|
|
(22 intermediate revisions by 12 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-05-23 16:07:39 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>551973566</tt>.<br>
| | | nLargeSteps = 1 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 9 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 9 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
| | | Pattern = Lsssssssss |
| ||||||||||~ Generator | | }} |
| (octave fraction) ||~ Generator
| |
| (cents) ||~ Comments ||
| |
| || 0\1 || || || || || 0 ||= ||
| |
| || || || || || 1\14 || 85 5/7 ||= || | |
| || || || || 1\13 || || 92 4/13 ||= L/s = 4 ||
| |
| || || || || || 2\25 || 96 ||= || | |
| || || || || || || 1200/(9+pi) || ||
| |
| || || || 1\12 || || || 100 ||= L/s = 3 || | |
| || || || || || || 1200/(9+e) || ||
| |
| || || || || || 3\35 || 102 6/7 ||= ||
| |
| || || || || 2\23 || || 104.347826 ||= ||
| |
| || || || || || 3\34 || 105.882353 ||= || | |
| || || 1\11 || || || || 109 1/11 ||= ||
| |
| || || || || || 4\43 || 111.627907 ||= ||
| |
| || || || || 3\32 || || 112.5 ||= ||
| |
| || || || || || 5\53 || 113.207547 ||= ||
| |
| || || || 2\21 || || || 114 2/7 ||= ||
| |
| || || || || || 5\52 || 115 5/13 ||= ||
| |
| || || || || 3\31 || || 116.129032 ||= ||
| |
| || || || || || 4\41 || 117 3/41 ||= ||
| |
| || 1\10 || || || || || 120 ||= ||</pre></div> | |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>1L 9s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &quot;Happy&quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.<br />
| |
|
| |
|
| | {{MOS intro}} |
|
| |
|
| <table class="wiki_table">
| | This scale is the simplest MOS which may be used as a complete version{{Clarify}} of [[Miracle]] temperament, which is also its [[harmonic entropy]] minimum. |
| <tr>
| |
| <th colspan="5">Generator<br />
| |
| (octave fraction)<br />
| |
| </th>
| |
| <th>Generator<br />
| |
| (cents)<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>0\1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\14<br />
| |
| </td>
| |
| <td>85 5/7<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>92 4/13<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\25<br />
| |
| </td>
| |
| <td>96<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+pi)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+e)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\35<br />
| |
| </td>
| |
| <td>102 6/7<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.347826<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\34<br />
| |
| </td>
| |
| <td>105.882353<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>1\11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>109 1/11<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\43<br />
| |
| </td>
| |
| <td>111.627907<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>112.5<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\53<br />
| |
| </td>
| |
| <td>113.207547<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>114 2/7<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\52<br />
| |
| </td>
| |
| <td>115 5/13<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.129032<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\41<br />
| |
| </td>
| |
| <td>117 3/41<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | This scale is known as the '''Happy decatonic scale''' in [[Graham Breed's MOS naming scheme|Graham Breed's naming system]]. |
| | |
| | == Scale properties == |
| | {{TAMNAMS use}} |
| | |
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree== |
| | {{MOS tuning spectrum |
| | | 9/7 = [[Miracle]] |
| | | 8/5 = [[Misneb]] |
| | | 3/1 = [[Ripple]] |
| | | 13/5 = Golden ripple (103.288¢) |
| | | 10/3 = [[Passion]] |
| | | 6/1 = [[Nautilus]], [[nuke]], ↓[[valentine]] |
| | }} |
| | |
| | [[Category:10-tone scales]] |
1L 9s, named antisinatonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 9 small steps, repeating every octave. Generators that produce this scale range from 1080 ¢ to 1200 ¢, or from 0 ¢ to 120 ¢.
This scale is the simplest MOS which may be used as a complete version[clarification needed] of Miracle temperament, which is also its harmonic entropy minimum.
