Archytas clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
m Archy: schism isn't an exo
 
(9 intermediate revisions by 3 users not shown)
Line 20: Line 20:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 709.595
* [[WE]]: ~2 = 1196.9552{{c}}, ~3/2 = 707.5215{{c}}
: [[error map]]: {{val| 0.000 +7.640 +11.984 }}
: [[error map]]: {{val| -3.045 +2.522 +3.952 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 709.321
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.3901{{c}}
: error map: {{val| 0.000 +7.366 +12.532 }}
: error map: {{val| 0.000 +7.435 +12.394 }}


{{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }}
{{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }}
Line 34: Line 34:
==== 7-limit extensions ====
==== 7-limit extensions ====
The second comma in the comma list defines which [[7-limit]] family member we are looking at:  
The second comma in the comma list defines which [[7-limit]] family member we are looking at:  
* [[#Schism|Schism]] adds 360/343, for an [[exotemperament]] well tuned around [[12edo]];  
* [[#Schism|Schism]] adds 360/343, for a tuning around [[12edo]];  
* Dominant adds [[36/35]], for a tuning flat of [[17edo|17c-edo]];  
* Dominant adds [[36/35]], for a tuning between [[12edo]] and [[17edo|17c-edo]];  
* [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]];  
* [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]];  
* [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]];  
* [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]];  
Line 57: Line 57:
* ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]]
* ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]]
* ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]]
* ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]]
* ''[[Blacksmith]]'' (+28/27) → [[Limmic temperaments #Blacksmith|Limmic temperaments]]
* [[Blackwood]] (+28/27) → [[Limmic temperaments #Blackwood|Limmic temperaments]]
* ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]]
* ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]]


Line 77: Line 77:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 708.456
* WE: ~2 = 1197.2650{{c}}, ~3/2 = 705.5803{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 707.192
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 707.4981{{c}}


{{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }}
{{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }}
Line 98: Line 98:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 707.344
* WE: ~2 = 1197.1909{{c}}, ~3/2 = 704.4836{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 706.137
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 706.4289{{c}}


{{Optimal ET sequence|legend=0| 12f, 17 }}
{{Optimal ET sequence|legend=0| 12f, 17 }}
Line 120: Line 120:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 709.591
* [[WE]]: ~2 = 1197.0549{{c}}, ~3/2 = 708.5478{{c}}
: [[error map]]: {{val| 0.000 +7.636 +0.002 +11.993 }}
: [[error map]]: {{val| -2.945 +3.648 -0.548 +2.298 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 710.291
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 710.1193{{c}}
: error map: {{val| 0.000 +8.336 +6.305 +10.592 }}
: error map: {{val| 0.000 +8.164 +4.760 +10.935 }}


{{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }}
{{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }}
Line 139: Line 139:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 709.514
* WE: ~2 = 1197.0673{{c}}, ~3/2 = 708.4391{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 710.175
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.0129{{c}}


{{Optimal ET sequence|legend=0| 22, 27e, 49 }}
{{Optimal ET sequence|legend=0| 22, 27e, 49 }}
Line 154: Line 154:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 709.836
* WE: ~2 = 1197.3011{{c}}, ~3/2 = 708.8813{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 710.479
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.3219{{c}}


{{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }}
{{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }}
Line 169: Line 169:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~16/13 = 354.759
* WE: ~2 = 1197.4942{{c}}, ~16/13 = 354.2950{{c}}
* POTE: ~2 = 1200.000, ~16/13 = 355.036
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 354.9824{{c}}


{{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }}
{{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }}
Line 186: Line 186:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 709.356
* WE: ~2 = 1198.6960{{c}}, ~3/2 = 708.7235{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 709.495
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 709.4699{{c}}


{{Optimal ET sequence|legend=0| 5, 17, 22 }}
{{Optimal ET sequence|legend=0| 5, 17, 22 }}
Line 201: Line 201:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 708.702
* WE: ~2 = 1199.9871{{c}}, ~3/2 = 708.6952{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 708.703
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.7028{{c}}


{{Optimal ET sequence|legend=0| 5f, 17, 22 }}
{{Optimal ET sequence|legend=0| 5f, 17, 22 }}
Line 218: Line 218:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 708.769
* [[WE]]: ~2 = 1196.9830{{c}}, ~3/2 = 706.4578{{c}}
: [[error map]]: {{val| 0.000 +6.814 -0.310 +13.636 }}
: [[error map]]: {{val| -3.017 +1.486 -0.435 +6.190 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 708.238
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 708.3716{{c}}
: error map: {{val| 0.000 +6.283 +6.586 +14.697 }}
: error map: {{val| 0.000 +6.417 +4.855 +14.431 }}


