7L 2s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Inthar (talk | contribs)
No edit summary
 
(24 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Infobox MOS
{{Infobox MOS}}
| Name = superdiatonic
| Periods = 1
| nLargeSteps = 7
| nSmallSteps = 2
| Equalized = 5
| Paucitonic = 4
| Pattern = LLLLsLLLs
| Neutral = 5L 4s
}}
 
This page is about of a [[MOS scale]] with 7 large steps and 2 small steps ('''7L 2s''') arranged LLLLsLLLs (or any rotation of that, such as LLsLLLsLL).


{{MOS intro}}
Scales of this form are strongly associated with [[Armodue theory]], as applied to septimal mavila and Hornbostel temperaments. [[Trismegistus]] is also a usable temperament.
== Name ==
== Name ==
The name '''superdiatonic''' has been established by [[Armodue]] theorists, and so [[TAMNAMS]] adopts it as well.
The [[TAMNAMS]] name for this pattern is '''armotonic''', in reference to Armodue theory. '''Superdiatonic''' is also in use.


== Temperaments ==
== Scale properties ==
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[Pelogic family#Mavila|mavila]] is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.
{{TAMNAMS use}}


These scales are strongly associated with the [[Armodue]] project/system applied to septimal mavila and Hornbostel temperaments.
=== Intervals ===
{{MOS intervals}}


== Intervals ==
=== Generator chain ===
Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". TAMNAMS discourages 1-indexed terms such as "mos(k+1)th" for non-diatonic mosses.
{{MOS genchain}}


== Modes ==
=== Modes ===
* 8|0 LLLLsLLLs
{{MOS mode degrees}}
* 7|1 LLLsLLLLs
* 6|2 LLLsLLLsL
* 5|3 LLsLLLLsL
* 4|4 LLsLLLsLL
* 3|5 LsLLLLsLL
* 2|6 LsLLLsLLL
* 1|7 sLLLLsLLL
* 0|8 sLLLsLLLL


== Scale tree ==
=== Proposed mode names ===
Optional types of 'JI [[Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
The Ad- mode names proposed by [[groundfault]] have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc.
{{MOS modes
| Table Headers=
Super- Mode Names $
Ad- Mode Names (ground) $
| Table Entries=
Superlydian $
TBD $
Superionian $
Adlocrian $
Supermixolydian $
Adphrygian $
Supercorinthian $
Adaeolian $
Superolympian $
Addorian $
Superdorian $
Admixolydian $
Superaeolian $
Adionian $
Superphrygian $
Adlydian $
Superlocrian $
TBD
}}


== Note names==
7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.


Generator ranges:
== Theory ==
* Chroma-positive generator: 666.6667 cents (5\9) to 685.7143 cents (4\7)
=== Temperament interpretations ===
* Chroma-negative generator: 514.2857 cents (3\7) to 533.3333 cents (4\9)
[[Pelogic family#Mavila|Mavila]] is an important harmonic entropy minimum here, insofar as 670-680{{c}} can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus.


