|
|
(36 intermediate revisions by 13 users not shown) |
Line 1: |
Line 1: |
| {{Infobox MOS | | {{Infobox MOS}} |
| | Name = superdiatonic
| | |
| | Periods = 1
| | {{MOS intro}} |
| | nLargeSteps = 7
| | Scales of this form are strongly associated with [[Armodue theory]], as applied to septimal mavila and Hornbostel temperaments. [[Trismegistus]] is also a usable temperament. |
| | nSmallSteps = 2
| | == Name == |
| | Equalized = 5
| | The [[TAMNAMS]] name for this pattern is '''armotonic''', in reference to Armodue theory. '''Superdiatonic''' is also in use. |
| | Paucitonic = 4
| | |
| | Pattern = LLLsLLLLs | | == Scale properties == |
| | Neutral = 5L 4s | | {{TAMNAMS use}} |
| | |
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | === Proposed mode names === |
| | The Ad- mode names proposed by [[groundfault]] have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc. |
| | {{MOS modes |
| | | Table Headers= |
| | Super- Mode Names $ |
| | Ad- Mode Names (ground) $ |
| | | Table Entries= |
| | Superlydian $ |
| | TBD $ |
| | Superionian $ |
| | Adlocrian $ |
| | Supermixolydian $ |
| | Adphrygian $ |
| | Supercorinthian $ |
| | Adaeolian $ |
| | Superolympian $ |
| | Addorian $ |
| | Superdorian $ |
| | Admixolydian $ |
| | Superaeolian $ |
| | Adionian $ |
| | Superphrygian $ |
| | Adlydian $ |
| | Superlocrian $ |
| | TBD |
| }} | | }} |
|
| |
|
| This page is about of a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
| | == Note names== |
| | 7L 2s, when viewed under Armodue theory, can be notated using Armodue notation. |
|
| |
|
| If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[Pelogic family#Mavila|mavila]] is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.
| | == Theory == |
| | === Temperament interpretations === |
| | [[Pelogic family#Mavila|Mavila]] is an important harmonic entropy minimum here, insofar as 670-680{{c}} can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus. |
|
| |
|
| These scales are strongly associated with the [[Armodue]] project/system applied too on Septimal-mavila and Hornbostel temperaments.
| |
| == Intervals ==
| |
| Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses.
| |
| == Scale tree == | | == Scale tree == |
| Optional types of 'JI [[Blown_Fifth|Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
| | {{MOS tuning spectrum |
| | | | 1/1 = Near exact-7/6 [[Pelogic_family#Armodue|Armodue]] |
| {| class="wikitable" | | | 4/3 = Near exact-20/17 [[Pentagoth]] |
| |- | | | 7/5 = Near exact-5/4 [[Mavila]] |
| ! colspan="3" | Generator
| | | 3/2 = Near exact-13/11 Pentagoth |
| ! | <span style="display: block; text-align: center;">'''Generator size (cents)'''</span>
| | | 7/4 = Near exact-7/4 [[Pelogic_family#Armodue|Armodue]] |
| ! | Pentachord steps
| | | 10/3 = Near exact-6/5 [[Mavila]] |
| ! | Comments
| | | 6/1 = [[Gravity]] ↓ |
| |-
| | }} |
| | | 4\[[7edo|7]]
| |
| | | | |
| | |
| |
| | | 685.714
| |
| | | 1 1 1 0
| |
| | |
| |
| |-
| |
| |53\93
| |
| |
| |
| |
| |
| |683.871
| |
| |13 13 13 1
| |
| |
| |
| |-
| |
| | |
| |
| | | 102\[[179edo|179]]
| |
| | | | |
| | | 683.798
| |
| | | 25 25 25 2
| |
| | | Approximately 0.03 cents away from [[95/64]]
| |
| |-
| |
| |49\86
| |
| |
| |
| |
| |
| |683.721
| |
| |12 12 12 1
| |
| |
| |
| |-
| |
| |
| |
| |94\165
| |
| |
| |
| |683.636
| |
| |23 23 23 2
| |
| |
| |
| |-
| |
| |45\79
| |
| |
| |
| |
| |
| |683.544
| |
| |11 11 11 1
| |
| |
| |
| |-
| |
| |
| |
| |86\151
| |
| |
| |
| |683.444
| |
| |21 21 21 2
| |
| |
| |
| |-
| |
| |41\72
| |
| |
| |
| |
| |
| |683.333
| |
| |10 10 10 1
| |
| |
| |
| |-
| |
| |
| |
| |78\137
| |
| |
| |
| |683.212
| |
| |19 19 19 2
| |
| |
| |
| |-
| |
| |37\65
| |
| |
| |
| |
| |
| |683.077
| |
| |9 9 9 1
| |
| |
| |
| |-
| |
| |
| |
| |70\123
| |
| |
| |
| |682.927
| |
| |17 17 17 2
| |
| |
| |
| |-
| |
| | | 33\[[58edo|58]]
| |
| | | | |
| | |
| |
| | | 682.758
| |
| | | 8 8 8 1
| |
| | | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones.
