List of superparticular intervals: Difference between revisions
+placeholder descriptive names to 1156/1155 and 2601/2600 |
Update and styles |
||
Line 51: | Line 51: | ||
| 5/2<sup>2</sup> | | 5/2<sup>2</sup> | ||
| {{monzo|-2 0 1}} | | {{monzo|-2 0 1}} | ||
| | | classic/just major third, 5th harmonic (octave reduced) | ||
|- | |- | ||
| [[6/5]] | | [[6/5]] | ||
Line 57: | Line 57: | ||
| (2*3)/5 | | (2*3)/5 | ||
| {{monzo|1 1 -1}} | | {{monzo|1 1 -1}} | ||
| | | classic/just minor third | ||
|- | |- | ||
| [[10/9]] | | [[10/9]] | ||
Line 69: | Line 69: | ||
| 2<sup>4</sup>/(3*5) | | 2<sup>4</sup>/(3*5) | ||
| {{monzo|4 -1 -1}} | | {{monzo|4 -1 -1}} | ||
| | | classic/just diatonic semitone, 15th subharmonic | ||
|- | |- | ||
| [[25/24]] | | [[25/24]] | ||
Line 75: | Line 75: | ||
| 5<sup>2</sup>/(2<sup>3</sup>*3) | | 5<sup>2</sup>/(2<sup>3</sup>*3) | ||
| {{monzo|-3 -1 2}} | | {{monzo|-3 -1 2}} | ||
| | | classic chromatic semitone, chroma, Zarlinian semitone | ||
|- | |- | ||
| [[81/80]] | | [[81/80]] | ||
Line 101: | Line 101: | ||
| (3*5)/(2*7) | | (3*5)/(2*7) | ||
| {{monzo|-1 1 1 -1}} | | {{monzo|-1 1 1 -1}} | ||
| septimal diatonic semitone | | septimal major semitone, septimal diatonic semitone | ||
|- | |- | ||
| [[21/20]] | | [[21/20]] | ||
Line 107: | Line 107: | ||
| (3*7)/(2<sup>2</sup>*5) | | (3*7)/(2<sup>2</sup>*5) | ||
| {{monzo|-2 1 -1 1}} | | {{monzo|-2 1 -1 1}} | ||
| minor semitone, large septimal chroma | | septimal minor semitone, large septimal chroma | ||
|- | |- | ||
| [[28/27]] | | [[28/27]] | ||
Line 113: | Line 113: | ||
| (2<sup>2</sup>*7)/3<sup>3</sup> | | (2<sup>2</sup>*7)/3<sup>3</sup> | ||
| {{monzo|2 -3 0 1}} | | {{monzo|2 -3 0 1}} | ||
| septimal | | septimal 1/3-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma | ||
|- | |- | ||
| [[36/35]] | | [[36/35]] | ||
Line 119: | Line 119: | ||
| (2<sup>2</sup>*3<sup>3</sup>)/(5*7) | | (2<sup>2</sup>*3<sup>3</sup>)/(5*7) | ||
| {{monzo|2 2 -1 -1}} | | {{monzo|2 2 -1 -1}} | ||
| septimal | | septimal 1/4-tone, septimal diesis | ||
|- | |- | ||
| [[49/48]] | | [[49/48]] | ||
Line 125: | Line 125: | ||
| 7<sup>2</sup>/(2<sup>4</sup>*3) | | 7<sup>2</sup>/(2<sup>4</sup>*3) | ||
| {{monzo|-4 -1 0 2}} | | {{monzo|-4 -1 0 2}} | ||
| slendro diesis, large septimal diesis, septimal 1/6-tone | | slendro diesis, large septimal diesis, large septimal 1/6-tone | ||
|- | |- | ||
| [[50/49]] | | [[50/49]] | ||
Line 131: | Line 131: | ||
| 2*(5/7)<sup>2</sup> | | 2*(5/7)<sup>2</sup> | ||
| {{monzo|1 0 2 -2}} | | {{monzo|1 0 2 -2}} | ||
| jubilisma, small septimal diesis, septimal 1/6-tone, tritonic diesis, Erlich's decatonic comma | | jubilisma, small septimal diesis, small septimal 1/6-tone, tritonic diesis, Erlich's decatonic comma | ||
|- | |- | ||
| [[64/63]] | | [[64/63]] | ||
Line 169: | Line 169: | ||
| 11/(2*5) | | 11/(2*5) | ||
| {{monzo|-1 0 -1 0 1}} | | {{monzo|-1 0 -1 0 1}} | ||
