58edo: Difference between revisions
ArrowHead294 (talk | contribs) |
→Scales: stretch section |
||
(18 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{Wikipedia|58 equal temperament}} | {{Wikipedia|58 equal temperament}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
58edo is a strong system in the [[11-limit|11]] | 58edo is a strong system in the [[11-limit|11-]], [[13-limit|13-]] and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]]. | ||
While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since {{nowrap|58 {{=}} 2 × 29}}, 58edo shares the same excellent fifth with [[29edo]]. | While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since {{nowrap|58 {{=}} 2 × 29}}, 58edo shares the same excellent perfect fifth with [[29edo]]. It is the last edo to have exactly one [[5L 2s|diatonic]] perfect fifth and no [[5edo]] or [[7edo]] fifths. | ||
As an equal temperament, 58et tempers out [[2048/2025]] | As an equal temperament, 58et [[tempering out|tempers out]] [[2048/2025]] in the [[5-limit]]; [[126/125]], [[1728/1715]], and [[5120/5103]] in the [[7-limit]]; [[176/175]], [[243/242]], [[441/440]], [[540/539]], and [[896/891]] in the 11-limit; [[144/143]], [[351/350]], [[364/363]] in the 13-limit. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[regular temperament|temperament]]s plus a number of [[gravity family]] [[extension]]s, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]]. | ||
Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval. | Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval. | ||
Line 16: | Line 16: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
58edo contains [[2edo]] and [[29edo]] as subsets. | 58edo contains [[2edo]] and [[29edo]] as subsets. | ||
== Intervals == | == Intervals == | ||
{| class="wikitable center-all right-2 left-3 left-4"" | {| class="wikitable center-all right-2 left-3 left-4"" | ||
|- | |- | ||
! | ! # | ||
! Cents | ! Cents | ||
! Approximate ratios | ! Approximate ratios* | ||
! [[Ups and downs notation]] | ! [[Ups and downs notation]] | ||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| [[1/1]] | | [[1/1]] | ||
| {{UDnote|step=0}} | | {{UDnote|step=0}} | ||
|- | |- | ||
| 1 | | 1 | ||
| 20. | | 20.7 | ||
| [[56/55]], [[64/63]], [[81/80]], [[ | | [[56/55]], [[64/63]], [[81/80]], [[91/90]], [[105/104]] | ||
| {{UDnote|step=1}} | | {{UDnote|step=1}} | ||
|- | |- | ||
| 2 | | 2 | ||
| 41. | | 41.4 | ||
| [[36/35]], [[49/48]], [[50/49]], [[55/54]] | | [[36/35]], [[40/39]], [[45/44]], [[49/48]], [[50/49]], [[55/54]] | ||
| {{UDnote|step=2}} | | {{UDnote|step=2}} | ||
|- | |- | ||
| 3 | | 3 | ||
| 62. | | 62.1 | ||
| [[26/25]], [[27/26]], [[28/27]], [[33/32]] | | [[26/25]], [[27/26]], [[28/27]], [[33/32]] | ||
| {{UDnote|step=3}} | | {{UDnote|step=3}} | ||
|- | |- | ||
| 4 | | 4 | ||
| 82. | | 82.8 | ||
| [[ | | [[21/20]], [[22/21]], ''[[25/24]]'' | ||
| {{UDnote|step=4}} | | {{UDnote|step=4}} | ||
|- | |- | ||
| 5 | | 5 | ||
| 103. | | 103.4 | ||
| [[16/15]], [[17/16]], [[18/17]] | | [[16/15]], [[17/16]], [[18/17]] | ||
| {{UDnote|step=5}} | | {{UDnote|step=5}} | ||
|- | |- | ||
| 6 | | 6 | ||
| 124. | | 124.1 | ||
| [[14/13]], [[15/14 | | [[14/13]], [[15/14]] | ||
| {{UDnote|step=6}} | | {{UDnote|step=6}} | ||
|- | |- | ||
| 7 | | 7 | ||
| 144. | | 144.8 | ||
| [[12/11]], [[13/12]] | | [[12/11]], [[13/12]] | ||
| {{UDnote|step=7}} | | {{UDnote|step=7}} | ||
|- | |- | ||
| 8 | | 8 | ||
| 165. | | 165.5 | ||
| [[11/10]] | | [[11/10]] | ||
| {{UDnote|step=8}} | | {{UDnote|step=8}} | ||
|- | |- | ||
| 9 | | 9 | ||
| 186. | | 186.2 | ||
| [[10/9]] | | [[10/9]] | ||
| {{UDnote|step=9}} | | {{UDnote|step=9}} | ||
|- | |- | ||
| 10 | | 10 | ||
| 206. | | 206.9 | ||
| [[9/8]], [[17/15]] | | [[9/8]], [[17/15]] | ||
| {{UDnote|step=10}} | | {{UDnote|step=10}} | ||
|- | |- | ||
| 11 | | 11 | ||
| 227. | | 227.6 | ||
| [[8/7]] | | [[8/7]] | ||
| {{UDnote|step=11}} | | {{UDnote|step=11}} | ||
|- | |- | ||
| 12 | | 12 | ||
| 248. | | 248.3 | ||
| [[15/13]] | | [[15/13]] | ||
| {{UDnote|step=12}} | | {{UDnote|step=12}} | ||
|- | |- | ||
| 13 | | 13 | ||
| | | 269.0 | ||
| [[7/6]] | | [[7/6]] | ||
| {{UDnote|step=13}} | | {{UDnote|step=13}} | ||
|- | |- | ||
| 14 | | 14 | ||
| 289. | | 289.7 | ||
| [[13/11]], [[20/17]] | | [[13/11]], [[20/17]] | ||
| {{UDnote|step=14}} | | {{UDnote|step=14}} | ||