| |
| |-
| |
| |
| |
| |62\109
| |
| |
| |
| |682.569
| |
| |15 15 15 2
| |
| |
| |
| |-
| |
| |29\51
| |
| |
| |
| |
| |
| |682.353
| |
| |7 7 7 1
| |
| |
| |
| |-
| |
| |
| |
| |54\95
| |
| |
| |
| |682.105
| |
| |13 13 13 2
| |
| |
| |
| |-
| |
| |25\44
| |
| |
| |
| |
| |
| |681.818
| |
| |6 6 6 1
| |
| |
| |
| |-
| |
| |
| |
| |46\81
| |
| |
| |
| |681.4815
| |
| |11 11 11 2
| |
| | | |
| |-
| |
| | | 21\37
| |
| | |
| |
| | |
| |
| | | 681.081
| |
| | | 5 5 5 1
| |
| | |
| |
| |-
| |
| |
| |
| |59\104
| |
| |
| |
| |680.769
| |
| |14 14 14 3
| |
| |
| |
| |-
| |
| |
| |
| |38\67
| |
| |
| |
| |680.597
| |
| |9 9 9 2
| |
| |
| |
| |-
| |
| |
| |
| |55\97
| |
| |
| |
| |680.412
| |
| |13 13 13 3
| |
| |
| |
| |-
| |
| | | 17\30
| |
| | |
| |
| | |
| |
| | | 680
| |
| | | 4 4 4 1
| |
| | | L/s = 4
| |
| |-
| |
| |
| |
| |47\83
| |
| |
| |
| |679.518
| |
| |11 11 11 3
| |
| |
| |
| |-
| |
| | |
| |
| | | 30\53
| |
| | |
| |
| | | 679.245
| |
| | | 7 7 7 2
| |
| | |
| |
| |-
| |
| | |
| |
| | | 43\76
| |
| | |
| |
| | | 678.947
| |
| | | 10 10 10 3
| |
| | |
| |
| |-
| |
| | |
| |
| | | 56\99
| |
| | |
| |
| | | 678.788
| |
| | | 13 13 13 4
| |
| | |
| |
| |-
| |
| | |
| |
| | | 69\122
| |
| | |
| |
| | | 678.6885
| |
| | | 16 16 16 5
| |
| | | | |
| |-
| |
| | |
| |
| | | 82\145
| |
| | |
| |
| | | 678.621
| |
| | | 19 19 19 6
| |
| | |
| |
| |-
| |
| | |
| |
| | | 95\168
| |
| | |
| |
| | | 678.571
| |
| | | 22 22 22 7
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 678.569
| |
| | | π π π 1
| |
| | | L/s = π
| |
| |-
| |
| | |
| |
| | | 108\191
| |
| | |
| |
| | | 678.534
| |
| | | 25 25 25 8
| |
| | |
| |
| |-
| |
| | |
| |
| | | 121\214
| |
| | |
| |
| | | 678.505
| |
| | | 28 28 28 9
| |
| | | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio [[Tel:262144/177147|262144/177147]], the Pythagorean wolf Fifth)</span>
| |
| |-
| |
| | |
| |
| | | 134\237
| |
| | |
| |
| | | 678.481
| |
| | | 31 31 31 10
| |
| | | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span>
| |
| |-
| |
| | | 13\23
| |
| | |
| |
| | |
| |
| | | 678.261
| |
| | | 3 3 3 1
| |
| | | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span>
| |
| |-
| |
| | |
| |
| | | 126\223
| |
| | |
| |
| | | 678.027
| |
| | | 29 29 29 10
| |
| | | HORNBOSTEL TEMPERAMENT
| |
|
| |
|
| <span style="font-size: 12.8000001907349px;">(Armodue 1/29-tone)</span>
| | [[Category:9-tone scales]] |
| |-
| |
| | |
| |
| | | 113\200
| |
| | |
| |
| | | 678
| |