{{Optimal ET sequence|legend=1| 17c, 22, 61d }}
{{Optimal ET sequence|legend=1| 17c, 22, 61d }}
Line 237: Line 237:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 708.713
* WE: ~2 = 1197.5675{{c}}, ~3/2 = 706.7690{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 708.205
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.3200{{c}}


{{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }}
{{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }}
Line 252: Line 252:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 708.411
* WE: ~2 = 1198.2543{{c}}, ~3/2 = 706.9736{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 708.004
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0936{{c}}


{{Optimal ET sequence|legend=0| 17c, 22, 39d }}
{{Optimal ET sequence|legend=0| 17c, 22, 39d }}
Line 267: Line 267:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 709.043
* WE: ~2 = 1198.8446{{c}}, ~3/2 = 708.3388{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 709.021
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0252{{c}}


{{Optimal ET sequence|legend=0| 22 }}
{{Optimal ET sequence|legend=0| 22 }}
Line 275: Line 275:


== Ultrapyth ==
== Ultrapyth ==
{{main|Ultrapyth}}
{{Main| Ultrapyth }}


Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).
Line 286: Line 286:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 713.218
* [[WE]]: ~2 = 1197.2673{{c}}, ~3/2 = 712.0258{{c}}
: [[error map]]: {{val| 0.000 +11.263 -1.264 +4.738 }}
: [[error map]]: {{val| -2.733 +7.338 -1.557 -3.808 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 713.651
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5430{{c}}
: error map: {{val| 0.000 +11.696 +4.800 +3.872 }}
: error map: {{val| 0.000 +11.588 +3.288 +4.088 }}


{{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }}
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }}
Line 303: Line 303:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 713.282
* WE: ~2 = 1198.0290{{c}}, ~3/2 = 712.2235{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 713.395
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.3754{{c}}


{{Optimal ET sequence|legend=0| 5, 32, 37 }}
{{Optimal ET sequence|legend=0| 5, 32, 37 }}
Line 318: Line 318:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 713.309
* WE: ~2 = 1198.1911{{c}}, ~3/2 = 712.4243{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 713.500
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.4684{{c}}


{{Optimal ET sequence|legend=0| 5, 32, 37 }}
{{Optimal ET sequence|legend=0| 5, 32, 37 }}
Line 333: Line 333:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 713.395
* WE: ~2 = 1197.2230{{c}}, ~3/2 = 712.1393{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 713.791
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.6928{{c}}


{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }}
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }}
Line 348: Line 348:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 713.708
* WE: ~2 = 1197.2739{{c}}, ~3/2 = 712.1893{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 713.811
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.7079{{c}}


{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }}
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }}
Line 365: Line 365:


[[Optimal tuning]]s:
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 711.838
* [[WE]]: ~2 = 1196.9257{{c}}, ~3/2 = 709.6211{{c}}
: [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }}
: [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }}
* [[CWE]]: ~2 = 1200.000, ~3/2 = 711.543
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 711.5429{{c}}
: error map: {{val| 0.000 +9.588 +5.914 +8.088 }}
: error map: {{val| 0.000 +9.588 +5.914 +8.088 }}


Line 386: Line 386:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 702.270
* [[WE]]: ~2 = 1197.3598{{c}}, ~3/2 = 700.0126{{c}}
: [[error map]]: {{val| 0.000 +0.315 -4.471 +26.635 }}
: [[error map]]: {{val| -2.640 -4.583 -4.896 +20.588 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 701.556
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.7376{{c}}
: error map: {{val| 0.000 -0.399 +1.237 +28.062 }}
: error map: {{val| 0.000 -0.217 -0.214 +27.699 }}


{{Optimal ET sequence|legend=1| 5c, 7c, 12 }}
{{Optimal ET sequence|legend=1| 5c, 7c, 12 }}
Line 403: Line 403:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 703.383
* WE: ~2 = 1196.1607{{c}}, ~3/2 = 699.8897{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 702.136
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 702.4385{{c}}


{{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }}
{{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }}
Line 412: Line 412:
== Beatles ==
== Beatles ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].''
Beatles tempers out 686/675, which may also be characterized by saying it tempers out [[2401/2400]]. It may be described as the {{nowrap| 10 & 17c }} temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its [[ploidacot]] is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.
Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 420: Line 424:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~49/40 = 356.634
* [[WE]]: ~2 = 1196.6244{{c}}, ~49/40 = 354.9029{{c}}
: [[error map]]: {{val| 0.000 +11.312 +3.984 +4.640 }}
: [[error map]]: {{val| -3.376 +4.475 +2.682 -1.940 }}
* [[POTE]]: ~2 = 1200.000, ~49/40 = 355.904
* [[CWE]]: ~2 = 1200.0000{{c}}, ~49/40 = 356.0819{{c}}
: error map: {{val| 0.000 +9.853 +10.549 +7.558 }}
: error map: {{val| 0.000 +10.209 +8.949 +6.847 }}