{| class="wikitable"
== Scale tree ==
|-
{{MOS tuning spectrum
! colspan="3" | Generator
| 1/1 = Near exact-7/6 [[Pelogic_family#Armodue|Armodue]]
! | <span style="display: block; text-align: center;">'''Generator size (cents)'''</span>
| 4/3 = Near exact-20/17 [[Pentagoth]]
! | Pentachord steps
| 7/5 = Near exact-5/4 [[Mavila]]
! | Comments
| 3/2 = Near exact-13/11 Pentagoth
|-
| 7/4 = Near exact-7/4 [[Pelogic_family#Armodue|Armodue]]
| | 4\[[7edo|7]]
| 10/3 = Near exact-6/5 [[Mavila]]
| |
| 6/1 = [[Gravity]]
| |
}}
| | 685.714
| | 1 1 1 0
| |
|-
|53\93
|
|
|683.871
|13 13 13 1
|
|-
| |
| | 102\[[179edo|179]]
| |
| | 683.798
| | 25 25 25 2
| | Approximately 0.03 cents away from [[95/64]]
|-
|49\86
|
|
|683.721
|12 12 12 1
|
|-
|
|94\165
|
|683.636
|23 23 23 2
|
|-
|45\79
|
|
|683.544
|11 11 11 1
|
|-
|
|86\151
|
|683.444
|21 21 21 2
|
|-
|41\72
|
|
|683.333
|10 10 10 1
|
|-
|
|78\137
|
|683.212
|19 19 19 2
|
|-
|37\65
|
|
|683.077
|9 9 9 1
|
|-
|
|70\123
|
|682.927
|17 17 17 2
|
|-
| | 33\[[58edo|58]]
| |
| |
| | 682.758
| | 8 8 8 1
| | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones.
|-
|
|62\109
|
|682.569
|15 15 15 2
|
|-
|29\51
|
|
|682.353
|7 7 7 1
|
|-
|
|54\95
|
|682.105
|13 13 13 2
|
|-
|25\44
|
|
|681.818
|6 6 6 1
|
|-
|
|46\81
|
|681.4815
|11 11 11 2
|
|-
| | 21\37
| |
| |
| | 681.081
| | 5 5 5 1
| |
|-
|
|59\104
|
|680.769
|14 14 14 3
|
|-
|
|38\67
|
|680.597
|9 9 9 2
|
|-
|
|55\97
|
|680.412
|13 13 13 3
|
|-
| | 17\30
| |
| |
| | 680
| | 4 4 4 1
| | L/s = 4
|-
|
|47\83
|
|679.518
|11 11 11 3
|
|-
| |
| | 30\53
| |
| | 679.245
| | 7 7 7 2
| |
|-
| |
| | 43\76
| |
| | 678.947
| | 10 10 10 3
| |
|-
| |
| | 56\99
| |
| | 678.788
| | 13 13 13 4
| |
|-
| |
| | 69\122
| |
| | 678.6885
| | 16 16 16 5
| |
|-
| |
| | 82\145
| |
| | 678.621
| | 19 19 19 6
| |
|-
| |
| | 95\168
| |
| | 678.571
| | 22 22 22 7
| |
|-
| |
| |
| |
| | 678.569
| | π π π 1
| | L/s = π
|-
| |
| | 108\191
| |
| | 678.534
| | 25 25 25 8
| |
|-
| |
| | 121\214
| |
| | 678.505
| | 28 28 28 9
| | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth)</span>
|-
| |
| | 134\237
| |
| | 678.481
| | 31 31 31 10
| | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span>
|-
| | 13\23
| |
| |
| | 678.261
| | 3 3 3 1
| | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span>
|-
| |
| | 126\223
| |
| | 678.027
| | 29 29 29 10
| | HORNBOSTEL TEMPERAMENT
 