| | | 26 26 26 9
| |
| | | HORNBOSTEL (& [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')</span>
| |
| |-
| |
| | |
| |
| | | 100\177
| |
| | |
| |
| | | 677.966
| |
| | | 23 23 23 8
| |
| | |
| |
| |-
| |
| | |
| |
| | | 87\154
| |
| | |
| |
| | | 677.922
| |
| | | 20 20 20 7
| |
| | |
| |
| |-
| |
| | |
| |
| | | 74\131
| |
| | |
| |
| | | 677.863
| |
| | | 17 17 17 6
| |
| | | Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span>
| |
| |-
| |
| | |
| |
| | | 61\108
| |
| | |
| |
| | | 677.778
| |
| | | 14 14 14 5
| |
| | | Armodue-Hornbostel 1/14-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | | 109\193
| |
| | | 677.720
| |
| | | 25 25 25 9
| |
| | | Armodue-Hornbostel 1/25-tone
| |
| |-
| |
| | |
| |
| | | 48\85
| |
| | |
| |
| | | 677.647
| |
| | | 11 11 11 4
| |
| | | Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 677.562
| |
| | | e e e 1
| |
| | | L/s = e
| |
| |-
| |
| | |
| |
| | | 35\62
| |
| | |
| |
| | | 677.419
| |
| | | 8 8 8 3
| |
| | | Armodue-Hornbostel 1/8-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | | 92\163
| |
| | | 677.301
| |
| | | 21 21 21 8
| |
| | | 21;8 Superdiatonic 1/21-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 677.28
| |
| | | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ+1 φ+1 φ+1 1</span>
| |
| | | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..)
| |
| |-
| |
| | |
| |
| | | 57\101
| |
| | |
| |
| | | 677.228
| |
| | | 13 13 13 5
| |
| | | 13;5 Superdiatonic 1/13-tone
| |
| |-
| |
| | | 22\39
| |
| | |
| |
| | |
| |
| | | 676.923
| |
| | | 5 5 5 2
| |
| | | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span>
| |
| |-
| |
| | |
| |
| | | 75\133
| |
| | |
| |
| | | 676.692
| |
| | | 17 17 17 7
| |
| | | 17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span>
| |
| |-
| |
| | |
| |
| | | 53\94
| |
| | |
| |
| | | 676.596
| |
| | | 12 12 12 5
| |
| | |
| |
| |-
| |
| | |
| |
| | | 31\55
| |
| | |
| |
| | | 676.364
| |
| | | 7 7 7 3
| |
| | | 7;3 Superdiatonic 1/7-tone
| |
| |-
| |
| | |
| |
| | | 40\71
| |
| | |
| |
| | | 676.056
| |
| | | 9 9 9 4
| |
| | | 9;4 Superdiatonic 1/9-tone
| |
| |-
| |
| | |
| |
| | | 49\87
| |
| | |
| |
| | | 675.862
| |
| | | 11 11 11 5
| |
| | | 11;5 Superdiatonic 1/11-tone
| |
| |-
| |
| | |
| |
| | | 58\103
| |
| | |
| |
| | | 675.728
| |
| | | 13 13 13 6
| |
| | | 13;6 Superdiatonic 1/13-tone
| |
| |-
| |
| | | 9\16
| |
| | |
| |
| | |
| |
| | | 675
| |
| | | 2 2 2 1
| |