|- | |- | ||
| 15 | | 15 | ||
| 310. | | 310.3 | ||
| [[6/5]] | | [[6/5]] | ||
| {{UDnote|step=15}} | | {{UDnote|step=15}} | ||
|- | |- | ||
| 16 | | 16 | ||
| 331. | | 331.0 | ||
| [[17/14]] | | [[17/14]], [[40/33]] | ||
| {{UDnote|step=16}} | | {{UDnote|step=16}} | ||
|- | |- | ||
| 17 | | 17 | ||
| 351. | | 351.7 | ||
| [[11/9]], [[16/13]] | | [[11/9]], [[16/13]] | ||
| {{UDnote|step=17}} | | {{UDnote|step=17}} | ||
|- | |- | ||
| 18 | | 18 | ||
| 372. | | 372.4 | ||
| [[21/17]] | | [[21/17]], [[26/21]] | ||
| {{UDnote|step=18}} | | {{UDnote|step=18}} | ||
|- | |- | ||
| 19 | | 19 | ||
| 393. | | 393.1 | ||
| [[5/4]] | | [[5/4]] | ||
| {{UDnote|step=19}} | | {{UDnote|step=19}} | ||
|- | |- | ||
| 20 | | 20 | ||
| 413. | | 413.8 | ||
| [[14/11]] | | [[14/11]] | ||
| {{UDnote|step=20}} | | {{UDnote|step=20}} | ||
|- | |- | ||
| 21 | | 21 | ||
| 434. | | 434.5 | ||
| [[9/7]] | | [[9/7]] | ||
| {{UDnote|step=21}} | | {{UDnote|step=21}} | ||
|- | |- | ||
| 22 | | 22 | ||
| 455. | | 455.2 | ||
| [[13/10]], [[17/13]], [[22/17]] | | [[13/10]], [[17/13]], [[22/17]] | ||
| {{UDnote|step=22}} | | {{UDnote|step=22}} | ||
|- | |- | ||
| 23 | | 23 | ||
| 475. | | 475.9 | ||
| [[21/16]] | | [[21/16]] | ||
| {{UDnote|step=23}} | | {{UDnote|step=23}} | ||
|- | |- | ||
| 24 | | 24 | ||
| 496. | | 496.6 | ||
| [[4/3]] | | [[4/3]] | ||
| {{UDnote|step=24}} | | {{UDnote|step=24}} | ||
|- | |- | ||
| 25 | | 25 | ||
| 517. | | 517.2 | ||
| [[27/20]] | | [[27/20]] | ||
| {{UDnote|step=25}} | | {{UDnote|step=25}} | ||
|- | |- | ||
| 26 | | 26 | ||
| 537. | | 537.9 | ||
| [[15/11]] | | [[15/11]] | ||
| {{UDnote|step=26}} | | {{UDnote|step=26}} | ||
|- | |- | ||
| 27 | | 27 | ||
| 558. | | 558.6 | ||
| [[11/8]], [[18/13]] | | [[11/8]], [[18/13]] | ||
| {{UDnote|step=27}} | | {{UDnote|step=27}} | ||
|- | |- | ||
| 28 | | 28 | ||
| 579. | | 579.3 | ||
| [[7/5]] | | [[7/5]] | ||
| {{UDnote|step=28}} | | {{UDnote|step=28}} | ||
|- | |- | ||
| 29 | | 29 | ||
| 600. | | 600.0 | ||
| [[17/12]], [[24/17]] | | [[17/12]], [[24/17]] | ||
| {{UDnote|step=29}} | | {{UDnote|step=29}} | ||
|- | |- | ||
| 30 | | 30 | ||
| 620. | | 620.7 | ||
| [[10/7]] | | [[10/7]] | ||
| {{UDnote|step=30}} | | {{UDnote|step=30}} | ||
|- | |- | ||
| 31 | | 31 | ||
| 641. | | 641.4 | ||
| [[13/9]], [[16/11]] | | [[13/9]], [[16/11]] | ||
| {{UDnote|step=31}} | | {{UDnote|step=31}} | ||
|- | |- | ||
| 32 | | 32 | ||
| 662. | | 662.1 | ||
| [[22/15]] | | [[22/15]] | ||
| {{UDnote|step=32}} | | {{UDnote|step=32}} | ||
|- | |- | ||
| 33 | | 33 | ||
| 682. | | 682.8 | ||
| [[40/27]] | | [[40/27]] | ||
| {{UDnote|step=33}} | | {{UDnote|step=33}} | ||
|- | |- | ||
| 34 | | 34 | ||
| 703. | | 703.4 | ||
| [[3/2]] | | [[3/2]] | ||
| {{UDnote|step=34}} | | {{UDnote|step=34}} | ||
|- | |- | ||
| 35 | | 35 | ||
| 724. | | 724.1 | ||
| [[32/21]] | | [[32/21]] | ||
| {{UDnote|step=35}} | | {{UDnote|step=35}} | ||
|- | |- | ||
| 36 | | 36 | ||
| 744. | | 744.8 | ||
| [[ | | [[17/11]], [[20/13]], [[26/17]] | ||
| {{UDnote|step=36}} | | {{UDnote|step=36}} | ||
|- | |- | ||
| 37 | | 37 | ||
| 765. | | 765.5 | ||
| [[14/9]] | | [[14/9]] | ||
| {{UDnote|step=37}} | | {{UDnote|step=37}} | ||
|- | |- | ||
| 38 | | 38 | ||
| 786. | | 786.2 | ||
| [[11/7]] | | [[11/7]] | ||
| {{UDnote|step=38}} | | {{UDnote|step=38}} | ||
|- | |- | ||
| 39 | | 39 | ||
| 806. | | 806.9 | ||
| [[8/5]] | | [[8/5]] | ||
| {{UDnote|step=39}} | | {{UDnote|step=39}} | ||
|- | |- | ||
| 40 | | 40 | ||
| 827. | | 827.6 | ||
| [[34/21]] | | [[21/13]], [[34/21]] | ||
| {{UDnote|step=40}} | | {{UDnote|step=40}} | ||
|- | |- | ||
| 41 | | 41 | ||
| 848. | | 848.3 | ||
| [[13/8]], [[18/11]] | | [[13/8]], [[18/11]] | ||
| {{UDnote|step=41}} | | {{UDnote|step=41}} | ||
|- | |- | ||
| 42 | | 42 | ||
| | | 869.0 | ||
| [[28/17]] | | [[28/17]], [[33/20]] | ||
| {{UDnote|step=42}} | | {{UDnote|step=42}} | ||
|- | |- | ||
| 43 | | 43 | ||
| 889. | | 889.7 | ||
| [[5/3]] | | [[5/3]] | ||
| {{UDnote|step=43}} | | {{UDnote|step=43}} | ||
|- | |- | ||
| 44 | | 44 | ||
| 910. | | 910.3 | ||
| [[ | | [[17/10]], [[22/13]] | ||
| {{UDnote|step=44}} | | {{UDnote|step=44}} | ||
|- | |- | ||
| 45 | | 45 | ||
| 931. | | 931.0 | ||
| [[12/7]] | | [[12/7]] | ||
| {{UDnote|step=45}} | | {{UDnote|step=45}} | ||
|- | |- | ||
| 46 | | 46 | ||
| 951. | | 951.7 | ||