{{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }}
{{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }}
Line 440: Line 444:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~49/40 = 356.719
* WE: ~2 = 1196.7001{{c}}, ~49/40 = 355.1606{{c}}
* POTE: ~2 = 1200.000, ~49/40 = 356.140
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.2795{{c}}


{{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }}
{{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }}
Line 455: Line 459:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~16/13 = 356.722
* WE: ~2 = 1197.2504{{c}}, ~16/13 = 355.4132{{c}}
* POTE: ~2 = 1200.000, ~16/13 = 356.229
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.3273{{c}}


{{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }}
{{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }}
Line 470: Line 474:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/9 = 355.992
* WE: ~2 = 1195.4102{{c}}, ~11/9 = 354.0597{{c}}
* POTE: ~2 = 1200.000, ~11/9 = 355.419
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5207{{c}}


{{Optimal ET sequence|legend=0| 10, 17c, 27e }}
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}
Line 485: Line 489:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/9 = 356.004
* WE: ~2 = 1195.9943{{c}}, ~11/9 = 354.2695{{c}}
* POTE: ~2 = 1200.000, ~11/9 = 355.456
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5398{{c}}


{{Optimal ET sequence|legend=0| 10, 17c, 27e }}
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}
Line 500: Line 504:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~49/40 = 356.694
* WE: ~2 = 1197.9660{{c}}, ~49/40 = 356.1056{{c}}
* POTE: ~2 = 1200.000, ~49/40 = 356.710
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.7075{{c}}


{{Optimal ET sequence|legend=0| 10, 27, 37 }}
{{Optimal ET sequence|legend=0| 10, 27, 37 }}
Line 515: Line 519:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~16/13 = 356.700
* WE: ~2 = 1198.1741{{c}}, ~16/13 = 356.1582{{c}}
* POTE: ~2 = 1200.000, ~16/13 = 356.701
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.7008{{c}}


{{Optimal ET sequence|legend=0| 10, 27, 37 }}
{{Optimal ET sequence|legend=0| 10, 27, 37 }}
Line 523: Line 527:


== Progress ==
== Progress ==
{{Distinguish| Progression }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].''
Progress tempers out 392/375 and may be described as {{nowrap| 15 & 17c }}. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 534: Line 541:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~10/7 = 638.782
* [[WE]]: ~2 = 1195.1377{{c}}, ~10/7 = 635.2932{{c}}
: [[error map]]: {{val| 0.000 +14.391 +19.777 -1.518 }}
: [[error map]]: {{val| -4.862 +3.925 +12.908 -9.759 }}
* [[POTE]]: ~2 = 1200.000, ~10/7 = 637.878
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 638.0791{{c}}
: error map: {{val| 0.000 +11.679 +24.297 +3.907 }}
: error map: {{val| 0.000 +12.282 +23.291 +2.700 }}


{{Optimal ET sequence|legend=1| 2, 13, 15, 32c }}
{{Optimal ET sequence|legend=1| 2, 13, 15, 32c }}
Line 551: Line 558:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 638.846
* WE: ~2 = 1195.4920{{c}}, ~10/7 = 635.5183{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 637.915
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 638.0884{{c}}


{{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }}
{{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }}
Line 566: Line 573:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 637.871
* WE: ~2 = 1195.0786{{c}}, ~10/7 = 635.0197{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 637.635
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 637.6691{{c}}


{{Optimal ET sequence|legend=0| 15, 17c, 32cf }}
{{Optimal ET sequence|legend=0| 15, 17c, 32cf }}
Line 581: Line 588:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 637.797
* WE: ~2 = 1196.0245{{c}}, ~10/7 = 634.6516{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 636.761
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 636.9528{{c}}


{{Optimal ET sequence|legend=0| 2f, 15f, 17c }}
{{Optimal ET sequence|legend=0| 2f, 15f, 17c }}
Line 590: Line 597:
== Fervor ==
== Fervor ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].''
Fervor tempers out 9704/9375 and may be described as {{nowrap| 25 & 27 }}. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 595: Line 604:
[[Comma list]]: 64/63, 9604/9375
[[Comma list]]: 64/63, 9604/9375


{{Mapping|legend=1| 1 4 -2 -2 | 0 -5 9 10 }}
{{Mapping|legend=1| 1 -1 7 8 | 0 5 -9 -10 }}


