Porcupine family
The porcupine family of temperaments tempers out the porcupine comma, 250/243, also called the maximal diesis.
Porcupine
The generator of porcupine is a minor whole tone, the 10/9 interval, and three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = (4/3)⋅(250/243), and (10/9)5 = (8/5)⋅(250/243)2. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- mapping generators: ~2, ~10/9
- CTE: ~2 = 1200.000, ~10/9 = 164.166
- error map: ⟨0.000 +5.547 -7.143]
- POTE: ~2 = 1200.000, ~10/9 = 163.950
- error map: ⟨0.000 +6.194 -6.065]
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
Optimal ET sequence: 7, 15, 22, 95c
Badness (Smith): 0.030778
Overview to extensions
7-limit extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
Temperaments discussed elsewhere include jamesbond.
Subgroup extensions
Noting that 250/243 = (55/54)⋅(100/99) = S102⋅S11, the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine, given right below.
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
- gencom: [2 10/9; 55/54, 100/99]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 163.887
- POTE: ~2 = 1200.000, ~11/10 = 164.078
Optimal ET sequence: 7, 15, 22, 73ce, 95ce
Badness (Smith): 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- sval mapping generators: ~2, ~65/44
Optimal tunings:
- CTE: ~2 = 1200.000, ~88/65 = 518.086
- POTE: ~2 = 1200.000, ~88/65 = 518.209
Optimal ET sequence: 7, 23bc, 30, 37, 44
Badness (Smith): 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
- CTE: ~2 = 1200.000, ~10/9 = 163.203
- error map: ⟨0.000 +8.435 -2.330 +10.394]
- POTE: ~2 = 1200.000, ~10/9 = 162.880
- error map: ⟨0.000 +9.405 -0.714 +8.455]
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
Optimal ET sequence: 7, 15, 22, 37, 59, 81bd
Badness (Smith): 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 163.105
- POTE: ~2 = 1200.000, ~11/10 = 162.747
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo (unchanged-interval) basis: 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
Optimal ET sequence: 7, 15, 22, 37, 59
Badness (Smith): 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 163.442
- POTE: ~2 = 1200.000, ~11/10 = 162.708
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- eigenmonzo (unchanged-interval) basis: 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
Optimal ET sequence: 7, 15, 22f, 37f
Badness (Smith): 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 162.636
- POTE: ~2 = 1200.000, ~11/10 = 162.277
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- eigenmonzo (unchanged-interval) basis: 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
Optimal ET sequence: 15, 22, 37
Badness (Smith): 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 163.378
- POTE: ~2 = 1200.000, ~11/10 = 162.482
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- eigenmonzo (unchanged-interval) basis: 2.13/7
Optimal ET sequence: 15f, 22f, 37, 59f
Badness (Smith): 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 163.678
- POTE: ~2 = 1200.000, ~11/10 = 163.688
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo (unchanged-interval) basis: 2.9/7
Optimal ET sequence: 7, 15f, 22
Badness (Smith): 0.026043
Opossum
Opossum can be described as 7d & 8d. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.