| | | <span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament)
| |
| |-
| |
| | |
| |
| | | 59\105
| |
| | |
| |
| | | 674.286
| |
| | | 13 13 13 7
| |
| | | Armodue-Mavila 1/13-tone
| |
| |-
| |
| | |
| |
| | | 50\89
| |
| | |
| |
| | | 674.157
| |
| | | 11 11 11 6
| |
| | | Armodue-Mavila 1/11-tone
| |
| |-
| |
| | |
| |
| | | 41\73
| |
| | |
| |
| | | 673.973
| |
| | | 9 9 9 5
| |
| | | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span>
| |
| |-
| |
| | |
| |
| | | 32\57
| |
| | |
| |
| | | 673.684
| |
| | | 7 7 7 4
| |
| | | Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4|7/4]] interval, the note '8')</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 673.577
| |
| | | <span style="background-color: #ffffff;">√3 √3 √3 1</span>
| |
| | |
| |
| |-
| |
| | |
| |
| | | 55\98
| |
| | |
| |
| | | 673.469
| |
| | | 12 12 12 7
| |
| | |
| |
| |-
| |
| | |
| |
| | | 78\139
| |
| | |
| |
| | | 673.381
| |
| | | 17 17 17 10
| |
| | | Armodue-Mavila 1/17-tone
| |
| |-
| |
| | |
| |
| | | 101\180
| |
| | |
| |
| | | 673.333
| |
| | | 22 22 22 13
| |
| | |
| |
| |-
| |
| | | 23\41
| |
| | |
| |
| | |
| |
| | | 673.171
| |
| | | 5 5 5 3
| |
| | | 5;3 Golden Armodue-Mavila 1/5-tone
| |
| |-
| |
| | |
| |
| | | 60\107
| |
| | |
| |
| | | 672.897
| |
| | | 13 13 13 8
| |
| | | 13;8 Golden Mavila 1/13-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 672.85
| |
| | | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span>
| |
| | | GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | | 97\173
| |
| | | 672.832
| |
| | | 21 21 21 13
| |
| | | 21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span>
| |
| |-
| |
| | |
| |
| | | 37\66
| |
| | |
| |
| | | 672.727
| |
| | | 8 8 8 5
| |
| | | 8;5 Golden Mavila 1/8-tone
| |
| |-
| |
| | |
| |
| | | 51\91
| |
| | |
| |
| | | 672.527
| |
| | | 11 11 11 7
| |
| | | 11;7 Superdiatonic 1/11-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 672.523
| |
| | | π π π 2
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | | 116\207
| |
| | | 672.464
| |
| | | 25 25 25 16
| |
| | | 25;16 Superdiatonic 1/25-tone
| |
| |-
| |
| | |
| |
| | | 65\116
| |
| | |
| |
| | | 672.414
| |
| | | 14 14 14 9
| |
| | | 14;9 Superdiatonic 1/14-tone
| |
| |-
| |
| | |
| |
| | | 79\141
| |
| | |
| |
| | | 672.340
| |
| | | 17 17 17 11
| |
| | | 17;11 Superdiatonic 1/17-tone
| |
| |-
| |
| | |
| |
| | | 93\166
| |
| | |
| |
| | | 672.289
| |
| | | 20 20 20 13
| |
| | |
| |
| |-
| |
| | |
| |
| | | 107\191