<span style="font-size: 12.8000001907349px;">(Armodue 1/29-tone)</span>
|-
| |
| | 113\200
| |
| | 678
| | 26 26 26 9
| | HORNBOSTEL (&amp; [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' &amp; '8')</span>
|-
| |
| | 100\177
| |
| | 677.966
| | 23 23 23 8
| |
|-
| |
| | 87\154
| |
| | 677.922
| | 20 20 20 7
| |
|-
| |
| | 74\131
| |
| | 677.863
| | 17 17 17 6
| | Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span>
|-
| |
| | 61\108
| |
| | 677.778
| | 14 14 14 5
| | Armodue-Hornbostel 1/14-tone
|-
| |
| |
| | 109\193
| | 677.720
| | 25 25 25 9
| | Armodue-Hornbostel 1/25-tone
|-
| |
| | 48\85
| |
| | 677.647
| | 11 11 11 4
| | Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span>
|-
| |
| |
| |
| | 677.562
| | e e e 1
| | L/s = e
|-
| |
| | 35\62
| |
| | 677.419
| | 8 8 8 3
| | Armodue-Hornbostel 1/8-tone
|-
| |
| |
| | 92\163
| | 677.301
| | 21 21 21 8
| | 21;8 Superdiatonic 1/21-tone
|-
| |
| |
| |
| | 677.28
| | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ+1 φ+1 φ+1 1</span>
| | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..)
|-
| |
| | 57\101
| |
| | 677.228
| | 13 13 13 5
| | 13;5 Superdiatonic 1/13-tone
|-
| | 22\39
| |
| |
| | 676.923
| | 5 5 5 2
| | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span>
|-
| |
| | 75\133
| |
| | 676.692
| | 17 17 17 7
| | 17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span>
|-
| |
| | 53\94
| |
| | 676.596
| | 12 12 12 5
| |
|-
| |
| | 31\55
| |
| | 676.364
| | 7 7 7 3
| | 7;3 Superdiatonic 1/7-tone
|-
| |
| | 40\71
| |
| | 676.056
| | 9 9 9 4
| | 9;4 Superdiatonic 1/9-tone
|-
| |
| | 49\87
| |
| | 675.862
| | 11 11 11 5
| | 11;5 Superdiatonic 1/11-tone
|-
| |
| | 58\103
| |
| | 675.728
| | 13 13 13 6
| | 13;6 Superdiatonic 1/13-tone
|-
| | 9\16
| |
| |
| | 675
| | 2 2 2 1
| | <span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament)
|-
| |
| | 59\105
| |
| | 674.286
| | 13 13 13 7
| | Armodue-Mavila 1/13-tone
|-
| |
| | 50\89
| |
| | 674.157
| | 11 11 11 6
| | Armodue-Mavila 1/11-tone
|-
| |
| | 41\73
| |
| | 673.973
| | 9 9 9 5
| | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span>
|-
| |
| | 32\57
| |
| | 673.684
| | 7 7 7 4
| | Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4|7/4]] interval, the note '8')</span>
|-
| |
| |
| |
| | 673.577
| | <span style="background-color: #ffffff;">√3 √3 √3 1</span>
| |
|-
| |
| | 55\98
| |
| | 673.469
| | 12 12 12 7
| |
|-
| |
| | 78\139
| |
| | 673.381
| | 17 17 17 10
| | Armodue-Mavila 1/17-tone
|-
| |
| | 101\180
| |
| | 673.333
| | 22 22 22 13
| |
|-
| | 23\41
| |
| |
| | 673.171
| | 5 5 5 3
| | 5;3 Golden Armodue-Mavila 1/5-tone
|-
| |
| | 60\107
| |
| | 672.897
| | 13 13 13 8
| | 13;8 Golden Mavila 1/13-tone
|-
| |
| |
| |
| | 672.85
| | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span>
| | GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span>
|-
| |
| |
| | 97\173
| | 672.832
| | 21 21 21 13
| | 21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span>
|-
| |
| | 37\66
| |
| | 672.727
| | 8 8 8 5
| | 8;5 Golden Mavila 1/8-tone
|-
| |
| | 51\91
| |
| | 672.527
| | 11 11 11 7
| | 11;7 Superdiatonic 1/11-tone
|-
| |
| |
| |
| | 672.523
| | π π π 2
| |
|-
| |
| |
| | 116\207
| | 672.464
| | 25 25 25 16
| | 25;16 Superdiatonic 1/25-tone
|-
| |
| | 65\116
| |
| | 672.414
| | 14 14 14 9
| | 14;9 Superdiatonic 1/14-tone
|-
| |
| | 79\141
| |
| | 672.340
| | 17 17 17 11
| | 17;11 Superdiatonic 1/17-tone
|-
| |
| | 93\166
| |
| | 672.289
| | 20 20 20 13
| |
|-
| |
| | 107\191
| |
| | 672.251
| | 23 23 23 15
| |
|-
| |
| | 121\216
| |
| | 672.222
| | 26 26 26 17
| | 26;17 Superdiatonic 1/26-tone
|-
| |
| | 135\241
| |
| | 672.199
| | 29 29 29 19
| | 29;19 Superdiatonic 1/29-tone
|-
| | 14\25
| |
| |
| | 672
| | 3 3 3 2
| | 3;2 Golden Armodue-Mavila 1/3-tone
|-
| |
| | 145\259
| |
| | 671.815
| | 31 31 31 21
| | 31;21 Superdiatonic 1/31-tone
|-
| |
| | 131\234
| |
| | 671.795
| | 28 28 28 19
| | 28;19 Superdiatonic 1/28-tone
|-
| |
| | 117\209
| |
| | 671.770
| | 25 25 25 17
| |
|-
| |
| | 103\184
| |
| | 671.739
| | 22 22 22 15
| |
|-
| |
| | 89\159
| |
| | 671.698
| | 19 19 19 13
| |
|-
| |
| | 75\134
| |
| | 671.642
| | 16 16 16 11
| |
|-
| |
| | 61\109
| |
| | 671.560
| | 13 13 13 9
| |
|-
| |
| | 47\84
| |
| | 671.429
| | 10 10 10 7
| |
|-
|
|
|80\143
|671.329
|17 17 17 12
|
|-
| |
| | 33\59
| |
| | 671.186
| | 7 7 7 5
| |
|-
|
|52\93
|
|670.968
|11 11 11 8
|
|-
| | 19\34
| |
| |
| | 670.588
| | 4 4 4 3
| |
|-
|
|43\77
|
|670.13
|9 9 9 7
|
|-
| | 24\43
| |
| |
| | 669.767
| | 5 5 5 4
| |
|-
|
|53\95
|
|669.474
|11 11 11 9
|
|-
|29\52
|
|
|669.231
|6 6 6 5
|
|-
|
|63\113
|
|669.0265
|13 13 13 11
|
|-
|34\61
|
|
|668.8525
|7 7 7 6
|
|-
|
|73\131
|
|668.702
|15 15 15 13
|
|-
|39\70
|
|
|668.571
|8 8 8 7
|
|-
|
|83\149
|
|668.456
|17 17 17 15
|
|-
|44\79
|
|
|668.354
|9 9 9 8
|
|-
|
|93\167
|
|668.2365
|19 19 19 17
|
|-
|49\88
|
|
|668.182
|10 10 10 9
|
|-
|
|103\185
|
|668.108
|21 21 21 9
|
|-
|54\97
|
|
|668.041
|11 11 11 10
|
|-
|
|113\203
|
|667.98
|23 23 23 21
|
|-
|59\106
|
|
|667.925
|12 12 12 11
|
|-
|
|123\221
|
|667.873
|25 25 25 23
|
|-
|64\115
|
|
|667.826
|13 13 13 12
|
|-
| | 5\[[9edo|9]]
| |
| |
| | 666.667
| | 1 1 1 1
| |
|}