: mapping generators: ~2, ~7/5
: mapping generators: ~2, ~10/7


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~7/5 = 577.353
* [[WE]]: ~2 = 1196.2742{{c}}, ~10/7 = 620.2918{{c}}
: [[error map]]: {{val| 0.000 +11.278 +9.867 +4.709 }}
: [[error map]]: {{val| -3.726 +3.230 +4.980 -1.550 }}
* [[POTE]]: ~2 = 1200.000, ~7/5 = 577.776
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 622.3179{{c}}
: error map: {{val| 0.000 +9.163 +13.673 +8.937 }}
: error map: {{val| 0.000 +9.634 +12.826 +7.996 }}


{{Optimal ET sequence|legend=1| 2, 25, 27 }}
{{Optimal ET sequence|legend=1| 2, 25, 27 }}
Line 614: Line 623:
Comma list: 56/55, 64/63, 1350/1331
Comma list: 56/55, 64/63, 1350/1331


Mapping: {{mapping| 1 4 -2 -2 3 | 0 -5 9 10 1 }}
Mapping: {{mapping| 1 -1 7 8 4 | 0 5 -9 -10 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~7/5 = 577.296
* WE: ~2 = 1195.4148{{c}}, ~10/7 = 619.7729{{c}}
* POTE: ~2 = 1200.000, ~7/5 = 577.850
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.2525{{c}}


{{Optimal ET sequence|legend=0| 2, 25e, 27e }}
{{Optimal ET sequence|legend=0| 2, 25e, 27e }}
Line 629: Line 638:
Comma list: 56/55, 64/63, 78/77, 507/500
Comma list: 56/55, 64/63, 78/77, 507/500


Mapping: {{mapping| 1 4 -2 -2 3 -4 | 0 -5 9 10 1 16 }}
Mapping: {{mapping| 1 -1 7 8 4 12 | 0 5 -9 -10 -1 -16 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~7/5 = 577.374
* WE: ~2 = 1195.6284{{c}}, ~10/7 = 619.6738{{c}}
* POTE: ~2 = 1200.000, ~7/5 = 578.060
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.0631{{c}}


{{Optimal ET sequence|legend=0| 2f, 27e }}
{{Optimal ET sequence|legend=0| 2f, 27e }}
Line 643: Line 652:
{{See also| Dual-fifth temperaments #Dual-3 Sixix }}
{{See also| Dual-fifth temperaments #Dual-3 Sixix }}


Sixix is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction.
Sixix tempers out 3125/2916 and may be described as {{nowrap| 25 & 32 }}. It is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 652: Line 661:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~6/5 = 337.519
* [[WE]]: ~2 = 1198.9028{{c}}, ~6/5 = 337.1334{{c}}
: [[error map]]: {{val| 0.000 +10.449 -11.429 +6.366 }}
: [[error map]]: {{val| -1.097 +9.086 -13.503 +2.508 }}
* [[POTE]]: ~2 = 1200.000, ~6/5 = 337.442
* [[CWE]]: ~2 = 1200.0000{{c}}, ~6/5 = 337.4588{{c}}
: error map: {{val| 0.000 +10.835 -10.965 +5.594 }}
: error map: {{val| 0.000 +10.751 -11.066 +5.762 }}


{{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }}
{{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }}
Line 669: Line 678:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~6/5 = 337.749
* WE: ~2 = 1198.5480{{c}}, ~6/5 = 337.1557{{c}}
* POTE: ~2 = 1200.000, ~6/5 = 337.564
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.6000{{c}}


{{Optimal ET sequence|legend=0| 7, 25e, 32 }}
{{Optimal ET sequence|legend=0| 7, 25e, 32 }}
Line 684: Line 693:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~6/5 = 337.793
* WE: ~2 = 1197.7111{{c}}, ~6/5 = 336.8391{{c}}
* POTE: ~2 = 1200.000, ~6/5 = 337.483
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5336{{c}}


{{Optimal ET sequence|legend=0| 7, 25e, 32f }}
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}
Line 699: Line 708:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~6/5 = 337.629
* WE: ~2 = 1197.7807{{c}}, ~6/5 = 336.8884{{c}}
* POTE: ~2 = 1200.000, ~6/5 = 337.513
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5279{{c}}


{{Optimal ET sequence|legend=0| 7, 25e, 32f }}
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}
Line 708: Line 717:
[[Category:Archytas clan| ]] <!-- main article -->
[[Category:Archytas clan| ]] <!-- main article -->
[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 12:52, 22 July 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The archytas clan (or archy family) tempers out the Archytas' comma, 64/63. This means a stack of two 3/2 fifths octave-reduced equals a whole tone of 8/7~9/8 tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a 9/7 major third. Note the similarity in function to 81/80 in meantone, where four stacked fifths octave-reduced equal a 5/4 major third. This leads to tunings with 3's and 7's quite sharp, such as those of 22edo, 27edo, or 49edo.