Subgroup: 2.3.5.7
Comma list: 28/27, 126/125
Mapping: [⟨1 2 3 4], ⟨0 -3 -5 -9]]
Wedgie: ⟨⟨ 3 5 9 1 6 7 ]]
- CTE: ~2 = 1200.000, ~10/9 = 161.306
- error map: ⟨0.000 +14.126 +7.155 -20.583]
- POTE: ~2 = 1200.000, ~10/9 = 159.691
- error map: ⟨0.000 +18.971 +15.229 -6.048]
Optimal ET sequence: 7d, 8d, 15
Badness (Smith): 0.040650
11-limit
Subgroup: 2.3.5.7.11
Comma list: 28/27, 55/54, 77/75
Mapping: [⟨1 2 3 4 4], ⟨0 -3 -5 -9 -4]]
Wedgie: ⟨⟨ 3 5 9 4 1 6 -4 7 -8 -20 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 161.365
- POTE: ~2 = 1200.000, ~11/10 = 159.807
Minimax tuning:
- 11-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15
Badness (Smith): 0.022325
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 28/27, 40/39, 55/54, 66/65
Mapping: [⟨1 2 3 4 4 4], ⟨0 -3 -5 -9 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 161.631
- POTE: ~2 = 1200.000, ~11/10 = 158.805
Minimax tuning:
- 13- and 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15, 38bceff
Badness (Smith): 0.019389
Porky
Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
- CTE: ~2 = 1200.000, ~10/9 = 164.391
- error map: ⟨0.000 +4.871 -8.270 +0.913]
- POTE: ~2 = 1200.000, ~10/9 = 164.412
- error map: ⟨0.000 +4.809 -8.375 +0.580]
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
Optimal ET sequence: 7d, 15d, 22, 29, 51, 73c
Badness (Smith): 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
Wedgie: ⟨⟨ 3 5 16 4 1 17 -4 23 -8 -44 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 164.321
- POTE: ~2 = 1200.000, ~11/10 = 164.552
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11⟩
- eigenmonzo (unchanged-interval) basis: 2.7/5
Optimal ET sequence: 7d, 15d, 22, 51
Badness (Smith): 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 164.478
- POTE: ~2 = 1200.000, ~11/10 = 164.953
Optimal ET sequence: 7d, 22, 29, 51f, 80cdeff
Badness (Smith): 0.026543
- Music
- Improvisation in 29edo (2024) by Budjarn Lambeth – in Palace scale, 29edo tuning
Coendou
Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
- CTE: ~2 = 1200.000, ~10/9 = 166.094
- error map: ⟨0.000 -0.236 -16.783 -9.607]
- POTE: ~2 = 1200.000, ~10/9 = 166.041
- error map: ⟨0.000 -0.077 -16.516 -10.299]
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
Optimal ET sequence: 7, 22d, 29, 65c, 94cd
Badness (Smith): 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 165.925
- POTE: ~2 = 1200.000, ~11/10 = 165.981
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo (unchanged-interval) basis: 2.3
Optimal ET sequence: 7, 22d, 29, 65ce
Badness (Smith): 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 166.046
- POTE: ~2 = 1200.000, ~11/10 = 165.974
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo (unchanged-interval) basis: 2.3
Optimal ET sequence: 7, 22d, 29, 65cef
Badness (Smith): 0.030233
Hystrix
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix is very high in error due to the large disparity between typical porcupine generators and a justly-tuned 8/7, and is usually considered an exotemperament. A generator of 2\15 or 9\68 can be used for hystrix.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
- CTE: ~2 = 1200.000, ~10/9 = 165.185
- error map: ⟨0.000 +2.491 -12.236 +65.990]
- POTE: ~2 = 1200.000, ~10/9 = 158.868
- error map: ⟨0.000 +21.442 +19.348 +72.306]
- 7- and 9-odd-limit: ~10/9 = [3/5 0 -1/5⟩
Optimal ET sequence: 7, 8d, 15d
Badness (Smith): 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 164.768
- POTE: ~2 = 1200.000, ~11/10 = 158.750
Optimal ET sequence: 7, 8d, 15d
Badness (Smith): 0.026790
Oxygen
Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct Fokker blocks.