| [[26/15]] | | [[26/15]] | ||
| {{UDnote|step=46}} | | {{UDnote|step=46}} | ||
|- | |- | ||
| 47 | | 47 | ||
| 972. | | 972.4 | ||
| [[7/4]] | | [[7/4]] | ||
| {{UDnote|step=47}} | | {{UDnote|step=47}} | ||
|- | |- | ||
| 48 | | 48 | ||
| 993. | | 993.1 | ||
| [[16/9]], [[30/17]] | | [[16/9]], [[30/17]] | ||
| {{UDnote|step=48}} | | {{UDnote|step=48}} | ||
|- | |- | ||
| 49 | | 49 | ||
| 1013. | | 1013.8 | ||
| [[9/5]] | | [[9/5]] | ||
| {{UDnote|step=49}} | | {{UDnote|step=49}} | ||
|- | |- | ||
| 50 | | 50 | ||
| 1034. | | 1034.5 | ||
| [[20/11]] | | [[20/11]] | ||
| {{UDnote|step=50}} | | {{UDnote|step=50}} | ||
|- | |- | ||
| 51 | | 51 | ||
| 1055. | | 1055.2 | ||
| [[11/6]], [[24/13]] | | [[11/6]], [[24/13]] | ||
| {{UDnote|step=51}} | | {{UDnote|step=51}} | ||
|- | |- | ||
| 52 | | 52 | ||
| 1075. | | 1075.9 | ||
| [[13/7]], [[28/15]] | | [[13/7]], [[28/15]] | ||
| {{UDnote|step=52}} | | {{UDnote|step=52}} | ||
|- | |- | ||
| 53 | | 53 | ||
| 1096. | | 1096.6 | ||
| [[15/8]], [[ | | [[15/8]], [[17/9]], [[32/17]] | ||
| {{UDnote|step=53}} | | {{UDnote|step=53}} | ||
|- | |- | ||
| 54 | | 54 | ||
| 1117. | | 1117.2 | ||
| [[ | | [[21/11]], [[40/21]], ''[[48/25]]'' | ||
| {{UDnote|step=54}} | | {{UDnote|step=54}} | ||
|- | |- | ||
| 55 | | 55 | ||
| 1137. | | 1137.9 | ||
| [[25/13]], [[ | | [[25/13]], [[27/14]], [[52/27]], [[64/33]] | ||
| {{UDnote|step=55}} | | {{UDnote|step=55}} | ||
|- | |- | ||
| 56 | | 56 | ||
| 1158. | | 1158.6 | ||
| [[35/18]], [[ | | [[35/18]], [[39/20]], [[49/25]], [[88/45]], [[96/49]], [[108/55]] | ||
| {{UDnote|step=56}} | | {{UDnote|step=56}} | ||
|- | |- | ||
| 57 | | 57 | ||
| 1179. | | 1179.3 | ||
| [[55/28]], [[63/32]], [[160/81]], [[ | | [[55/28]], [[63/32]], [[160/81]], [[180/91]], [[208/105]] | ||
| {{UDnote|step=57}} | | {{UDnote|step=57}} | ||
|- | |- | ||
| 58 | | 58 | ||
| 1200. | | 1200.0 | ||
| [[2/1]] | | [[2/1]] | ||
| {{UDnote|step=58}} | | {{UDnote|step=58}} | ||
|} | |} | ||
<nowiki/>* As a 17-limit temperament, inconsistently mapped intervals in ''italic'' | |||
== Notation == | == Notation == | ||
=== Ups and downs notation === | === Ups and downs notation === | ||
58edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
Alternatively, a combination of quarter tone accidentals and arrow accidentals from [[Helmholtz–Ellis notation]] can be used. | |||
{{Sharpness-sharp6}} | {{Sharpness-sharp6}} | ||
If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals: | If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals: | ||
{{Sharpness-sharp6-qt}} | {{Sharpness-sharp6-qt}} | ||
Line 494: | Line 499: | ||
=== Interval mappings === | === Interval mappings === | ||
{{15-odd-limit|58}} | {{15-odd-limit|58}} | ||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 539: | Line 514: | ||
| 2.3.5 | | 2.3.5 | ||
| 2048/2025, [[1594323/1562500]] | | 2048/2025, [[1594323/1562500]] | ||
| {{ | | {{Mapping| 58 92 135 }} | ||
| −1.29 | | −1.29 | ||
| 1.22 | | 1.22 | ||
Line 546: | Line 521: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 126/125, 1728/1715, 2048/2025 | | 126/125, 1728/1715, 2048/2025 | ||
| {{ | | {{Mapping| 58 92 135 163 }} | ||
| −1.29 | | −1.29 | ||
| 1.05 | | 1.05 | ||
Line 553: | Line 528: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 126/125, 176/175, 243/242, 896/891 | | 126/125, 176/175, 243/242, 896/891 | ||
| {{ | | {{Mapping| 58 92 135 163 201 }} | ||
| −1.45 | | −1.45 | ||
| 1.00 | | 1.00 | ||
Line 560: | Line 535: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 126/125, 144/143, 176/175, 196/195, 364/363 | | 126/125, 144/143, 176/175, 196/195, 364/363 | ||
| {{ | | {{Mapping| 58 92 135 163 201 215 }} | ||
| −1.56 | | −1.56 | ||
| 0.94 | | 0.94 | ||
Line 567: | Line 542: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 126/125, 136/135, 144/143, 176/175, 196/195, 364/363 | | 126/125, 136/135, 144/143, 176/175, 196/195, 364/363 | ||
| {{ | | {{Mapping| 58 92 135 163 201 215 237 }} | ||
| −1.28 | | −1.28 | ||
| 1.10 | | 1.10 | ||
Line 586: | Line 561: | ||
| 1 | | 1 | ||
| 3\58 | | 3\58 | ||
| 62. | | 62.1 | ||
| 28/27 | | 28/27 | ||
| [[Unicorn]] / alicorn / qilin | | [[Unicorn]] / alicorn / qilin | ||
Line 592: | Line 567: | ||
| 1 | | 1 | ||
| 11\58 | | 11\58 | ||
| 227. | | 227.6 | ||
| 8/7 | | 8/7 | ||
| [[Gorgik]] | | [[Gorgik]] | ||