| (large) | | (large) undecimal neutral second, undecimal submajor second, Ptolemy's second | ||
|- | |- | ||
| [[12/11]] | | [[12/11]] | ||
Line 175: | Line 175: | ||
| (2<sup>2</sup>*3)/11 | | (2<sup>2</sup>*3)/11 | ||
| {{monzo|2 1 0 0 -1}} | | {{monzo|2 1 0 0 -1}} | ||
| (small) | | (small) undecimal neutral second | ||
|- | |- | ||
| [[22/21]] | | [[22/21]] | ||
Line 187: | Line 187: | ||
| (3*11)/2<sup>5</sup> | | (3*11)/2<sup>5</sup> | ||
| {{monzo|-5 1 0 0 1}} | | {{monzo|-5 1 0 0 1}} | ||
| undecimal | | undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | ||
|- | |- | ||
| [[45/44]] | | [[45/44]] | ||
Line 235: | Line 235: | ||
| 3<sup>5</sup>/(2*11<sup>2</sup>) | | 3<sup>5</sup>/(2*11<sup>2</sup>) | ||
| {{monzo|-1 5 0 0 -2}} | | {{monzo|-1 5 0 0 -2}} | ||
| rastma, neutral | | rastma, neutral thirds comma | ||
|- | |- | ||
| [[385/384]] | | [[385/384]] | ||
Line 709: | Line 709: | ||
| (2<sup>2</sup>*19)/(3*5<sup>2</sup>) | | (2<sup>2</sup>*19)/(3*5<sup>2</sup>) | ||
| {{monzo|2 -1 -2 0 0 0 0 1}} | | {{monzo|2 -1 -2 0 0 0 0 1}} | ||
| undevicesimal 1/9-tone | | large undevicesimal 1/9-tone | ||
|- | |- | ||
| [[77/76]] | | [[77/76]] | ||
Line 715: | Line 715: | ||
| (7*11)/(2<sup>2</sup>*19) | | (7*11)/(2<sup>2</sup>*19) | ||
| {{monzo|-2 0 0 1 1 0 0 -1}} | | {{monzo|-2 0 0 1 1 0 0 -1}} | ||
| undevicesimal 1/9-tone | | small undevicesimal 1/9-tone | ||
|- | |- | ||
| [[96/95]] | | [[96/95]] | ||
Line 1,059: | Line 1,059: | ||
| (3*23)/(2<sup>2</sup>*17) | | (3*23)/(2<sup>2</sup>*17) | ||
| | | | ||
| vicesimotertial 1/8-tone | | large vicesimotertial 1/8-tone | ||
|- | |- | ||
| [[70/69]] | | [[70/69]] | ||
Line 1,065: | Line 1,065: | ||
| (2*5*7)/(3*23) | | (2*5*7)/(3*23) | ||
| | | | ||
| vicesimotertial 1/8-tone | | small vicesimotertial 1/8-tone | ||
|- | |- | ||
| [[92/91]] | | [[92/91]] | ||
Line 1,219: | Line 1,219: | ||
| 31/(2*3*5) | | 31/(2*3*5) | ||
| | | | ||
| | | large tricesimoprimal 1/4-tone | ||
|- | |- | ||
| [[32/31]] | | [[32/31]] | ||
Line 1,225: | Line 1,225: | ||
| 2<sup>5</sup>/31 | | 2<sup>5</sup>/31 | ||
| | | | ||
| 31st subharmonic | | small tricesimoprimal 1/4-tone, 31st subharmonic | ||
|- | |- | ||
| [[63/62]] | | [[63/62]] |
Revision as of 13:01, 9 September 2021
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 19-limit.
Superparticular numbers are ratios of the form (n + 1)/n, or 1 + 1/n, where n is a whole number other than 1. They appear frequently in just intonation and harmonic series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22×32)/(5×7), while 37/36 would belong to the 37-limit.
Størmer's theorem states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS: A002071 gives the number of superparticular ratios in each prime limit, OEIS: A145604 shows the increment from limit to limit, and OEIS: A117581 gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from the Scala website.