| |
| | |
| |
| | | 672.251
| |
| | | 23 23 23 15
| |
| | |
| |
| |-
| |
| | |
| |
| | | 121\216
| |
| | |
| |
| | | 672.222
| |
| | | 26 26 26 17
| |
| | | 26;17 Superdiatonic 1/26-tone
| |
| |-
| |
| | |
| |
| | | 135\241
| |
| | |
| |
| | | 672.199
| |
| | | 29 29 29 19
| |
| | | 29;19 Superdiatonic 1/29-tone
| |
| |-
| |
| | | 14\25
| |
| | |
| |
| | |
| |
| | | 672
| |
| | | 3 3 3 2
| |
| | | 3;2 Golden Armodue-Mavila 1/3-tone
| |
| |-
| |
| | |
| |
| | | 145\259
| |
| | |
| |
| | | 671.815
| |
| | | 31 31 31 21
| |
| | | 31;21 Superdiatonic 1/31-tone
| |
| |-
| |
| | |
| |
| | | 131\234
| |
| | |
| |
| | | 671.795
| |
| | | 28 28 28 19
| |
| | | 28;19 Superdiatonic 1/28-tone
| |
| |-
| |
| | |
| |
| | | 117\209
| |
| | |
| |
| | | 671.770
| |
| | | 25 25 25 17
| |
| | |
| |
| |-
| |
| | |
| |
| | | 103\184
| |
| | |
| |
| | | 671.739
| |
| | | 22 22 22 15
| |
| | |
| |
| |-
| |
| | |
| |
| | | 89\159
| |
| | |
| |
| | | 671.698
| |
| | | 19 19 19 13
| |
| | |
| |
| |-
| |
| | |
| |
| | | 75\134
| |
| | |
| |
| | | 671.642
| |
| | | 16 16 16 11
| |
| | |
| |
| |-
| |
| | |
| |
| | | 61\109
| |
| | |
| |
| | | 671.560
| |
| | | 13 13 13 9
| |
| | |
| |
| |-
| |
| | |
| |
| | | 47\84
| |
| | |
| |
| | | 671.429
| |
| | | 10 10 10 7
| |
| | |
| |
| |-
| |
| |
| |
| |
| |
| |80\143
| |
| |671.329
| |
| |17 17 17 12
| |
| |
| |
| |-
| |
| | |
| |
| | | 33\59
| |
| | |
| |
| | | 671.186
| |
| | | 7 7 7 5
| |
| | |
| |
| |-
| |
| |
| |
| |52\93
| |
| |
| |
| |670.968
| |
| |11 11 11 8
| |
| |
| |
| |-
| |
| | | 19\34
| |
| | |
| |
| | |
| |
| | | 670.588
| |
| | | 4 4 4 3
| |
| | |
| |
| |-
| |
| |
| |
| |43\77
| |
| |
| |
| |670.13
| |
| |9 9 9 7
| |
| |
| |
| |-
| |
| | | 24\43
| |
| | |
| |
| | |
| |
| | | 669.767
| |
| | | 5 5 5 4
| |
| | |
| |
| |-
| |
| |
| |
| |53\95
| |
| |
| |
| |669.474
| |
| |11 11 11 9
| |
| |
| |
| |-
| |
| |29\52
| |
| |
| |
| |
| |
| |669.231
| |
| |6 6 6 5
| |
| |
| |
| |-
| |
| |
| |
| |63\113
| |
| |
| |
| |669.0265
| |
| |13 13 13 11
| |
| |
| |
| |-
| |
| |34\61
| |
| |
| |
| |
| |
| |668.8525
| |
| |7 7 7 6
| |
| |
| |
| |-
| |
| |
| |
| |73\131
| |
| |
| |
| |668.702
| |
| |15 15 15 13
| |
| |
| |
| |-
| |
| |39\70
| |
| |
| |
| |
| |
| |668.571
| |
| |8 8 8 7
| |
| |
| |
| |-
| |
| |
| |
| |83\149
| |
| |
| |
| |668.456
| |
| |17 17 17 15
| |
| |
| |
| |-
| |
| |44\79
| |
| |
| |
| |
| |
| |668.354
| |
| |9 9 9 8
| |
| |
| |
| |-
| |
| |
| |
| |93\167
| |
| |
| |
| |668.2365
| |