Line 598: | Line 573: | ||
| 1 | | 1 | ||
| 13\58 | | 13\58 | ||
| | | 269.0 | ||
| 7/6 | | 7/6 | ||
| [[Infraorwell]] | | [[Infraorwell]] | ||
Line 604: | Line 579: | ||
| 1 | | 1 | ||
| 15\58 | | 15\58 | ||
| 310. | | 310.3 | ||
| 6/5 | | 6/5 | ||
| [[Myna]] | | [[Myna]] | ||
Line 610: | Line 585: | ||
| 1 | | 1 | ||
| 17\58 | | 17\58 | ||
| 351. | | 351.7 | ||
| 49/40 | | 49/40 | ||
| [[Hemififths]] | | [[Hemififths]] | ||
Line 616: | Line 591: | ||
| 1 | | 1 | ||
| 19\58 | | 19\58 | ||
| 393. | | 393.1 | ||
| 64/51 | | 64/51 | ||
| [[Emmthird]] | | [[Emmthird]] | ||
Line 622: | Line 597: | ||
| 1 | | 1 | ||
| 23\58 | | 23\58 | ||
| 475. | | 475.9 | ||
| 21/16 | | 21/16 | ||
| [[Buzzard]] / [[subfourth]] | | [[Buzzard]] / [[subfourth]] | ||
Line 628: | Line 603: | ||
| 1 | | 1 | ||
| 27\58 | | 27\58 | ||
| 558. | | 558.6 | ||
| 11/8 | | 11/8 | ||
| [[Thuja]] | | [[Thuja]] | ||
Line 634: | Line 609: | ||
| 2 | | 2 | ||
| 3\58 | | 3\58 | ||
| 62. | | 62.1 | ||
| 28/27 | | 28/27 | ||
| [[Monocerus]] | | [[Monocerus]] | ||
Line 640: | Line 615: | ||
| 2 | | 2 | ||
| 1\58 | | 1\58 | ||
| 20. | | 20.7 | ||
| 81/80 | | 81/80 | ||
| [[Bicommatic]] | | [[Bicommatic]] | ||
Line 646: | Line 621: | ||
| 2 | | 2 | ||
| 9\58 | | 9\58 | ||
| 186. | | 186.2 | ||
| 10/9 | | 10/9 | ||
| [[Secant]] | | [[Secant]] | ||
Line 652: | Line 627: | ||
| 2 | | 2 | ||
| 17\58<br>(12\58) | | 17\58<br>(12\58) | ||
| 351. | | 351.7<br>(248.3) | ||
| 11/9<br>(15/13) | | 11/9<br>(15/13) | ||
| [[Sruti]] | | [[Sruti]] | ||
Line 658: | Line 633: | ||
| 2 | | 2 | ||
| 21\58<br>(8\58) | | 21\58<br>(8\58) | ||
| 434. | | 434.5<br>(165.5) | ||
| 9/7<br>(11/10) | | 9/7<br>(11/10) | ||
| [[Echidna]] | | [[Echidna]] | ||
Line 664: | Line 639: | ||
| 2 | | 2 | ||
| 24\58<br>(5\58) | | 24\58<br>(5\58) | ||
| 496. | | 496.6<br>(103.4) | ||
| 4/3<br>(17/16) | | 4/3<br>(17/16) | ||
| [[Diaschismic]] | | [[Diaschismic]] | ||
Line 670: | Line 645: | ||
| 2 | | 2 | ||
| 25\58<br>(4\58) | | 25\58<br>(4\58) | ||
| 517. | | 517.2<br>(82.8) | ||
| 27/20<br>(21/20) | | 27/20<br>(21/20) | ||
| [[Harry]] | | [[Harry]] | ||
Line 676: | Line 651: | ||
| 29 | | 29 | ||
| 19\58<br>(1\58) | | 19\58<br>(1\58) | ||
| 393. | | 393.1<br>(20.7) | ||
| 5/4<br>(91/90) | | 5/4<br>(91/90) | ||
| [[Mystery]] | | [[Mystery]] | ||
|} | |} | ||
<nowiki/>* [[Normal | <nowiki/>* [[Normal forms|Octave-reduced form]], reduced to the first half-octave, and [[normal forms|minimal form]] in parentheses if distinct | ||
58et can also be detempered to [[semihemi]] ({{nowrap| 58 & 140 }}), [[supers]] ({{nowrap| 58 & 152 }}), [[condor]] ({{nowrap| 58 & 159 }}), and [[eagle]] ({{nowrap| 58 & 212 }}). | |||
== Octave stretch or compression == | |||
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly [[stretched and compressed tuning|compressing the octave]] is acceptable, using tunings such as [[92edt]] or [[150ed6]]. | |||
What follows is a comparison of stretched- and compressed-octave 58edo tunings. | |||
; [[zpi|288zpi]] | |||
* Step size: 20.736{{c}}, octave size: 1202.69{{c}} | |||
Stretching the octave of 58edo by around 2.5{{c}} results in improved primes 11, 13, 19 and 23, but worse primes 2, 3, 5, 7 and 17. This approximates all harmonics up to 16 within 9.98{{c}}. The tuning 288zpi does this. | |||
{{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 288zpi}} | |||
{{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 288zpi (continued)}} | |||
; 58edo | |||
* Step size: 20.690{{c}}, octave size: 1200.00{{c}} | |||
Pure-octaves 58edo approximates all harmonics up to 16 within 8.28{{c}}. | |||
{{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58edo}} | |||
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58edo (continued)}} | |||
; [[150ed6]] | |||
* Step size: 20.680{{c}}, octave size: 1199.42{{c}} | |||
Compressing the octave of 58edo by around half a cent results in improved primes 3, 5, 7, 11 and 13 but a worse prime 2. This approximates all harmonics up to 16 within 6.02{{c}}. The tuning 150ed6 does this. | |||
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed6}} | |||
{{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed6 (continued)}} | |||
; [[92edt]] | |||
* Step size: 20.673{{c}}, octave size: 1199.06{{c}} | |||
Compressing the octave of 58edo by around 1{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 4.60{{c}}. The tuning 92edt does this. | |||