This article focuses on rank-2 temperaments. See Archytas family for the rank-3 temperament resulting from tempering out 64/63 alone in the full 7-limit.

Archy

Subgroup: 2.3.7

Comma list: 64/63

Sval mapping[1 0 6], 0 1 -2]]

sval mapping generators: ~2, ~3

Gencom mapping[1 0 0 6], 0 1 0 -2]]

gencom: [2 3; 64/63]

Optimal tunings:

  • WE: ~2 = 1196.9552 ¢, ~3/2 = 707.5215 ¢
error map: -3.045 +2.522 +3.952]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 709.3901 ¢
error map: 0.000 +7.435 +12.394]

Optimal ET sequence2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd

Badness (Sintel): 0.159

Scales: archy5, archy7, archy12

Overview to extensions

7-limit extensions

The second comma in the comma list defines which 7-limit family member we are looking at:

These all use the same generators as archy.

686/675 gives beatles, splitting the fifth in two. 8748/8575 gives immunized, splitting the twelfth in two. 50/49 gives pajara with a semioctave period. 392/375 gives progress, splitting the twelfth in three. 250/243 gives porcupine, splitting the fourth in three. 126/125 gives augene with a 1/3-octave period. 4375/4374 gives modus, splitting the fifth in four. 3125/3024 gives brightstone. 9604/9375 gives fervor. 3125/2916 gives sixix. 3125/3087 gives passion. Those split the generator in five in various ways. 28/27 gives blacksmith with a 1/5-octave period. Finally, 15625/15552 gives catalan, splitting the twelfth in six.

Temperaments discussed elsewhere are:

Considered below are superpyth, quasisuper, ultrapyth, quasiultra, schism, beatles, progress, fervor, and sixix.

Subgroup extensions

Omitting prime 5, archy can be extended to the 2.3.7.11 subgroup by identifying 11/8 as a diminished fourth (C–Gb). This is called supra, given right below. Discussed elsewhere is suhajira of the neutral clan.

Supra

Subgroup: 2.3.7.11

Comma list: 64/63, 99/98

Sval mapping: [1 0 6 13], 0 1 -2 -6]]

Gencom mapping: [1 0 0 6 13], 0 1 0 -2 -6]]

gencom: [2 3; 64/63 99/98]

Optimal tunings:

  • WE: ~2 = 1197.2650 ¢, ~3/2 = 705.5803 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 707.4981 ¢

Optimal ET sequence: 5, 12, 17, 39d, 56d

Badness (Sintel): 0.352

Scales: supra7, supra12

Supraphon

Subgroup: 2.3.7.11.13

Comma list: 64/63, 78/77, 99/98

Sval mapping: [1 0 6 13 18], 0 1 -2 -6 -9]]

Gencom mapping: [1 0 0 6 13 18], 0 1 0 -2 -6 -9]]

gencom: [2 3; 64/63 78/77 99/98]

Optimal tunings:

  • WE: ~2 = 1197.1909 ¢, ~3/2 = 704.4836 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 706.4289 ¢

Optimal ET sequence: 12f, 17

Badness (Sintel): 0.498

Scales: supra7, supra12

Superpyth

For the 5-limit version, see Syntonic–diatonic equivalence continuum #Superpyth (5-limit).

Superpyth, virtually the canonical extension, adds 245/243 and 1728/1715 to the comma list and can be described as 22 & 27. ~5/4 is found at +9 generator steps, as an augmented second (C–D#). 49edo remains an obvious tuning choice.

Subgroup: 2.3.5.7

Comma list: 64/63, 245/243

Mapping[1 0 -12 6], 0 1 9 -2]]

Optimal tunings:

  • WE: ~2 = 1197.0549 ¢, ~3/2 = 708.5478 ¢
error map: -2.945 +3.648 -0.548 +2.298]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.1193 ¢
error map: 0.000 +8.164 +4.760 +10.935]

Optimal ET sequence5, 17, 22, 27, 49, 174bbcddd

Badness (Sintel): 0.818

11-limit

The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double-augmented second (C–Dx) and finds the ~13/8 at +13 generator steps, as a double-augmented fourth (C–Fx).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 245/243

Mapping: [1 0 -12 6 -22], 0 1 9 -2 16]]

Optimal tunings:

  • WE: ~2 = 1197.0673 ¢, ~3/2 = 708.4391 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.0129 ¢