| |19 19 19 17
| |
| |
| |
| |-
| |
| |49\88
| |
| |
| |
| |
| |
| |668.182
| |
| |10 10 10 9
| |
| |
| |
| |-
| |
| |
| |
| |103\185
| |
| |
| |
| |668.108
| |
| |21 21 21 9
| |
| |
| |
| |-
| |
| |54\97
| |
| |
| |
| |
| |
| |668.041
| |
| |11 11 11 10
| |
| |
| |
| |-
| |
| |
| |
| |113\203
| |
| |
| |
| |667.98
| |
| |23 23 23 21
| |
| |
| |
| |-
| |
| |59\106
| |
| |
| |
| |
| |
| |667.925
| |
| |12 12 12 11
| |
| |
| |
| |-
| |
| |
| |
| |123\221
| |
| |
| |
| |667.873
| |
| |25 25 25 23
| |
| |
| |
| |-
| |
| |64\115
| |
| |
| |
| |
| |
| |667.826
| |
| |13 13 13 12
| |
| |
| |
| |-
| |
| | | 5\[[9edo|9]]
| |
| | |
| |
| | |
| |
| | | 666.667
| |
| | | 1 1 1 1
| |
| | |
| |
| |}
| |
| [[Category:Abstract MOS patterns]]
| |
| [[Category:Mavila]] | | [[Category:Mavila]] |
| [[Category:Superdiatonic]]
| |
7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢.
Scales of this form are strongly associated with Armodue theory, as applied to septimal mavila and Hornbostel temperaments. Trismegistus is also a usable temperament.
Name
The TAMNAMS name for this pattern is armotonic, in reference to Armodue theory. Superdiatonic is also in use.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 7L 2s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-armstep
|
Perfect 0-armstep
|
P0arms
|
0
|
0.0 ¢
|
1-armstep
|
Minor 1-armstep
|
m1arms
|
s
|
0.0 ¢ to 133.3 ¢
|
Major 1-armstep
|
M1arms
|
L
|
133.3 ¢ to 171.4 ¢
|
2-armstep
|
Minor 2-armstep
|
m2arms
|
L + s
|
171.4 ¢ to 266.7 ¢
|
Major 2-armstep
|
M2arms
|
2L
|
266.7 ¢ to 342.9 ¢
|
3-armstep
|
Minor 3-armstep
|
m3arms
|
2L + s
|
342.9 ¢ to 400.0 ¢
|
Major 3-armstep
|
M3arms
|
3L
|
400.0 ¢ to 514.3 ¢
|
4-armstep
|
Perfect 4-armstep
|
P4arms
|
3L + s
|
514.3 ¢ to 533.3 ¢
|
Augmented 4-armstep
|
A4arms
|
4L
|
533.3 ¢ to 685.7 ¢
|
5-armstep
|
Diminished 5-armstep
|
d5arms
|
3L + 2s
|
514.3 ¢ to 666.7 ¢
|
Perfect 5-armstep
|
P5arms
|
4L + s
|
666.7 ¢ to 685.7 ¢
|
6-armstep
|
Minor 6-armstep
|
m6arms
|
4L + 2s
|
685.7 ¢ to 800.0 ¢
|
Major 6-armstep
|
M6arms
|
5L + s
|
800.0 ¢ to 857.1 ¢
|
7-armstep
|
Minor 7-armstep
|
m7arms
|
5L + 2s
|
857.1 ¢ to 933.3 ¢
|
Major 7-armstep
|
M7arms
|
6L + s
|
933.3 ¢ to 1028.6 ¢
|
8-armstep
|
Minor 8-armstep
|
m8arms
|
6L + 2s
|
1028.6 ¢ to 1066.7 ¢
|
Major 8-armstep
|
M8arms
|
7L + s
|
1066.7 ¢ to 1200.0 ¢
|
9-armstep
|
Perfect 9-armstep
|
P9arms
|
7L + 2s
|
1200.0 ¢
|
Generator chain
Generator chain of 7L 2s
Bright gens |
Scale degree |
Abbrev.