[[Category:Abstract MOS patterns]]
[[Category:9-tone scales]]
[[Category:9-tone scales]]
[[Category:Mavila]]
[[Category:Mavila]]
[[Category:Superdiatonic]]

Latest revision as of 06:24, 30 July 2025

↖ 6L 1s ↑ 7L 1s 8L 1s ↗
← 6L 2s 7L 2s 8L 2s →
↙ 6L 3s ↓ 7L 3s 8L 3s ↘
┌╥╥╥╥┬╥╥╥┬┐
│║║║║│║║║││
│││││││││││
└┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLsLLLs
sLLLsLLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 5\9 to 4\7 (666.7 ¢ to 685.7 ¢)
Dark 3\7 to 4\9 (514.3 ¢ to 533.3 ¢)
TAMNAMS information
Name armotonic
Prefix arm-
Abbrev. arm
Related MOS scales
Parent 2L 5s
Sister 2L 7s
Daughters 9L 7s, 7L 9s
Neutralized 5L 4s
2-Flought 16L 2s, 7L 11s
Equal tunings
Equalized (L:s = 1:1) 5\9 (666.7 ¢)
Supersoft (L:s = 4:3) 19\34 (670.6 ¢)
Soft (L:s = 3:2) 14\25 (672.0 ¢)
Semisoft (L:s = 5:3) 23\41 (673.2 ¢)
Basic (L:s = 2:1) 9\16 (675.0 ¢)
Semihard (L:s = 5:2) 22\39 (676.9 ¢)
Hard (L:s = 3:1) 13\23 (678.3 ¢)
Superhard (L:s = 4:1) 17\30 (680.0 ¢)
Collapsed (L:s = 1:0) 4\7 (685.7 ¢)

7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢. Scales of this form are strongly associated with Armodue theory, as applied to septimal mavila and Hornbostel temperaments. Trismegistus is also a usable temperament.