Optimal ET sequence: 22, 27e, 49

Badness (Sintel): 0.826

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 100/99

Mapping: [1 0 -12 6 -22 -17], 0 1 9 -2 16 13]]

Optimal tunings:

  • WE: ~2 = 1197.3011 ¢, ~3/2 = 708.8813 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.3219 ¢

Optimal ET sequence: 22, 27e, 49, 76bcde

Badness (Sintel): 1.02

Thomas

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 100/99, 169/168, 245/243

Mapping: [1 1 -3 4 -6 4], 0 2 18 -4 32 -1]]

Optimal tunings:

  • WE: ~2 = 1197.4942 ¢, ~16/13 = 354.2950 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/13 = 354.9824 ¢

Optimal ET sequence: 27e, 44, 71d, 98bde

Badness (Sintel): 2.03

Suprapyth

Suprapyth finds the ~11/8 at the diminished fifth (C–Gb), and finds the ~13/8 at the diminished seventh (C–Bbb).

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 99/98

Mapping: [1 0 -12 6 13], 0 1 9 -2 -6]]

Optimal tunings:

  • WE: ~2 = 1198.6960 ¢, ~3/2 = 708.7235 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 709.4699 ¢

Optimal ET sequence: 5, 17, 22

Badness (Sintel): 1.08

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 99/98

Mapping: [1 0 -12 6 13 18], 0 1 9 -2 -6 -9]]

Optimal tunings:

  • WE: ~2 = 1199.9871 ¢, ~3/2 = 708.6952 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.7028 ¢

Optimal ET sequence: 5f, 17, 22

Badness (Sintel): 1.50

Quasisuper

Quasisuper can be described as 17c & 22, with the ~5/4 mapped to -13 generator steps, as a double-diminished fifth (C–Gbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 2430/2401

Mapping[1 0 23 6], 0 1 -13 -2]]

Optimal tunings:

  • WE: ~2 = 1196.9830 ¢, ~3/2 = 706.4578 ¢
error map: -3.017 +1.486 -0.435 +6.190]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.3716 ¢
error map: 0.000 +6.417 +4.855 +14.431]

Optimal ET sequence17c, 22, 61d

Badness (Sintel): 1.61

Quasisupra

Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 99/98, 121/120

Mapping: [1 0 23 6 13], 0 1 -13 -2 -6]]

Optimal tunings:

  • WE: ~2 = 1197.5675 ¢, ~3/2 = 706.7690 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.3200 ¢

Optimal ET sequence: 17c, 22, 39d, 61d

Badness (Sintel): 1.06

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 121/120

Mapping: [1 0 23 6 13 18], 0 1 -13 -2 -6 -9]]

Optimal tunings:

  • WE: ~2 = 1198.2543 ¢, ~3/2 = 706.9736 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.0936 ¢

Optimal ET sequence: 17c, 22, 39d

Badness (Sintel): 1.25

Quasisoup

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2430/2401

Mapping: [1 0 23 6 -22], 0 1 -13 -2 16]]

Optimal tunings:

  • WE: ~2 = 1198.8446 ¢, ~3/2 = 708.3388 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.0252 ¢

Optimal ET sequence: 22

Badness (Sintel): 2.76

Ultrapyth

Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).

Subgroup: 2.3.5.7

Comma list: 64/63, 6860/6561

Mapping[1 0 -20 6], 0 1 14 -2]]

Optimal tunings:

  • WE: ~2 = 1197.2673 ¢, ~3/2 = 712.0258 ¢
error map: -2.733 +7.338 -1.557 -3.808]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.5430 ¢
error map: 0.000 +11.588 +3.288 +4.088]

Optimal ET sequence5, 27c, 32, 37

Badness (Sintel): 2.74

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2401/2376

Mapping: [1 0 -20 6 21], 0 1 14 -2 -11]]

Optimal tunings:

  • WE: ~2 = 1198.0290 ¢, ~3/2 = 712.2235 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.3754 ¢

Optimal ET sequence: 5, 32, 37

Badness (Sintel): 2.26

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 1573/1568

Mapping: [1 0 -20 6 21 -25], 0 1 14 -2 -11 18]]

Optimal tunings:

  • WE: ~2 = 1198.1911 ¢, ~3/2 = 712.4243 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.4684 ¢

Optimal ET sequence: 5, 32, 37

Badness (Sintel): 2.03

Ultramarine

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 3773/3645

Mapping: [1 0 -20 6 -38], 0 1 14 -2 26]]

Optimal tunings:

  • WE: ~2 = 1197.2230 ¢, ~3/2 = 712.1393 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.6928 ¢

Optimal ET sequence: 5e, 32e, 37, 79bce

Badness (Sintel): 2.58

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 847/845

Mapping: [1 0 -20 6 -38 -25], 0 1 14 -2 26 18]]