|
15 |
Augmented 3-armdegree |
A3armd
|
14 |
Augmented 7-armdegree |
A7armd
|
13 |
Augmented 2-armdegree |
A2armd
|
12 |
Augmented 6-armdegree |
A6armd
|
11 |
Augmented 1-armdegree |
A1armd
|
10 |
Augmented 5-armdegree |
A5armd
|
9 |
Augmented 0-armdegree |
A0armd
|
8 |
Augmented 4-armdegree |
A4armd
|
7 |
Major 8-armdegree |
M8armd
|
6 |
Major 3-armdegree |
M3armd
|
5 |
Major 7-armdegree |
M7armd
|
4 |
Major 2-armdegree |
M2armd
|
3 |
Major 6-armdegree |
M6armd
|
2 |
Major 1-armdegree |
M1armd
|
1 |
Perfect 5-armdegree |
P5armd
|
0 |
Perfect 0-armdegree Perfect 9-armdegree |
P0armd P9armd
|
−1 |
Perfect 4-armdegree |
P4armd
|
−2 |
Minor 8-armdegree |
m8armd
|
−3 |
Minor 3-armdegree |
m3armd
|
−4 |
Minor 7-armdegree |
m7armd
|
−5 |
Minor 2-armdegree |
m2armd
|
−6 |
Minor 6-armdegree |
m6armd
|
−7 |
Minor 1-armdegree |
m1armd
|
−8 |
Diminished 5-armdegree |
d5armd
|
−9 |
Diminished 9-armdegree |
d9armd
|
−10 |
Diminished 4-armdegree |
d4armd
|
−11 |
Diminished 8-armdegree |
d8armd
|
−12 |
Diminished 3-armdegree |
d3armd
|
−13 |
Diminished 7-armdegree |
d7armd
|
−14 |
Diminished 2-armdegree |
d2armd
|
−15 |
Diminished 6-armdegree |
d6armd
|
Modes
Scale degrees of the modes of 7L 2s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (armdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
8|0
|
1
|
LLLLsLLLs
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
7|1
|
6
|
LLLsLLLLs
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
6|2
|
2
|
LLLsLLLsL
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
5|3
|
7
|
LLsLLLLsL
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
4|4
|
3
|
LLsLLLsLL
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
3|5
|
8
|
LsLLLLsLL
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
2|6
|
4
|
LsLLLsLLL
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
1|7
|
9
|
sLLLLsLLL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
0|8
|
5
|
sLLLsLLLL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Proposed mode names
The Ad- mode names proposed by groundfault have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc.
Modes of 7L 2s
UDP |
Cyclic order |
Step pattern |
Super- Mode Names |
Ad- Mode Names (ground)
|
8|0 |
1 |
LLLLsLLLs |
Superlydian |
TBD
|
7|1 |
6 |
LLLsLLLLs |
Superionian |
Adlocrian
|
6|2 |
2 |
LLLsLLLsL |
Supermixolydian |
Adphrygian
|
5|3 |
7 |
LLsLLLLsL |
Supercorinthian |
Adaeolian
|
4|4 |
3 |
LLsLLLsLL |
Superolympian |
Addorian
|
3|5 |
8 |
LsLLLLsLL |
Superdorian |
Admixolydian
|
2|6 |
4 |
LsLLLsLLL |
Superaeolian |
Adionian
|
1|7 |
9 |
sLLLLsLLL |
Superphrygian |
Adlydian
|
0|8 |
5 |
sLLLsLLLL |
Superlocrian |
TBD
|
Note names
7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.
Theory
Temperament interpretations
Mavila is an important harmonic entropy minimum here, insofar as 670-680 ¢ can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus.
