Porwell temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
include redirect pages as well as to show that this option exist, which centralizes updates if temperament sections move between pages (or transform into pages their own)
 
(51 intermediate revisions by 11 users not shown)
Line 1: Line 1:
This family of temperaments tempers out the ''porwell comma'', {{monzo| 11 1 -3 -2 }} = [[6144/6125]], and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.  
{{Technical data page}}
This is a collection of [[regular temperament|temperaments]] that [[tempering out|tempers out]] the porwell comma, {{monzo| 11 1 -3 -2 }} ([[6144/6125]]), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.  


Discussed elsewhere are:  
Discussed elsewhere are:  
* ''[[Hexadecimal]]'' → [[Pelogic family #Armodue]]
* ''[[Armodue]]'' (+36/35) → [[Pelogic family #Armodue|Pelogic family]]
* [[Porcupine]], also in: [[Porcupine family #Porcupine]]
* [[Porcupine]] (+64/63) → [[Porcupine family #Porcupine|Porcupine family]]
* [[Mohajira]], also in: [[Meantone family #Mohajira]]
* [[Mohajira]] (+81/80) → [[Meantone family #Mohajira|Meantone family]]
* [[Valentine]], also in: [[Starling temperaments #Valentine]]
* [[Valentine]] (+126/125) → [[Starling temperaments #Valentine|Starling temperaments]]
* [[Orwell]], also in: [[Semicomma family #Orwell]]
* [[Orwell]] (+225/224) → [[Semicomma family #Orwell|Semicomma family]]
* [[Shrutar]], also in: [[Diaschismic family #Shrutar]]
* [[Shrutar]] (+245/243) → [[Diaschismic family #Shrutar|Diaschismic family]]
* ''[[Hemiwürschmidt]]'' → [[Würschmidt family #Hemiwürschmidt]]
* ''[[Quinkee]]'' (+1029/1000) → [[Cloudy clan #Quinkee|Cloudy clan]]
* ''[[Hemikleismic]]'' → [[Kleismic family #Hemikleismic]]
* ''[[Hemiwürschmidt]]'' (+2401/2400 or 3136/3125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]
* [[Amity]], also in: [[Amity family #Amity]]
* ''[[Hemikleismic]]'' (+4000/3969) → [[Kleismic family #Hemikleismic|Kleismic family]]
* ''[[Grendel]]'' → [[Mirkwai clan #Grendel]]
* [[Amity]] (+4375/4374 or 5120/5103) → [[Amity family #Septimal amity|Amity family]]
* ''[[Trident]]'' → [[Tricot family #Trident]]
* ''[[Freivald]]'' (+6272/6075) → [[Passion family #Freivald|Passion family]]
* ''[[Grendel]]'' (+16875/16807) → [[Mirkwai clan #Grendel|Mirkwai clan]]
* ''[[Hemischis]]'' (+19683/19600) → [[Schismatic family #Hemischis|Schismatic family]]
* ''[[Bison]]'' (+78732/78125) → [[Sensipent family #Bison|Sensipent family]]
* ''[[Hemimabila]]'' (+117649/116640) → [[Mabila family #Hemimabila|Mabila family]]
* ''[[Septisuperfourth]]'' (+118098/117649) → [[Escapade family #Septisuperfourth|Escapade family]]
* ''[[Alphatrident]]'' (+14348907/14336000) → [[Alphatricot family #Alphatrident|Alphatricot family]]
* ''[[Hemimaquila]]'' (+{{monzo| -5 10 5 -8 }}) → [[Maquila family #Hemimaquila|Maquila family]]
* ''[[Decimaleap]]'' (+{{monzo| 15 -18 1 4 }}) → [[Quintaleap family #Decimaleap|Quintaleap family]]
* ''[[Twilight]]'' (+{{monzo| 19 -22 2 4 }}) → [[Undim family #Twilight|Undim family]]


== Hendecatonic ==
== Hendecatonic ==
The hendecatonic temperament has a period of 1/11 octave, which represents [[16/15]] and four times of which represents [[9/7]].
{{see also|11th-octave temperaments}}