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92edt}} | |||
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92edt (continued)}} | |||
; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]] | |||
* Step size: 20.666{{c}}, octave size: 1198.63{{c}} | |||
Compressing the octave of 58edo by just under 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 5.49{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06{{c}}. | |||
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 289zpi}} | |||
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 289zpi (continued)}} | |||
; [[WE|58et, 13-limit WE tuning]] | |||
* Step size: 20.663{{c}}, octave size: 1198.45{{c}} | |||
Compressing the octave of 58edo by just over 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 6.18{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning}} | |||
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning (continued)}} | |||
== Scales == | == Scales == | ||
Line 698: | Line 714: | ||
== Music == | == Music == | ||
; [[Jeff Brown]] | ; [[Jeff Brown]] | ||
* [https://www.youtube.com/watch?v=0373hBH87LY ''Fruitbats in Formation''] | * [https://www.youtube.com/watch?v=0373hBH87LY ''Fruitbats in Formation''] (2023) | ||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/4J4MNno-4PA ''58edo improv''] (2025) | |||
* [https://www.youtube.com/shorts/7gkRyld5OU8 ''Waltz in 58edo''] (2025) | |||
; [[Francium]] | ; [[Francium]] | ||
* [https://www.youtube.com/watch?v=XXMjoUxVfLs ''We Wish You A Larry Christmas''] (2024) – larry | * [https://www.youtube.com/watch?v=XXMjoUxVfLs ''We Wish You A Larry Christmas''] (2024) – in larry, 58edo tuning | ||
; [[Cam Taylor]] | ; [[Cam Taylor]] | ||
* [https:// | * [https://www.youtube.com/watch?v=Keclakcqie8 ''58EDO, Mystery temperament and 2 rings of Pythagorean on the Lumatone''] (2021) | ||
[[Category:Buzzard]] | [[Category:Buzzard]] | ||
[[Category:Diaschismic]] | [[Category:Diaschismic]] | ||
[[Category:Harry]] | [[Category:Harry]] | ||
[[Category:Hemififths]] | [[Category:Hemififths]] | ||
[[Category:Myna]] | [[Category:Myna]] | ||
[[Category:Mystery]] | [[Category:Mystery]] | ||
[[Category:Harry Partch]] | |||
[[Category:Listen]] |
Latest revision as of 23:47, 26 August 2025
← 57edo | 58edo | 59edo → |
58 equal divisions of the octave (abbreviated 58edo or 58ed2), also called 58-tone equal temperament (58tet) or 58 equal temperament (58et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 58 equal parts of about 20.7 ¢ each. Each step represents a frequency ratio of 21/58, or the 58th root of 2.
Theory
58edo is a strong system in the 11-, 13- and 17-limit. It is the smallest edo which is consistent through the 17-odd-limit, and is also the smallest distinctly consistent in the 11-odd-limit (the first equal temperament to map the entire 11-odd-limit tonality diamond to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note Genesis scale of Harry Partch.
While the 17th harmonic is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since 58 = 2 × 29, 58edo shares the same excellent perfect fifth with 29edo. It is the last edo to have exactly one diatonic perfect fifth and no 5edo or 7edo fifths.
As an equal temperament, 58et tempers out 2048/2025 in the 5-limit; 126/125, 1728/1715, and 5120/5103 in the 7-limit; 176/175, 243/242, 441/440, 540/539, and 896/891 in the 11-limit; 144/143, 351/350, 364/363 in the 13-limit. It supports hemififths, myna, diaschismic, harry, mystery, buzzard, thuja temperaments plus a number of gravity family extensions, and supplies the optimal patent val for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments thrush, bluebird, aplonis and jofur.
Of all edos which map the syntonic comma (81/80) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1 ¢ narrower than the just interval.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +1.49 | +6.79 | +3.59 | +7.30 | +7.75 | -1.51 | -7.86 | -7.58 | +4.91 | -7.10 |
Relative (%) | +0.0 | +7.2 | +32.8 | +17.3 | +35.3 | +37.4 | -7.3 | -38.0 | -36.7 | +23.7 | -34.3 | |
Steps (reduced) |
58 (0) |
92 (34) |
135 (19) |
163 (47) |
201 (27) |
215 (41) |
237 (5) |
246 (14) |
262 (30) |
282 (50) |
287 (55) |
Subsets and supersets
58edo contains 2edo and 29edo as subsets.