Scale tree
Scale tree and tuning spectrum of 7L 2s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\9
|
|
|
|
|
|
666.667
|
533.333
|
1:1
|
1.000
|
Equalized 7L 2s Near exact-7/6 Armodue
|
|
|
|
|
|
29\52
|
669.231
|
530.769
|
6:5
|
1.200
|
|
|
|
|
|
24\43
|
|
669.767
|
530.233
|
5:4
|
1.250
|
|
|
|
|
|
|
43\77
|
670.130
|
529.870
|
9:7
|
1.286
|
|
|
|
|
19\34
|
|
|
670.588
|
529.412
|
4:3
|
1.333
|
Supersoft 7L 2s Near exact-20/17 Pentagoth
|
|
|
|
|
|
52\93
|
670.968
|
529.032
|
11:8
|
1.375
|
|
|
|
|
|
33\59
|
|
671.186
|
528.814
|
7:5
|
1.400
|
Near exact-5/4 Mavila
|
|
|
|
|
|
47\84
|
671.429
|
528.571
|
10:7
|
1.429
|
|
|
|
14\25
|
|
|
|
672.000
|
528.000
|
3:2
|
1.500
|
Soft 7L 2s Near exact-13/11 Pentagoth
|
|
|
|
|
|
51\91
|
672.527
|
527.473
|
11:7
|
1.571
|
|
|
|
|
|
37\66
|
|
672.727
|
527.273
|
8:5
|
1.600
|
|
|
|
|
|
|
60\107
|
672.897
|
527.103
|
13:8
|
1.625
|
|
|
|
|
23\41
|
|
|
673.171
|
526.829
|
5:3
|
1.667
|
Semisoft 7L 2s
|
|
|
|
|
|
55\98
|
673.469
|
526.531
|
12:7
|
1.714
|
|
|
|
|
|
32\57
|
|
673.684
|
526.316
|
7:4
|
1.750
|
Near exact-7/4 Armodue
|
|
|
|
|
|
41\73
|
673.973
|
526.027
|
9:5
|
1.800
|
|
|
9\16
|
|
|
|
|
675.000
|
525.000
|
2:1
|
2.000
|
Basic 7L 2s Scales with tunings softer than this are proper
|
|
|
|
|
|
40\71
|
676.056
|
523.944
|
9:4
|
2.250
|
|
|
|
|
|
31\55
|
|
676.364
|
523.636
|
7:3
|
2.333
|
|
|
|
|
|
|
53\94
|
676.596
|
523.404
|
12:5
|
2.400
|
|
|
|
|
22\39
|
|
|
676.923
|
523.077
|
5:2
|
2.500
|
Semihard 7L 2s
|
|
|
|
|
|
57\101
|
677.228
|
522.772
|
13:5
|
2.600
|
|
|
|
|
|
35\62
|
|
677.419
|
522.581
|
8:3
|
2.667
|
|
|
|
|
|
|
48\85
|
677.647
|
522.353
|
11:4
|
2.750
|
|
|
|
13\23
|
|
|
|
678.261
|
521.739
|
3:1
|
3.000
|
Hard 7L 2s
|
|
|
|
|
|
43\76
|
678.947
|
521.053
|
10:3
|
3.333
|
Near exact-6/5 Mavila
|
|
|
|
|
30\53
|
|
679.245
|
520.755
|
7:2
|
3.500
|
|
|
|
|
|
|
47\83
|
679.518
|
520.482
|
11:3
|
3.667
|
|
|
|
|
17\30
|
|
|
680.000
|
520.000
|
4:1
|
4.000
|
Superhard 7L 2s
|
|
|
|
|
|
38\67
|
680.597
|
519.403
|
9:2
|
4.500
|
|
|
|
|
|
21\37
|
|
681.081
|
518.919
|
5:1
|
5.000
|
|
|
|
|
|
|
25\44
|
681.818
|
518.182
|
6:1
|
6.000
|
Gravity ↓
|
4\7
|
|
|
|
|
|
685.714
|
514.286
|
1:0
|
→ ∞
|
Collapsed 7L 2s
|