Subgroup: 2.3.5.7
Comma list: 21/20, 175/162
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -2]]
Wedgie: ⟨⟨ 3 5 2 1 -5 -9 ]]
- CTE: ~2 = 1200.000, ~10/9 = 161.341
- error map: ⟨0.000 +14.023 +6.982 -91.507]
- POTE: ~2 = 1200.000, ~10/9 = 169.112
- error map: ⟨0.000 -9.291 -31.873 -107.050]
Optimal ET sequence: 1c, …, 6bcd, 7d
Badness (Smith): 0.059866
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. It is a strong extension of BPS (as BPS has no 2 or sqrt(2)). 22edo provides the obvious (i.e the only patent val) tuning, but if you are looking for an alternative you could try the ⟨146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is echidna, which offers much more accuracy. They merge on 22edo.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
- mapping generators: ~7/5, ~9/7
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
- CTE: ~7/5 = 600.000, ~9/7 = 435.258
- error map: ⟨0.000 +3.819 -10.024 +7.464]
- POTE: ~7/5 = 600.000, ~9/7 = 435.648
- error map: ⟨0.000 +4.989 -8.074 +9.414]
Optimal ET sequence: 8d, 14c, 22
Badness (Smith): 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
Wedgie: ⟨⟨ 6 10 10 8 2 -1 -8 -5 -16 -12 ]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~9/7 = 435.528
- POTE: ~7/5 = 600.000, ~9/7 = 435.386
Optimal ET sequence: 8d, 14c, 22, 58ce
Badness (Smith): 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~9/7 = 436.309
- POTE: ~7/5 = 600.000, ~9/7 = 435.861
Optimal ET sequence: 8d, 14cf, 22
Badness (Smith): 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~9/7 = 435.186
- POTE: ~7/5 = 600.000, ~9/7 = 437.078
Badness (Smith): 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
Wedgie: ⟨⟨ 6 10 10 -14 2 -1 -43 -5 -67 -74 ]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~9/7 = 435.329
- POTE: ~7/5 = 600.000, ~9/7 = 435.425
Optimal ET sequence: 22
Badness (Smith): 0.068406
- Music
- Phobos Light by Chris Vaisvil – in hedgehog[14], 22edo tuning.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
- mapping generators: ~2, ~21/20
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
- CTE: ~2 = 1200.000, ~21/20 = 81.914
- error map: ⟨0.000 +6.559 -5.457 -14.569]
- POTE: ~2 = 1200.000, ~21/20 = 82.505
- error map: ⟨0.000 +3.012 -11.368 -16.342]
Optimal ET sequence: 14c, 15, 29, 44d
Badness (Smith): 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
Wedgie: ⟨⟨ 6 10 3 8 2 -12 -8 -21 -16 12 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/20 = 81.802
- POTE: ~2 = 1200.000, ~21/20 = 82.504
Optimal ET sequence: 14c, 15, 29, 44d
Badness (Smith): 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/20 = 81.912
- POTE: ~2 = 1200.000, ~21/20 = 82.530
Optimal ET sequence: 14cf, 15, 29, 44d
Badness (Smith): 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/20 = 82.034
- POTE: ~2 = 1200.000, ~21/20 = 81.759
Optimal ET sequence: 14c, 15, 29f, 44dff
Badness (Smith): 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
- CTE: ~2 = 1200.000, ~9/7 = 454.550
- error map: ⟨0.000 +7.095 -4.564 -5.276]
- POTE: ~2 = 1200.000, ~9/7 = 454.448
- error map: ⟨0.000 +8.009 -3.040 -3.346]
Optimal ET sequence: 8d, 21cd, 29, 37, 66
Badness (Smith): 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
Wedgie: ⟨⟨ 9 15 19 12 3 5 -12 2 -24 -32 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~9/7 = 454.505
- POTE: ~2 = 1200.000, ~9/7 = 454.512
Optimal ET sequence: 8d, 21cde, 29, 37, 66
Badness (Smith): 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~13/10 = 454.480
- POTE: ~2 = 1200.000, ~13/10 = 454.529
Optimal ET sequence: 8d, 21cdef, 29, 37, 66
Badness (Smith): 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
- mapping generators: ~2, ~36/35
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
- CTE: ~2 = 1200.000, ~36/35 = 54.804
- error map: ⟨0.000 +4.809 -8.374 +11.958]
- POTE: ~2 = 1200.000, ~36/35 = 54.384
- error map: ⟨0.000 +8.585 -2.081 +13.636]
Optimal ET sequence: 1c, 21c, 22
Badness (Smith): 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~36/35 = 54.702
- POTE: ~2 = 1200.000, ~36/35 = 54.376
Optimal ET sequence: 1ce, 21ce, 22
Badness (Smith): 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~36/35 = 54.575
- POTE: ~2 = 1200.000, ~36/35 = 54.665
Optimal ET sequence: 1ce, 21cef, 22
Badness (Smith): 0.044739