This scale is known as the Happy decatonic scale in Graham Breed's naming system.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 1L 9s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-asinastep
|
Perfect 0-asinastep
|
P0asis
|
0
|
0.0 ¢
|
1-asinastep
|
Perfect 1-asinastep
|
P1asis
|
s
|
0.0 ¢ to 120.0 ¢
|
Augmented 1-asinastep
|
A1asis
|
L
|
120.0 ¢ to 1200.0 ¢
|
2-asinastep
|
Minor 2-asinastep
|
m2asis
|
2s
|
0.0 ¢ to 240.0 ¢
|
Major 2-asinastep
|
M2asis
|
L + s
|
240.0 ¢ to 1200.0 ¢
|
3-asinastep
|
Minor 3-asinastep
|
m3asis
|
3s
|
0.0 ¢ to 360.0 ¢
|
Major 3-asinastep
|
M3asis
|
L + 2s
|
360.0 ¢ to 1200.0 ¢
|
4-asinastep
|
Minor 4-asinastep
|
m4asis
|
4s
|
0.0 ¢ to 480.0 ¢
|
Major 4-asinastep
|
M4asis
|
L + 3s
|
480.0 ¢ to 1200.0 ¢
|
5-asinastep
|
Minor 5-asinastep
|
m5asis
|
5s
|
0.0 ¢ to 600.0 ¢
|
Major 5-asinastep
|
M5asis
|
L + 4s
|
600.0 ¢ to 1200.0 ¢
|
6-asinastep
|
Minor 6-asinastep
|
m6asis
|
6s
|
0.0 ¢ to 720.0 ¢
|
Major 6-asinastep
|
M6asis
|
L + 5s
|
720.0 ¢ to 1200.0 ¢
|
7-asinastep
|
Minor 7-asinastep
|
m7asis
|
7s
|
0.0 ¢ to 840.0 ¢
|
Major 7-asinastep
|
M7asis
|
L + 6s
|
840.0 ¢ to 1200.0 ¢
|
8-asinastep
|
Minor 8-asinastep
|
m8asis
|
8s
|
0.0 ¢ to 960.0 ¢
|
Major 8-asinastep
|
M8asis
|
L + 7s
|
960.0 ¢ to 1200.0 ¢
|
9-asinastep
|
Diminished 9-asinastep
|
d9asis
|
9s
|
0.0 ¢ to 1080.0 ¢
|
Perfect 9-asinastep
|
P9asis
|
L + 8s
|
1080.0 ¢ to 1200.0 ¢
|
10-asinastep
|
Perfect 10-asinastep
|
P10asis
|
L + 9s
|
1200.0 ¢
|
Generator chain
Generator chain of 1L 9s
Bright gens |
Scale degree |
Abbrev.
|
10 |
Augmented 0-asinadegree |
A0asid
|
9 |
Augmented 1-asinadegree |
A1asid
|
8 |
Major 2-asinadegree |
M2asid
|
7 |
Major 3-asinadegree |
M3asid
|
6 |
Major 4-asinadegree |
M4asid
|
5 |
Major 5-asinadegree |
M5asid
|
4 |
Major 6-asinadegree |
M6asid
|
3 |
Major 7-asinadegree |
M7asid
|
2 |
Major 8-asinadegree |
M8asid
|
1 |
Perfect 9-asinadegree |
P9asid
|
0 |
Perfect 0-asinadegree Perfect 10-asinadegree |
P0asid P10asid
|
−1 |
Perfect 1-asinadegree |
P1asid
|
−2 |
Minor 2-asinadegree |
m2asid
|
−3 |
Minor 3-asinadegree |
m3asid
|
−4 |
Minor 4-asinadegree |
m4asid
|
−5 |
Minor 5-asinadegree |
m5asid
|
−6 |
Minor 6-asinadegree |
m6asid
|
−7 |
Minor 7-asinadegree |
m7asid
|
−8 |
Minor 8-asinadegree |
m8asid
|
−9 |
Diminished 9-asinadegree |
d9asid
|
−10 |
Diminished 10-asinadegree |
d10asid
|
Modes
Scale degrees of the modes of 1L 9s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (asinadegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
9|0
|
1
|
Lsssssssss
|
Perf.
|
Aug.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
8|1
|
10
|
sLssssssss
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
7|2
|
9
|
ssLsssssss
|
Perf.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
6|3
|
8
|
sssLssssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
5|4
|
7
|
ssssLsssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
4|5
|
6
|
sssssLssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
3|6
|
5
|
ssssssLsss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
2|7
|
4
|
sssssssLss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Perf.