Intervals
# | Cents | Approximate ratios* | Ups and downs notation |
---|---|---|---|
0 | 0.0 | 1/1 | D |
1 | 20.7 | 56/55, 64/63, 81/80, 91/90, 105/104 | ^D, v3E♭ |
2 | 41.4 | 36/35, 40/39, 45/44, 49/48, 50/49, 55/54 | ^^D, vvE♭ |
3 | 62.1 | 26/25, 27/26, 28/27, 33/32 | ^3D, vE♭ |
4 | 82.8 | 21/20, 22/21, 25/24 | vvD♯, E♭ |
5 | 103.4 | 16/15, 17/16, 18/17 | vD♯, ^E♭ |
6 | 124.1 | 14/13, 15/14 | D♯, ^^E♭ |
7 | 144.8 | 12/11, 13/12 | ^D♯, v3E |
8 | 165.5 | 11/10 | ^^D♯, vvE |
9 | 186.2 | 10/9 | ^3D♯, vE |
10 | 206.9 | 9/8, 17/15 | E |
11 | 227.6 | 8/7 | ^E, v3F |
12 | 248.3 | 15/13 | ^^E, vvF |
13 | 269.0 | 7/6 | ^3E, vF |
14 | 289.7 | 13/11, 20/17 | F |
15 | 310.3 | 6/5 | ^F, v3G♭ |
16 | 331.0 | 17/14, 40/33 | ^^F, vvG♭ |
17 | 351.7 | 11/9, 16/13 | ^3F, vG♭ |
18 | 372.4 | 21/17, 26/21 | vvF♯, G♭ |
19 | 393.1 | 5/4 | vF♯, ^G♭ |
20 | 413.8 | 14/11 | F♯, ^^G♭ |
21 | 434.5 | 9/7 | ^F♯, v3G |
22 | 455.2 | 13/10, 17/13, 22/17 | ^^F♯, vvG |
23 | 475.9 | 21/16 | ^3F♯, vG |
24 | 496.6 | 4/3 | G |
25 | 517.2 | 27/20 | ^G, v3A♭ |
26 | 537.9 | 15/11 | ^^G, vvA♭ |
27 | 558.6 | 11/8, 18/13 | ^3G, vA♭ |
28 | 579.3 | 7/5 | vvG♯, A♭ |
29 | 600.0 | 17/12, 24/17 | vG♯, ^A♭ |
30 | 620.7 | 10/7 | G♯, ^^A♭ |
31 | 641.4 | 13/9, 16/11 | ^G♯, v3A |
32 | 662.1 | 22/15 | ^^G♯, vvA |
33 | 682.8 | 40/27 | ^3G♯, vA |
34 | 703.4 | 3/2 | A |
35 | 724.1 | 32/21 | ^A, v3B♭ |
36 | 744.8 | 17/11, 20/13, 26/17 | ^^A, vvB♭ |
37 | 765.5 | 14/9 | ^3A, vB♭ |
38 | 786.2 | 11/7 | vvA♯, B♭ |
39 | 806.9 | 8/5 | vA♯, ^B♭ |
40 | 827.6 | 21/13, 34/21 | A♯, ^^B♭ |
41 | 848.3 | 13/8, 18/11 | ^A♯, v3B |
42 | 869.0 | 28/17, 33/20 | ^^A♯, vvB |
43 | 889.7 | 5/3 | ^3A♯, vB |
44 | 910.3 | 17/10, 22/13 | B |
45 | 931.0 | 12/7 | ^B, v3C |
46 | 951.7 | 26/15 | ^^B, vvC |
47 | 972.4 | 7/4 | ^3B, vC |
48 | 993.1 | 16/9, 30/17 | C |
49 | 1013.8 | 9/5 | ^C, v3D♭ |
50 | 1034.5 | 20/11 | ^^C, vvD♭ |
51 | 1055.2 | 11/6, 24/13 | ^3C, vD♭ |
52 | 1075.9 | 13/7, 28/15 | vvC♯, D♭ |
53 | 1096.6 | 15/8, 17/9, 32/17 | vC♯, ^D♭ |
54 | 1117.2 | 21/11, 40/21, 48/25 | C♯, ^^D♭ |
55 | 1137.9 | 25/13, 27/14, 52/27, 64/33 | ^C♯, v3D |
56 | 1158.6 | 35/18, 39/20, 49/25, 88/45, 96/49, 108/55 | ^^C♯, vvD |
57 | 1179.3 | 55/28, 63/32, 160/81, 180/91, 208/105 | ^3C♯, vD |
58 | 1200.0 | 2/1 | D |
* As a 17-limit temperament, inconsistently mapped intervals in italic
Notation
Ups and downs notation
58edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Flat symbol | ![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Half-sharps and half-flats can be used to avoid triple arrows:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Flat symbol | ![]() |
![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Alternatively, a combination of quarter tone accidentals and arrow accidentals from Helmholtz–Ellis notation can be used.
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Ivan Wyschnegradsky's notation
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from 72edo can also be used:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() | |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Sagittal notation
Evo flavor

Revo flavor

Evo-SZ flavor

Hemipyth notation
# | Cents | Note names on D |
---|---|---|
0 | 0.0 | D |
2 | 41.4 | α𝄳 |
5 | 103.4 | α |
7 | 144.8 | E𝄳 |
10 | 206.9 | E |
12 | 248.3 | β𝄳 |
14 | 289.7 | F |
15 | 310.3 | β |
17 | 351.7 | F‡ |
19 | 393.1 | γ |
22 | 455.2 | γ‡ |
24 | 496.6 | G |
27 | 558.6 | G‡ |
29 | 600.0 | δ |
31 | 641.4 | A𝄳 |
34 | 703.4 | A |
36 | 744.8 | ε𝄳 |
39 | 806.9 | ε |
41 | 848.3 | B𝄳 |
43 | 889.7 | ζ |
44 | 910.3 | B |
46 | 951.7 | ζ‡ |
48 | 993.1 | C |
51 | 1055.2 | C‡ |
53 | 1096.6 | η |
56 | 1158.6 | η‡ |
58 | 1200.0 | D |
Approximation to JI
Interval mappings
The following table shows how 15-odd-limit intervals are represented in 58edo. Prime harmonics are in bold.