Subgroup: 2.3.5.7
The hendecatonic temperament has a period of 1/11 octave, which represents [[16/15]] and four times of which represent [[9/7]].
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 6144/6125, 10976/10935
[[Comma list]]: 6144/6125, 10976/10935


[[Mapping]]: [{{val| 11 0 43 -4 }}, {{val| 0 1 -1 2 }}]
{{Mapping|legend=1| 11 0 43 -4 | 0 1 -1 2 }}


{{Multival|legend=1| 11 -11 22 -43 4 82 }}
: Mapping generators: ~16/15, ~3


[[POTE generator]]: ~3/2 = 703.054
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\11, ~3/2 = 703.054


{{Val list|legend=1| 22, 55, 77, 99 }}
{{Optimal ET sequence|legend=1| 22, 55, 77, 99 }}


[[Badness]]: 0.041081
[[Badness]]: 0.041081


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 121/120, 176/175, 10976/10935
Comma list: 121/120, 176/175, 10976/10935


Mapping: [{{val| 11 0 43 -4 38 }}, {{val| 0 1 -1 2 0 }}]
{{Mapping|legend=1| 11 0 43 -4 38 | 0 1 -1 2 0 }}


POTE generator: ~3/2 = 702.636
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636


Vals: {{Val list| 22, 55, 77, 99, 176e, 275e }}
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e, 275e }}


Badness: 0.046088
Badness: 0.046088


=== Icosidillic  ===
==== 13-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 3388/3375, 6144/6125, 9801/9800
Comma list: 121/120, 176/175, 351/350, 4459/4455


Mapping: [{{val| 22 0 86 -8 111 }}, {{val| 0 1 -1 2 -1 }}]
{{Mapping|legend=1| 11 0 43 -4 38 93 | 0 1 -1 2 0 -3 }}


POTE generator: ~3/2 = 702.914
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291


Vals: {{Val list| 22, 154, 176, 198 }}
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e }}


Badness: 0.057725
Badness: 0.040099


== Hemischis  ==
==== 17-limit ====
{{see also| Schismatic family }}
Subgroup: 2.3.5.7.11.13.17
 
Subgroup: 2.3.5.7


[[Comma list]]: 6144/6125, 19683/19600
Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023


[[Mapping]]: [{{val| 1 0 15 -17 }}, {{val| 0 2 -16 25 }}]
{{Mapping|legend=1| 11 0 43 -4 38 93 45 | 0 1 -1 2 0 -3 0 }}


{{Multival|legend=1| 2 -16 25 -30 34 103 }}
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301


[[POTE generator]]: ~81/70 = 249.203
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176eg }}


{{Val list|legend=1| 24, 53, 130, 183, 313 }}
Badness: 0.029054


[[Badness]]: 0.045817
=== Cohendecatonic ===
 
=== 11-limit  ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 540/539, 8019/8000, 5632/5625
Comma list: 540/539, 896/891, 4375/4356


Mapping: [{{val| 1 0 15 -17 51 }}, {{val| 0 2 -16 25 -60 }}]
{{Mapping|legend=1| 11 0 43 -4 73 | 0 1 -1 2 -2 }}


POTE generator: ~81/70 = 249.199
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686


Vals: {{Val list| 24e, 53, 130, 183, 313 }}
{{Optimal ET sequence|legend=0| 22, 77e, 99e, 121, 220e }}


Badness: 0.036289
Badness: 0.038042


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 540/539, 676/675, 4096/4095
Comma list: 352/351, 364/363, 540/539, 625/624


Mapping: [{{val| 1 0 15 -17 51 14 }}, {{val| 0 2 -16 25 -60 -13 }}]
{{Mapping|legend=1| 11 0 43 -4 73 128 | 0 1 -1 2 -2 -5 }}


POTE generator: ~15/13 = 249.199
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888


Vals: {{Val list| 24e, 53, 130, 183, 313 }}
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 341bdeeff }}


Badness: 0.020816
Badness: 0.036112


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 351/350, 442/441, 561/560, 676/675, 4096/4095
Comma list: 256/255, 352/351, 364/363, 375/374, 540/539