|
1|8
|
3
|
ssssssssLs
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
0|9
|
2
|
sssssssssL
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Dim.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 1L 9s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
9\10
|
|
|
|
|
|
1080.000
|
120.000
|
1:1
|
1.000
|
Equalized 1L 9s
|
|
|
|
|
|
46\51
|
1082.353
|
117.647
|
6:5
|
1.200
|
|
|
|
|
|
37\41
|
|
1082.927
|
117.073
|
5:4
|
1.250
|
|
|
|
|
|
|
65\72
|
1083.333
|
116.667
|
9:7
|
1.286
|
Miracle
|
|
|
|
28\31
|
|
|
1083.871
|
116.129
|
4:3
|
1.333
|
Supersoft 1L 9s
|
|
|
|
|
|
75\83
|
1084.337
|
115.663
|
11:8
|
1.375
|
|
|
|
|
|
47\52
|
|
1084.615
|
115.385
|
7:5
|
1.400
|
|
|
|
|
|
|
66\73
|
1084.932
|
115.068
|
10:7
|
1.429
|
|
|
|
19\21
|
|
|
|
1085.714
|
114.286
|
3:2
|
1.500
|
Soft 1L 9s
|
|
|
|
|
|
67\74
|
1086.486
|
113.514
|
11:7
|
1.571
|
|
|
|
|
|
48\53
|
|
1086.792
|
113.208
|
8:5
|
1.600
|
Misneb
|
|
|
|
|
|
77\85
|
1087.059
|
112.941
|
13:8
|
1.625
|
|
|
|
|
29\32
|
|
|
1087.500
|
112.500
|
5:3
|
1.667
|
Semisoft 1L 9s
|
|
|
|
|
|
68\75
|
1088.000
|
112.000
|
12:7
|
1.714
|
|
|
|
|
|
39\43
|
|
1088.372
|
111.628
|
7:4
|
1.750
|
|
|
|
|
|
|
49\54
|
1088.889
|
111.111
|
9:5
|
1.800
|
|
|
10\11
|
|
|
|
|
1090.909
|
109.091
|
2:1
|
2.000
|
Basic 1L 9s Scales with tunings softer than this are proper
|
|
|
|
|
|
41\45
|
1093.333
|
106.667
|
9:4
|
2.250
|
|
|
|
|
|
31\34
|
|
1094.118
|
105.882
|
7:3
|
2.333
|
|
|
|
|
|
|
52\57
|
1094.737
|
105.263
|
12:5
|
2.400
|
|
|
|
|
21\23
|
|
|
1095.652
|
104.348
|
5:2
|
2.500
|
Semihard 1L 9s
|
|
|
|
|
|
53\58
|
1096.552
|
103.448
|
13:5
|
2.600
|
Golden ripple (103.288¢)
|
|
|
|
|
32\35
|
|
1097.143
|
102.857
|
8:3
|
2.667
|
|
|
|
|
|
|
43\47
|
1097.872
|
102.128
|
11:4
|
2.750
|
|
|
|
11\12
|
|
|
|
1100.000
|
100.000
|
3:1
|
3.000
|
Hard 1L 9s Ripple
|
|
|
|
|
|
34\37
|
1102.703
|
97.297
|
10:3
|
3.333
|
Passion
|
|
|
|
|
23\25
|
|
1104.000
|
96.000
|
7:2
|
3.500
|
|
|
|
|
|
|
35\38
|
1105.263
|
94.737
|
11:3
|
3.667
|
|
|
|
|
12\13
|
|
|
1107.692
|
92.308
|
4:1
|
4.000
|
Superhard 1L 9s
|
|
|
|
|
|
25\27
|
1111.111
|
88.889
|
9:2
|
4.500
|
|
|
|
|
|
13\14
|
|
1114.286
|
85.714
|
5:1
|
5.000
|
|
|
|
|
|
|
14\15
|
1120.000
|
80.000
|
6:1
|
6.000
|
Nautilus, nuke, ↓valentine
|
1\1
|
|
|
|
|
|
1200.000
|
0.000
|
1:0
|
→ ∞
|
Collapsed 1L 9s
|