Ratio | Cents | Factorization | Monzo | Name(s) |
---|---|---|---|---|
2-limit (complete) | ||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic |
3-limit (complete) | ||||
3/2 | 701.955 | 3/2 | [-1 1⟩ | perfect fifth, 3rd harmonic (octave reduced), diapente |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, 3rd subharmonic (octave reduced), diatessaron |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) |
5-limit (complete) | ||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | classic/just major third, 5th harmonic (octave reduced) |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | classic/just minor third |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic (whole) tone, classic major second, minor whole tone |
16/15 | 111.731 | 24/(3*5) | [4 -1 -1⟩ | classic/just diatonic semitone, 15th subharmonic |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | classic chromatic semitone, chroma, Zarlinian semitone |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma |
7-limit (complete) | ||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, 7th subharmonic |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal major semitone, septimal diatonic semitone |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | septimal minor semitone, large septimal chroma |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal 1/3-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma |
36/35 | 48.770 | (22*33)/(5*7) | [2 2 -1 -1⟩ | septimal 1/4-tone, septimal diesis |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | slendro diesis, large septimal diesis, large septimal 1/6-tone |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | jubilisma, small septimal diesis, small septimal 1/6-tone, tritonic diesis, Erlich's decatonic comma |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma |
11-limit (complete) | ||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) undecimal neutral second, undecimal submajor second, Ptolemy's second |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) undecimal neutral second |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | undecimal 1/5-tone |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | undecimal diasecundal comma, eleventyfive comma |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | mothwellsma, small undecimal comma |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | ptolemisma, Ptolemy's comma |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | biyatisma, undecimal seconds comma |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | rastma, neutral thirds comma |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | werckisma, Werckmeister's undecimal septenarian schisma |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | swetisma, Swets' comma |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | lehmerisma |
9801/9800 | 0.17665 | (11/(5*7))2*34/23 | [-3 4 -2 -2 2⟩ | kalisma, Gauss comma |
13-limit (complete) | ||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | (large) tridecimal 2/3-tone, tridecimal neutral second |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | (small) tridecimal 2/3-tone, trienthird |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | (large) tridecimal 1/3-tone |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | (small) tridecimal 1/3-tone |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | animist comma, small tridecimal comma |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | mynucuma |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | marveltwin comma |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma |
625/624 | 2.7722 | (5/2)4/(3*13) | [-4 -1 4 0 0 -1⟩ | tunbarsma |
676/675 | 2.5629 | (2*13/5)2/33 | [2 -3 -2 0 0 2⟩ | island comma |