Name

The TAMNAMS name for this pattern is armotonic, in reference to Armodue theory. Superdiatonic is also in use.

Scale properties

This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.

Intervals

Intervals of 7L 2s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-armstep Perfect 0-armstep P0arms 0 0.0 ¢
1-armstep Minor 1-armstep m1arms s 0.0 ¢ to 133.3 ¢
Major 1-armstep M1arms L 133.3 ¢ to 171.4 ¢
2-armstep Minor 2-armstep m2arms L + s 171.4 ¢ to 266.7 ¢
Major 2-armstep M2arms 2L 266.7 ¢ to 342.9 ¢
3-armstep Minor 3-armstep m3arms 2L + s 342.9 ¢ to 400.0 ¢
Major 3-armstep M3arms 3L 400.0 ¢ to 514.3 ¢
4-armstep Perfect 4-armstep P4arms 3L + s 514.3 ¢ to 533.3 ¢
Augmented 4-armstep A4arms 4L 533.3 ¢ to 685.7 ¢
5-armstep Diminished 5-armstep d5arms 3L + 2s 514.3 ¢ to 666.7 ¢
Perfect 5-armstep P5arms 4L + s 666.7 ¢ to 685.7 ¢
6-armstep Minor 6-armstep m6arms 4L + 2s 685.7 ¢ to 800.0 ¢
Major 6-armstep M6arms 5L + s 800.0 ¢ to 857.1 ¢
7-armstep Minor 7-armstep m7arms 5L + 2s 857.1 ¢ to 933.3 ¢
Major 7-armstep M7arms 6L + s 933.3 ¢ to 1028.6 ¢
8-armstep Minor 8-armstep m8arms 6L + 2s 1028.6 ¢ to 1066.7 ¢
Major 8-armstep M8arms 7L + s 1066.7 ¢ to 1200.0 ¢
9-armstep Perfect 9-armstep P9arms 7L + 2s 1200.0 ¢

Generator chain

Generator chain of 7L 2s
Bright gens Scale degree Abbrev.
15 Augmented 3-armdegree A3armd
14 Augmented 7-armdegree A7armd
13 Augmented 2-armdegree A2armd
12 Augmented 6-armdegree A6armd
11 Augmented 1-armdegree A1armd
10 Augmented 5-armdegree A5armd
9 Augmented 0-armdegree A0armd
8 Augmented 4-armdegree A4armd
7 Major 8-armdegree M8armd
6 Major 3-armdegree M3armd
5 Major 7-armdegree M7armd
4 Major 2-armdegree M2armd
3 Major 6-armdegree M6armd
2 Major 1-armdegree M1armd
1 Perfect 5-armdegree P5armd
0 Perfect 0-armdegree
Perfect 9-armdegree
P0armd
P9armd
−1 Perfect 4-armdegree P4armd
−2 Minor 8-armdegree m8armd
−3 Minor 3-armdegree m3armd
−4 Minor 7-armdegree m7armd
−5 Minor 2-armdegree m2armd
−6 Minor 6-armdegree m6armd
−7 Minor 1-armdegree m1armd
−8 Diminished 5-armdegree d5armd
−9 Diminished 9-armdegree d9armd
−10 Diminished 4-armdegree d4armd
−11 Diminished 8-armdegree d8armd
−12 Diminished 3-armdegree d3armd
−13 Diminished 7-armdegree d7armd
−14 Diminished 2-armdegree d2armd
−15 Diminished 6-armdegree d6armd