As 58edo is consistent in the 15-odd-limit, the mappings by direct approximation and through the patent val are identical.
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
13/11, 22/13 | 0.445 | 2.2 |
11/10, 20/11 | 0.513 | 2.5 |
15/13, 26/15 | 0.535 | 2.6 |
9/7, 14/9 | 0.601 | 2.9 |
13/10, 20/13 | 0.958 | 4.6 |
15/11, 22/15 | 0.980 | 4.7 |
3/2, 4/3 | 1.493 | 7.2 |
7/6, 12/7 | 2.095 | 10.1 |
9/8, 16/9 | 2.987 | 14.4 |
7/5, 10/7 | 3.202 | 15.5 |
7/4, 8/7 | 3.588 | 17.3 |
11/7, 14/11 | 3.715 | 18.0 |
9/5, 10/9 | 3.803 | 18.4 |
13/7, 14/13 | 4.160 | 20.1 |
11/9, 18/11 | 4.316 | 20.9 |
15/14, 28/15 | 4.695 | 22.7 |
13/9, 18/13 | 4.762 | 23.0 |
5/3, 6/5 | 5.296 | 25.6 |
11/6, 12/11 | 5.809 | 28.1 |
13/12, 24/13 | 6.255 | 30.2 |
5/4, 8/5 | 6.790 | 32.8 |
11/8, 16/11 | 7.303 | 35.3 |
13/8, 16/13 | 7.748 | 37.4 |
15/8, 16/15 | 8.283 | 40.0 |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 2048/2025, 1594323/1562500 | [⟨58 92 135]] | −1.29 | 1.22 | 5.89 |
2.3.5.7 | 126/125, 1728/1715, 2048/2025 | [⟨58 92 135 163]] | −1.29 | 1.05 | 5.10 |
2.3.5.7.11 | 126/125, 176/175, 243/242, 896/891 | [⟨58 92 135 163 201]] | −1.45 | 1.00 | 4.83 |
2.3.5.7.11.13 | 126/125, 144/143, 176/175, 196/195, 364/363 | [⟨58 92 135 163 201 215]] | −1.56 | 0.94 | 4.56 |
2.3.5.7.11.13.17 | 126/125, 136/135, 144/143, 176/175, 196/195, 364/363 | [⟨58 92 135 163 201 215 237]] | −1.28 | 1.10 | 5.33 |
- 58et has a lower relative error than any previous equal temperaments in the 13-limit, and the next equal temperament that does better in this subgroup is 72.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 3\58 | 62.1 | 28/27 | Unicorn / alicorn / qilin |
1 | 11\58 | 227.6 | 8/7 | Gorgik |
1 | 13\58 | 269.0 | 7/6 | Infraorwell |
1 | 15\58 | 310.3 | 6/5 | Myna |
1 | 17\58 | 351.7 | 49/40 | Hemififths |
1 | 19\58 | 393.1 | 64/51 | Emmthird |
1 | 23\58 | 475.9 | 21/16 | Buzzard / subfourth |
1 | 27\58 | 558.6 | 11/8 | Thuja |
2 | 3\58 | 62.1 | 28/27 | Monocerus |
2 | 1\58 | 20.7 | 81/80 | Bicommatic |
2 | 9\58 | 186.2 | 10/9 | Secant |
2 | 17\58 (12\58) |
351.7 (248.3) |
11/9 (15/13) |
Sruti |
2 | 21\58 (8\58) |
434.5 (165.5) |
9/7 (11/10) |
Echidna |
2 | 24\58 (5\58) |
496.6 (103.4) |
4/3 (17/16) |
Diaschismic |
2 | 25\58 (4\58) |
517.2 (82.8) |
27/20 (21/20) |
Harry |
29 | 19\58 (1\58) |
393.1 (20.7) |
5/4 (91/90) |
Mystery |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
58et can also be detempered to semihemi (58 & 140), supers (58 & 152), condor (58 & 159), and eagle (58 & 212).
Octave stretch or compression
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly compressing the octave is acceptable, using tunings such as 92edt or 150ed6.
What follows is a comparison of stretched- and compressed-octave 58edo tunings.
- Step size: 20.736 ¢, octave size: 1202.69 ¢
Stretching the octave of 58edo by around 2.5 ¢ results in improved primes 11, 13, 19 and 23, but worse primes 2, 3, 5, 7 and 17. This approximates all harmonics up to 16 within 9.98 ¢. The tuning 288zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.69 | +5.76 | +5.38 | -7.69 | +8.44 | -9.59 | +8.06 | -9.22 | -5.00 | -4.12 | -9.60 |
Relative (%) | +13.0 | +27.8 | +25.9 | -37.1 | +40.7 | -46.3 | +38.9 | -44.5 | -24.1 | -19.9 | -46.3 | |
Step | 58 | 92 | 116 | 134 | 150 | 162 | 174 | 183 | 192 | 200 | 207 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.02 | -6.91 | -1.93 | -9.98 | +9.48 | -6.53 | +3.54 | -2.31 | -3.84 | -1.43 | +4.56 | -6.92 |
Relative (%) | -14.6 | -33.3 | -9.3 | -48.1 | +45.7 | -31.5 | +17.1 | -11.2 | -18.5 | -6.9 | +22.0 | -33.3 | |
Step | 214 | 220 | 226 | 231 | 237 | 241 | 246 | 250 | 254 | 258 | 262 | 265 |
- 58edo
- Step size: 20.690 ¢, octave size: 1200.00 ¢
Pure-octaves 58edo approximates all harmonics up to 16 within 8.28 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +1.49 | +0.00 | +6.79 | +1.49 | +3.59 | +0.00 | +2.99 | +6.79 | +7.30 | +1.49 |
Relative (%) | +0.0 | +7.2 | +0.0 | +32.8 | +7.2 | +17.3 | +0.0 | +14.4 | +32.8 | +35.3 | +7.2 | |
Steps (reduced) |
58 (0) |
92 (34) |
116 (0) |
135 (19) |
150 (34) |
163 (47) |
174 (0) |
184 (10) |
193 (19) |
201 (27) |
208 (34) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.75 | +3.59 | +8.28 | +0.00 | -1.51 | +2.99 | -7.86 | +6.79 | +5.08 | +7.30 | -7.58 | +1.49 |