729/728 | 2.3764 | (32/2)3/(7*13) | [-3 6 0 -1 0 -1⟩ | squbema |
1001/1000 | 1.7304 | 7*11*13/(2*5)3 | [-3 0 -3 1 1 1⟩ | sinbadma |
1716/1715 | 1.0092 | 22*3*11*13/(5*73) | [2 1 -1 -3 1 1⟩ | lummic comma |
2080/2079 | 0.83252 | 25*5*13/(33*7*11) | [5 -3 1 -1 -1 1⟩ | ibnsinma |
4096/4095 | 0.42272 | (26/3)2/(5*7*13) | [12 -2 -1 -1 0 -1⟩ | schismina, tridecimal schisma |
4225/4224 | 0.40981 | (5*13)2/(27*3*11) | [-7 -1 2 0 -1 2⟩ | leprechaun comma |
6656/6655 | 0.26012 | (23/11)3*13/5 | [9 0 -1 0 -3 1⟩ | jacobin comma |
10648/10647 | 0.16260 | (2*11)3/((3*13)2*7) | [3 -2 0 -1 3 -2⟩ | harmonisma |
123201/123200 | 0.014052 | (3/2)6*(13/5)2/(7*11) | [-6 6 -2 -1 -1 2⟩ | chalmersia |
17-limit (complete) | ||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | large septendecimal semitone, 17th harmonic (octave reduced) |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | small septendecimal semitone, Arabic lute index finger |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | large septendecimal 1/4-tone |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | small septendecimal 1/4-tone |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | large septendecimal 1/6-tone |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | small septendecimal 1/6-tone |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | septendecimal comma (?) |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | septendecimal major second comma |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | |
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | |
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | |
256/255 | 6.7759 | (28)/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | septendecimal kleisma, 255th subharmonic |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | tannisma |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | septendecimal 6-cent comma |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | |
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | |
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | September comma, septembrisma, septendecimal bridge comma |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | horizon comma |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | ainos comma, ainma |
1089/1088 | 1.5905 | (32*112)/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma |
1156/1155 | 1.4983 | (22*172)/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | septendecimal 1/4-tones comma |
1225/1224 | 1.4138 | (52*72)/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | noema |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | |
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | palingenesis comma, palingenetic comma, palingenesma |
2058/2057 | 0.84143 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma |
2431/2430 | 0.71230 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | |
2500/2499 | 0.69263 | (22*54)/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | |
2601/2600 | 0.66573 | (32*172)/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | septendecimal 1/6-tones comma |
4914/4913 | 0.35234 | (2*33*7*13)/(173) | [1 3 0 1 0 1 -3⟩ | |
5832/5831 | 0.29688 | (23*36)/(73*17) | [3 6 0 -3 0 0 -1⟩ | chlorisma |
12376/12375 | 0.13989 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | flashma |
14400/14399 | 0.12023 | (26*32*52)/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | sparkisma |
28561/28560 | 0.060616 | (134)/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | |
31213/31212 | 0.055466 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | |
37180/37179 | 0.046564 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | |
194481/194480 | 0.008902 | (34*74)/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma |
336141/336140 | 0.005150 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | |
19-limit (complete) | ||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | large undevicesimal semitone |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | undevicesimal 2/9-tone |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | hendrix comma |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | large undevicesimal 1/9-tone |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | small undevicesimal 1/9-tone |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | 19th-partial chroma |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | |
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | ganassisma, Ganassi's comma |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | |
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | |
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | yama comma |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | spleen comma |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | |
324/323 | 5.3516 | (22*34)/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | nusu comma |
343/342 | 5.0547 | 74/(2*33*19) | [-1 -2 0 3 0 0 0 -1⟩ | |
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | go comma |
400/399 | 4.3335 | (24*52)/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | |
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | |
495/494 | 3.5010 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | |
513/512 | 3.3780 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | undevicesimal comma, undevicesimal schisma, Boethius' comma, 513th harmonic |
969/968 | 1.7875 | (3*17*19)/(23*112) | [-3 1 0 0 -2 0 1 1⟩ | |
1216/1215 | 1.4243 | (26*19)/(35*5) | [6 -5 -1 0 0 0 0 1⟩ | password comma, Eratosthenes' comma |
1331/1330 | 1.3012 | 113/(2*5*7*19) | [-1 0 -1 -1 3 0 0 -1⟩ | |
1445/1444 | 1.1985 | 5*(17/(2*19))2 | [-2 0 1 0 0 0 2 -2⟩ | aureusma |
1521/1520 | 1.1386 | (3*13)2/(24*5*19) | [-4 2 -1 0 0 2 0 -1⟩ | pinkanberry |
1540/1539 | 1.1245 | (22*5*7*11)/(34*19) | [2 -4 1 1 1 0 0 -1⟩ | |
1729/1728 | 1.0016 | (7*13*19)/(26*33) | [-6 -3 0 1 0 1 0 1⟩ | |
2376/2375 | 0.7288 | (53*19)/(23*33*11) | [-3 -3 3 0 -1 0 0 1⟩ | |
2432/2431 | 0.7120 | (11*13*17)/(27*19) | [-7 0 0 0 1 1 1 -1⟩ | Blumeyer comma |
2926/2925 | 0.5918 | (2*7*11*19)/(32*52*13) | [1 -2 -2 1 1 -1 0 1⟩ | |
3136/3135 | 0.5521 | (26*72)/(3*5*11*19) | [6 -1 -1 2 -1 0 0 -1⟩ | |
3250/3249 | 0.5328 | (2*53*13)/(32*192) | [1 -2 3 0 0 1 0 -2⟩ | |
4200/4199 | 0.4123 | (23*3*52*7)/(13*17*19) | [3 1 2 1 0 -1 -1 -1⟩ | |
5776/5775 | 0.2998 | (24*192)/(3*52*7*11) | [4 -1 -2 -1 -1 0 0 2⟩ | |
5929/5928 | 0.2920 | (72*112)/(23*3*13*19) | [-3 -1 0 2 2 -1 0 -1⟩ | |
5985/5984 | 0.2893 | (25*11*17)/(32*5*7*19) | [5 -2 -1 -1 1 0 1 -1⟩ | |
6175/6174 | 0.2804 | (52*13*19)/(2*32*73) | [-1 -2 2 -3 0 1 0 1⟩ | |
6860/6859 | 0.2524 | (22*5*73)/(193) | [2 0 1 3 0 0 0 -3⟩ | |
10241/10240 | 0.1691 | (72*11*19)/(211*5) | [-11 0 -1 2 1 0 0 1⟩ | |
10830/10829 | 0.1599 | (2*3*5*192)/(72*13*17) | [1 1 1 -2 0 -1 -1 2⟩ | |
12636/12635 | 0.1370 | (22*35*13)/(5*7*192) | [2 5 -1 -1 0 1 0 -2⟩ | |
13377/13376 | 0.1294 | (3*73*13)/(26*11*19) | [-6 1 0 3 -1 1 0 -1⟩ | |
14080/14079 | 0.1230 | (28*5*11)/(3*13*192) | [8 -1 1 0 1 -1 0 -2⟩ | |
14365/14364 | 0.1205 | (5*132*17)/(22*33*7*19) | [-2 -3 1 -1 0 1 1 -1⟩ | |
23409/23408 | 0.07396 | (34*172)/(24*7*11*19) | [-4 4 0 -1 -1 0 1 -1⟩ | |
27456/27455 | 0.06306 | (26*3*11*17)/(5*172*19) | [6 1 -1 0 1 0 -2 -1⟩ | |
28900/28899 | 0.05991 | (22*52*172)/(32*132*19) | [2 -2 2 0 0 -2 2 -1⟩ | |
43681/43680 | 0.03963 | (112*192)/(25*3*5*7*13) | [-5 -1 -1 -1 2 -1 0 2⟩ | |
89376/89375 | 0.01937 | (25*3*72*19)/(54*11*13) | [5 1 -4 2 -1 -1 0 1⟩ | |
104976/104975 | 0.01649 | (24*38)/(52*13*17*19) | [4 8 -2 0 0 0 -1 -1 -1⟩ | |
165376/165375 | 0.01047 | (29*17*19)/(33*53*72) | [9 -3 -3 -2 0 0 1 1⟩ | decimillisma |