Optimal tunings:

  • WE: ~2 = 1197.2739 ¢, ~3/2 = 712.1893 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.7079 ¢

Optimal ET sequence: 5e, 32e, 37, 79bcef

Badness (Sintel): 1.89

Quasiultra

Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the 27 & 32 temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C–Abbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 33614/32805

Mapping[1 0 31 6], 0 1 -18 -2]]

Optimal tunings:

  • WE: ~2 = 1196.9257 ¢, ~3/2 = 709.6211 ¢
error map: 0.000 +9.883 +0.608 +7.499]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 711.5429 ¢
error map: 0.000 +9.588 +5.914 +8.088]

Optimal ET sequence27, 86bd, 113bcd, 140bbcd

Badness (Sintel): 3.34

Schism

Schism tempers out the schisma, mapping the ~5/4 to -8 fifths as a diminished fourth (C–Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53dd val) can be used.

Subgroup: 2.3.5.7

Comma list: 64/63, 360/343

Mapping[1 0 15 6], 0 1 -8 -2]]

Optimal tunings:

  • WE: ~2 = 1197.3598 ¢, ~3/2 = 700.0126 ¢
error map: -2.640 -4.583 -4.896 +20.588]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 701.7376 ¢
error map: 0.000 -0.217 -0.214 +27.699]

Optimal ET sequence5c, 7c, 12

Badness (Sintel): 1.43

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 64/63, 99/98

Mapping: [1 0 15 6 13], 0 1 -8 -2 -6]]

Optimal tunings:

  • WE: ~2 = 1196.1607 ¢, ~3/2 = 699.8897 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 702.4385 ¢

Optimal ET sequence: 5c, 7ce, 12, 29de

Badness (Sintel): 1.24

Beatles

For the 5-limit version, see Miscellaneous 5-limit temperaments #Beatles.

Beatles tempers out 686/675, which may also be characterized by saying it tempers out 2401/2400. It may be described as the 10 & 17c temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its ploidacot is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.

Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.

Subgroup: 2.3.5.7

Comma list: 64/63, 686/675

Mapping[1 1 5 4], 0 2 -9 -4]]

Optimal tunings:

  • WE: ~2 = 1196.6244 ¢, ~49/40 = 354.9029 ¢
error map: -3.376 +4.475 +2.682 -1.940]
  • CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.0819 ¢
error map: 0.000 +10.209 +8.949 +6.847]

Optimal ET sequence10, 17c, 27, 64b, 91bcd, 118bccd

Badness (Sintel): 1.16

Music

11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 686/675

Mapping: [1 1 5 4 10], 0 2 -9 -4 -22]]

Optimal tunings:

  • WE: ~2 = 1196.7001 ¢, ~49/40 = 355.1606 ¢
  • CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.2795 ¢

Optimal ET sequence: 10e, 17cee, 27e, 64be, 91bcdee

Badness (Sintel): 1.51

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 169/168

Mapping: [1 1 5 4 10 4], 0 2 -9 -4 -22 -1]]

Optimal tunings:

  • WE: ~2 = 1197.2504 ¢, ~16/13 = 355.4132 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/13 = 356.3273 ¢

Optimal ET sequence: 10e, 27e, 37, 64be

Badness (Sintel): 1.25

Ringo

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 540/539

Mapping: [1 1 5 4 2], 0 2 -9 -4 5]]

Optimal tunings:

  • WE: ~2 = 1195.4102 ¢, ~11/9 = 354.0597 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 355.5207 ¢

Optimal ET sequence: 10, 17c, 27e

Badness (Sintel): 1.09

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 91/90

Mapping: [1 1 5 4 2 4], 0 2 -9 -4 5 -1]]

Optimal tunings:

  • WE: ~2 = 1195.9943 ¢, ~11/9 = 354.2695 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 355.5398 ¢

Optimal ET sequence: 10, 17c, 27e

Badness (Sintel): 0.935

Beetle

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 686/675

Mapping: [1 1 5 4 -1], 0 2 -9 -4 15]]

Optimal tunings:

  • WE: ~2 = 1197.9660 ¢, ~49/40 = 356.1056 ¢
  • CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.7075 ¢

Optimal ET sequence: 10, 27, 37

Badness (Sintel): 1.92

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 169/168

Mapping: [1 1 5 4 -1 4], 0 2 -9 -4 15 -1]]

Optimal tunings:

  • WE: ~2 = 1198.1741 ¢, ~16/13 = 356.1582 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/13 = 356.7008 ¢

Optimal ET sequence: 10, 27, 37

Badness (Sintel): 1.40

Progress

Not to be confused with Progression.
For the 5-limit version, see Miscellaneous 5-limit temperaments #Progress.

