96 | 17.940 | 97/(25*3) | |||
98/97 | 17.756 | (2*72)/97 | |||
101-limit (incomplete) | |||||
101/100 | 17.226 | 101/(22*52) | |||
102/101 | 17.057 | (2*3*17)/101 | |||
7777/7776 | 0.223 | 7*11*101/(25*35) |
Notes
- ↑ Denoted by s-expressions, where sk is defined as (k/(k - 1))/((k + 1)/k). See square superparticular for details.