228096/228095 | 0.007590 | (28*34*11)/(5*74*19) | [8 4 -1 -4 1 0 0 -1⟩ | |
601426/601425 | 0.002879 | (2*72*17*192)/(37*52*11) | [2 -7 -2 2 -1 0 1 2⟩ | |
633556/633555 | 0.002733 | (22*7*113*17)/(33*5*13*192) | [2 -3 -1 1 3 -1 1 -2⟩ | |
709632/709631 | 0.002440 | (210*32*7*11)/(133*17*19) | [10 2 0 1 1 -3 -1 -1⟩ | |
5909761/5909760 | 0.0002929 | (112*132*172)/(28*35*5*19) | [-8 -5 -1 0 2 2 2 -1⟩ | |
11859211/11859210 | 0.0001460 | (7*13*194)/(2*34*5*114) | [-1 -4 -1 1 -4 1 0 4⟩ | |
23-limit (incomplete) | ||||
23/22 | 76.956 | 23/(2*11) | greater vicesimotertial semitone | |
24/23 | 73.681 | (23*3)/23 | small vicesimotertial semitone | |
46/45 | 38.051 | (2*23)/(32*5) | vicesimotertial 1/5-tone | |
69/68 | 25.274 | (3*23)/(22*17) | large vicesimotertial 1/8-tone | |
70/69 | 24.910 | (2*5*7)/(3*23) | small vicesimotertial 1/8-tone | |
92/91 | 18.921 | (22*23)/(7*13) | ||
115/114 | 15.120 | (5*23)/(2*3*19) | ||
161/160 | 10.787 | (7*23)/(25*5) | ||
162/161 | 10.720 | (2*34)/(7*23) | ||
208/207 | 8.3433 | (24*13)/(32*23) | ||
231/230 | 7.5108 | (3*7*11)/(2*5*23) | ||
253/252 | 6.8564 | (11*23)/((2*3)2*7) | ||
276/275 | 6.2840 | (22*3*23)/(52*11) | ||
300/299 | 5.7804 | ((2*5)2*3)/(13*23) | ||
323/322 | 5.3682 | (17*19)/(2*7*23) | ||
391/390 | 4.4334 | (17*23)/(2*3*5*13) | ||
392/391 | 4.4221 | (23*7*7)/(17*23) | ||
460/459 | 3.7676 | (22*5*23)/(33*17) | ||
484/483 | 3.5806 | (2*11)2/(3*7*23) | ||
507/506 | 3.4180 | (3*132)/(2*11*23) | ||
529/528 | 3.2758 | 232/(24*3*11) | ||
576/575 | 3.0082 | (26*32)/(23*52) | ||
29-limit (incomplete) | ||||
29/28 | 60.751 | 29/(22*7) | ||
30/29 | 58.692 | (2*3*5)/29 | ||
58/57 | 30.109 | (2*29)/(3*19) | ||
88/87 | 19.786 | (23*11)/(3*29) | ||
116/115 | 14.989 | (22*29)/(5*23) | ||
117/116 | 14.860 | (33*13)/(22*29) | ||
145/144 | 11.981 | (5*29)/(24*32) | ||
31-limit (incomplete) | ||||
31/30 | 56.767 | 31/(2*3*5) | large tricesimoprimal 1/4-tone | |
32/31 | 54.964 | 25/31 | small tricesimoprimal 1/4-tone, 31st subharmonic | |
63/62 | 27.700 | (32*7)/(2*31) | ||
93/92 | 18.716 | (3*31)/(22*23) | ||
125/124 | 13.906 | (53)/(22*31) | Twizzler | |
37-limit (incomplete) | ||||
37/36 | 47.434 | 37/(22*32) | ||
38/37 | 46.169 | (2*19)/37 | ||
75/74 | 23.238 | (3*52)/(2*37) | ||
41-limit (incomplete) | ||||
41/40 | 42.749 | 41/(23*5) | ||
42/41 | 41.719 | (2*3*7)/41 | ||
82/81 | 21.242 | (2*41)/34 | ||
43-limit (incomplete) | ||||
43/42 | 40.737 | 43/(2*3*7) | ||
44/43 | 39.800 | (22*11)/43 | ||
86/85 | 20.249 | (2*43)/(5*17) | ||
87/86 | 20.014 | (3*29)/(2*43) | ||
47-limit (incomplete) | ||||
47/46 | 37.232 | 47/(2*23) | ||
48/47 | 36.448 | (24*3)/47 | ||
94/93 | 18.516 | (2*47)/(3*31) | ||
95/94 | 18.320 | (5*19)/(2*47) | ||
53-limit (incomplete) | ||||
53/52 | 32.977 | 53/(22*13) | ||
54/53 | 32.360 | (2*33)/53 | ||
59-limit (incomplete) | ||||
59/58 | 29.594 | 59/(2*29) | ||
60/59 | 29.097 | (22*3*5)/59 | ||
61-limit (incomplete) | ||||
61/60 | 28.616 | 61/(22*3*5) | ||
62/61 | 28.151 | (2*31)/61 | ||
67-limit (incomplete) | ||||
67/66 | 26.034 | 67/(2*3*11) | ||
68/67 | 25.648 | (22*17)/67 | ||
71-limit (incomplete) | ||||
71/70 | 24.557 | 71/(2*5*7) | ||
72/71 | 24.213 | (23*32)/71 | ||
73-limit (incomplete) | ||||
73/72 | 23.879 | 73/(23*32) | ||
74/73 | 23.555 | (2*37)/73 | ||
79-limit (incomplete) | ||||
79/78 | 22.054 | 79/(2*3*13) | ||
80/79 | 21.777 | (24*5)/79 | ||
83-limit (incomplete) | ||||
83/82 | 20.985 | 83/(2*41) | ||
84/83 | 20.734 | (22*3*7)/83 | ||
89-limit (incomplete) | ||||
89/88 | 19.562 | 89/(23*11) | ||
90/89 | 19.344 | (2*32*5)/89 | ||
97-limit (incomplete) | ||||
97/96 | 17.940 | 97/(25*3) | ||
98/97 | 17.756 | (2*72)/97 | ||
101-limit (incomplete) | ||||
101/100 | 17.226 | 101/(22*52) | ||
102/101 | 17.057 | (2*3*17)/101 |