Progress tempers out 392/375 and may be described as 15 & 17c. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 64/63, 392/375

Mapping[1 0 5 6], 0 3 -5 -6]]

mapping generators: ~2, ~10/7

Optimal tunings:

  • WE: ~2 = 1195.1377 ¢, ~10/7 = 635.2932 ¢
error map: -4.862 +3.925 +12.908 -9.759]
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 638.0791 ¢
error map: 0.000 +12.282 +23.291 +2.700]

Optimal ET sequence2, 13, 15, 32c

Badness (Sintel): 1.68

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4], 0 3 -5 -6 -1]]

Optimal tunings:

  • WE: ~2 = 1195.4920 ¢, ~10/7 = 635.5183 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 638.0884 ¢

Optimal ET sequence: 2, 13, 15, 32c, 47bc

Badness (Sintel): 1.03

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 66/65, 77/75

Mapping: [1 0 5 6 4 0], 0 3 -5 -6 -1 7]]

Optimal tunings:

  • WE: ~2 = 1195.0786 ¢, ~10/7 = 635.0197 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 637.6691 ¢

Optimal ET sequence: 15, 17c, 32cf

Badness (Sintel): 1.08

Progressive

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4 9], 0 3 -5 -6 -1 -10]]

Optimal tunings:

  • WE: ~2 = 1196.0245 ¢, ~10/7 = 634.6516 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 636.9528 ¢

Optimal ET sequence: 2f, 15f, 17c

Badness (Sintel): 1.35

Fervor

For the 5-limit version, see Miscellaneous 5-limit temperaments #Fervor.

Fervor tempers out 9704/9375 and may be described as 25 & 27. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.

Subgroup: 2.3.5.7

Comma list: 64/63, 9604/9375

Mapping[1 -1 7 8], 0 5 -9 -10]]

mapping generators: ~2, ~10/7

Optimal tunings:

  • WE: ~2 = 1196.2742 ¢, ~10/7 = 620.2918 ¢
error map: -3.726 +3.230 +4.980 -1.550]
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.3179 ¢
error map: 0.000 +9.634 +12.826 +7.996]

Optimal ET sequence2, 25, 27

Badness (Sintel): 2.74

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 1350/1331

Mapping: [1 -1 7 8 4], 0 5 -9 -10 -1]]

Optimal tunings:

  • WE: ~2 = 1195.4148 ¢, ~10/7 = 619.7729 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.2525 ¢

Optimal ET sequence: 2, 25e, 27e

Badness (Sintel): 1.72

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 507/500

Mapping: [1 -1 7 8 4 12], 0 5 -9 -10 -1 -16]]

Optimal tunings:

  • WE: ~2 = 1195.6284 ¢, ~10/7 = 619.6738 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.0631 ¢

Optimal ET sequence: 2f, 27e

Badness (Sintel): 1.64

Sixix

For the 5-limit version, see Syntonic–chromatic equivalence continuum #Sixix (5-limit).

Sixix tempers out 3125/2916 and may be described as 25 & 32. It is related to the kleismic family in a way similar to the one between meantone and mavila. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.

Subgroup: 2.3.5.7

Comma list: 64/63, 3125/2916

Mapping[1 3 4 0], 0 -5 -6 10]]

Optimal tunings:

  • WE: ~2 = 1198.9028 ¢, ~6/5 = 337.1334 ¢
error map: -1.097 +9.086 -13.503 +2.508]
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.4588 ¢
error map: 0.000 +10.751 -11.066 +5.762]

Optimal ET sequence7, 18d, 25, 32

Badness (Sintel): 4.02

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6], 0 -5 -6 10 -9]]

Optimal tunings:

  • WE: ~2 = 1198.5480 ¢, ~6/5 = 337.1557 ¢
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.6000 ¢

Optimal ET sequence: 7, 25e, 32

Badness (Sintel): 2.34

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6 4], 0 -5 -6 10 -9 -1]]

Optimal tunings:

  • WE: ~2 = 1197.7111 ¢, ~6/5 = 336.8391 ¢
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.5336 ¢

Optimal ET sequence: 7, 25e, 32f

Badness (Sintel): 1.91

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 40/39, 55/54, 64/63, 85/84, 125/121

Mapping: [1 3 4 0 6 4 1], 0 -5 -6 10 -9 -1 11]]

Optimal tunings:

  • WE: ~2 = 1197.7807 ¢, ~6/5 = 336.8884 ¢
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.5279 ¢

Optimal ET sequence: 7, 25e, 32f

Badness (Sintel): 2.00