Modes

Scale degrees of the modes of 7L 2s
UDP Cyclic
order
Step
pattern
Scale degree (armdegree)
0 1 2 3 4 5 6 7 8 9
8|0 1 LLLLsLLLs Perf. Maj. Maj. Maj. Aug. Perf. Maj. Maj. Maj. Perf.
7|1 6 LLLsLLLLs Perf. Maj. Maj. Maj. Perf. Perf. Maj. Maj. Maj. Perf.
6|2 2 LLLsLLLsL Perf. Maj. Maj. Maj. Perf. Perf. Maj. Maj. Min. Perf.
5|3 7 LLsLLLLsL Perf. Maj. Maj. Min. Perf. Perf. Maj. Maj. Min. Perf.
4|4 3 LLsLLLsLL Perf. Maj. Maj. Min. Perf. Perf. Maj. Min. Min. Perf.
3|5 8 LsLLLLsLL Perf. Maj. Min. Min. Perf. Perf. Maj. Min. Min. Perf.
2|6 4 LsLLLsLLL Perf. Maj. Min. Min. Perf. Perf. Min. Min. Min. Perf.
1|7 9 sLLLLsLLL Perf. Min. Min. Min. Perf. Perf. Min. Min. Min. Perf.
0|8 5 sLLLsLLLL Perf. Min. Min. Min. Perf. Dim. Min. Min. Min. Perf.

Proposed mode names

The Ad- mode names proposed by groundfault have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc.

Modes of 7L 2s
UDP Cyclic
order
Step
pattern
Super- Mode Names Ad- Mode Names (ground)
8|0 1 LLLLsLLLs Superlydian TBD
7|1 6 LLLsLLLLs Superionian Adlocrian
6|2 2 LLLsLLLsL Supermixolydian Adphrygian
5|3 7 LLsLLLLsL Supercorinthian Adaeolian
4|4 3 LLsLLLsLL Superolympian Addorian
3|5 8 LsLLLLsLL Superdorian Admixolydian
2|6 4 LsLLLsLLL Superaeolian Adionian
1|7 9 sLLLLsLLL Superphrygian Adlydian
0|8 5 sLLLsLLLL Superlocrian TBD

Note names

7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.

Theory

Temperament interpretations

Mavila is an important harmonic entropy minimum here, insofar as 670-680 ¢ can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus.

Scale tree

Scale tree and tuning spectrum of 7L 2s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
5\9 666.667 533.333 1:1 1.000 Equalized 7L 2s
Near exact-7/6 Armodue
29\52 669.231 530.769 6:5 1.200
24\43 669.767 530.233 5:4 1.250
43\77 670.130 529.870 9:7 1.286
19\34 670.588 529.412 4:3 1.333 Supersoft 7L 2s
Near exact-20/17 Pentagoth
52\93 670.968 529.032 11:8 1.375
33\59 671.186 528.814 7:5 1.400 Near exact-5/4 Mavila
47\84 671.429 528.571 10:7 1.429
14\25 672.000 528.000 3:2 1.500 Soft 7L 2s
Near exact-13/11 Pentagoth
51\91 672.527 527.473 11:7 1.571
37\66 672.727 527.273 8:5 1.600
60\107 672.897 527.103 13:8 1.625
23\41 673.171 526.829 5:3 1.667 Semisoft 7L 2s
55\98 673.469 526.531 12:7 1.714
32\57 673.684 526.316 7:4 1.750 Near exact-7/4 Armodue
41\73 673.973 526.027 9:5 1.800
9\16 675.000 525.000 2:1 2.000 Basic 7L 2s
Scales with tunings softer than this are proper
40\71 676.056 523.944 9:4 2.250
31\55 676.364 523.636 7:3 2.333
53\94 676.596 523.404 12:5 2.400
22\39 676.923 523.077 5:2 2.500 Semihard 7L 2s
57\101 677.228 522.772 13:5 2.600
35\62 677.419 522.581 8:3 2.667
48\85 677.647 522.353 11:4 2.750
13\23 678.261 521.739 3:1 3.000 Hard 7L 2s
43\76 678.947 521.053 10:3 3.333 Near exact-6/5 Mavila
30\53 679.245 520.755 7:2 3.500
47\83 679.518 520.482 11:3 3.667
17\30 680.000 520.000 4:1 4.000 Superhard 7L 2s
38\67 680.597 519.403 9:2 4.500
21\37 681.081 518.919 5:1 5.000
25\44 681.818 518.182 6:1 6.000 Gravity
4\7 685.714 514.286 1:0 → ∞ Collapsed 7L 2s