Relative (%) | +37.4 | +17.3 | +40.0 | +0.0 | -7.3 | +14.4 | -38.0 | +32.8 | +24.6 | +35.3 | -36.7 | +7.2 | |
Steps (reduced) |
215 (41) |
221 (47) |
227 (53) |
232 (0) |
237 (5) |
242 (10) |
246 (14) |
251 (19) |
255 (23) |
259 (27) |
262 (30) |
266 (34) |
- Step size: 20.680 ¢, octave size: 1199.42 ¢
Compressing the octave of 58edo by around half a cent results in improved primes 3, 5, 7, 11 and 13 but a worse prime 2. This approximates all harmonics up to 16 within 6.02 ¢. The tuning 150ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.58 | +0.58 | -1.15 | +5.45 | +0.00 | +1.97 | -1.73 | +1.15 | +4.87 | +5.30 | -0.58 |
Relative (%) | -2.8 | +2.8 | -5.6 | +26.3 | +0.0 | +9.5 | -8.4 | +5.6 | +23.5 | +25.6 | -2.8 | |
Steps (reduced) |
58 (58) |
92 (92) |
116 (116) |
135 (135) |
150 (0) |
163 (13) |
174 (24) |
184 (34) |
193 (43) |
201 (51) |
208 (58) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.61 | +1.39 | +6.02 | -2.31 | -3.87 | +0.58 | -10.31 | +4.29 | +2.54 | +4.72 | -10.19 | -1.15 |
Relative (%) | +27.1 | +6.7 | +29.1 | -11.2 | -18.7 | +2.8 | -49.8 | +20.7 | +12.3 | +22.8 | -49.3 | -5.6 | |
Steps (reduced) |
215 (65) |
221 (71) |
227 (77) |
232 (82) |
237 (87) |
242 (92) |
246 (96) |
251 (101) |
255 (105) |
259 (109) |
262 (112) |
266 (116) |
- Step size: 20.673 ¢, octave size: 1199.06 ¢
Compressing the octave of 58edo by around 1 ¢ results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 4.60 ¢. The tuning 92edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.94 | +0.00 | -1.88 | +4.60 | -0.94 | +0.94 | -2.82 | +0.00 | +3.66 | +4.04 | -1.88 |
Relative (%) | -4.6 | +0.0 | -9.1 | +22.2 | -4.6 | +4.6 | -13.7 | +0.0 | +17.7 | +19.5 | -9.1 | |
Steps (reduced) |
58 (58) |
92 (0) |
116 (24) |
135 (43) |
150 (58) |
163 (71) |
174 (82) |
184 (0) |
193 (9) |
201 (17) |
208 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.26 | +0.00 | +4.60 | -3.77 | -5.35 | -0.94 | +8.82 | +2.72 | +0.94 | +3.10 | +8.84 | -2.82 |
Relative (%) | +20.6 | +0.0 | +22.2 | -18.2 | -25.9 | -4.6 | +42.7 | +13.1 | +4.6 | +15.0 | +42.7 | -13.7 | |
Steps (reduced) |
215 (31) |
221 (37) |
227 (43) |
232 (48) |
237 (53) |
242 (58) |
247 (63) |
251 (67) |
255 (71) |
259 (75) |
263 (79) |
266 (82) |
- Step size: 20.666 ¢, octave size: 1198.63 ¢
Compressing the octave of 58edo by just under 1.5 ¢ results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 5.49 ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.37 | -0.68 | -2.74 | +3.60 | -2.06 | -0.27 | -4.12 | -1.37 | +2.22 | +2.55 | -3.43 |
Relative (%) | -6.6 | -3.3 | -13.3 | +17.4 | -9.9 | -1.3 | -19.9 | -6.6 | +10.8 | +12.3 | -16.6 | |
Step | 58 | 92 | 116 | 135 | 150 | 163 | 174 | 184 | 193 | 201 | 208 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.66 | -1.64 | +2.91 | -5.49 | -7.11 | -2.74 | +6.99 | +0.85 | -0.95 | +1.18 | +6.88 | -4.80 |
Relative (%) | +12.9 | -7.9 | +14.1 | -26.6 | -34.4 | -13.2 | +33.8 | +4.1 | -4.6 | +5.7 | +33.3 | -23.2 | |
Step | 215 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 259 | 263 | 266 |
- Step size: 20.663 ¢, octave size: 1198.45 ¢
Compressing the octave of 58edo by just over 1.5 ¢ results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 6.18 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.55 | -0.96 | -3.09 | +3.19 | -2.51 | -0.76 | -4.64 | -1.92 | +1.65 | +1.95 | -4.05 |
Relative (%) | -7.5 | -4.6 | -15.0 | +15.4 | -12.1 | -3.7 | -22.4 | -9.3 | +8.0 | +9.4 | -19.6 | |
Step | 58 | 92 | 116 | 135 | 150 | 163 | 174 | 184 | 193 | 201 | 208 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.02 | -2.30 | +2.23 | -6.18 | -7.82 | -3.46 | +6.25 | +0.10 | -1.72 | +0.40 | +6.09 | -5.60 |
Relative (%) | +9.8 | -11.1 | +10.8 | -29.9 | -37.9 | -16.8 | +30.2 | +0.5 | -8.3 | +1.9 | +29.5 | -27.1 | |
Step | 215 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 259 | 263 | 266 |
Scales
Instruments
- Lumatone mapping for 58edo
- 15\58 × 2\58 isomorphic instrument layout
- 15\58 × 4\58 isomorphic instrument layout
- 17\58 × 2\58 isomorphic instrument layout
Music
- Fruitbats in Formation (2023)
- 58edo improv (2025)
- Waltz in 58edo (2025)
- We Wish You A Larry Christmas (2024) – in larry, 58edo tuning