Map: [{{val| 1 0 15 -17 51 14 -49 }}, {{val| 0 2 -16 25 -60 -13 67 }}]
{{Mapping|legend=1| 11 0 43 -4 73 128 45 | 0 1 -1 2 -2 -5 0 }}


POTE generator: ~15/13 = 249.190
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877


Vals: {{Val list| 53, 130, 183, 679df }}
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg }}


Badness: 0.021073
Badness: 0.022590


== Twothirdtonic ==
=== Icosidillic ===
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7.11
 
Comma list: 3388/3375, 6144/6125, 9801/9800
 
{{Mapping|legend=1| 22 0 86 -8 111 | 0 1 -1 2 -1 }}
 
: Mapping generators: ~33/32, ~3
 
Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914
 
{{Optimal ET sequence|legend=0| 22, 154, 176, 198 }}
 
Badness: 0.057725
 
== Twothirdtonic ==
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 686/675, 6144/6125
[[Comma list]]: 686/675, 6144/6125


[[Mapping]]: [{{val| 1 3 2 4 }}, {{val| 0 -13 3 -11 }}]
{{Mapping|legend=1| 1 3 2 4 | 0 -13 3 -11 }}


{{Multival|legend=1| 13 -3 11 -35 -19 34 }}
: Mapping generators: ~2, ~15/14


[[POTE generator]]: ~15/14 = 130.401
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 130.401


{{Val list|legend=1| 9, 28b, 37, 46 }}
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }}


[[Badness]]: 0.099601
[[Badness]]: 0.099601


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 121/120, 176/175, 686/675
Comma list: 121/120, 176/175, 686/675


Mapping: [{{val| 1 3 2 4 4 }}, {{val| 0 -13 3 -11 -5 }}]
Mapping: {{mapping| 1 3 2 4 4 | 0 -13 3 -11 -5 }}


POTE generator: ~15/14 = 130.430
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430


Vals: {{Val list| 9, 28b, 37, 46 }}
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }}


Badness: 0.040768
Badness: 0.040768


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 91/90, 121/120, 169/168, 176/175
Comma list: 91/90, 121/120, 169/168, 176/175


Mapping: [{{val| 1 3 2 4 4 5 }}, {{val| 0 -13 3 -11 -5 -12 }}]
Mapping: {{mapping| 1 3 2 4 4 5 | 0 -13 3 -11 -5 -12 }}


POTE generator: ~15/14 = 130.409
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409


Vals: {{Val list| 9, 28b, 37, 46 }}
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }}


Badness: 0.025941
Badness: 0.025941


== Nessafof ==
== Semaja ==
Subgroup: 2.3.5.7
Cryptically named by [[Petr Pařízek]] in 2011, semaja adds the [[gariboh comma]] to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10<ref name="petr's long post">[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 3125/3087, 6144/6125
 
{{Mapping|legend=1| 1 -2 1 3 | 0 19 7 -1 }}
 
: Mapping generators: ~2, ~8/7
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 226.4834
 
{{Optimal ET sequence|legend=1| 16, 37, 53, 196d }}
 
[[Badness]]: 0.107023
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 176/175, 3125/3087
 
Mapping: {{mapping| 1 -2 1 3 1 | 0 19 7 -1 13 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856
 
{{Optimal ET sequence|legend=1| 16, 37, 53 }}
 
Badness: 0.059838
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 169/168, 176/175, 275/273
 
Mapping: {{mapping| 1 -2 1 3 1 2 | 0 19 7 -1 13 9 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794
 
{{Optimal ET sequence|legend=1| 16, 37, 53 }}
 
Badness: 0.032564
 
== Nessafof ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments#Nessafof]].''
 
Cryptically named by [[Petr Pařízek]] in 2011<ref name="petr's short post">[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101089.html Yahoo! Tuning Group | ''Some more unclassified temperaments'']</ref>, nessafof adds the [[landscape comma]] and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1<ref name="petr's long post"/>.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 6144/6125, 250047/250000
[[Comma list]]: 6144/6125, 250047/250000


[[Mapping]]: [{{val| 3 2 5 10 }}, {{val| 0 7 5 -4 }}]
{{Mapping|legend=1| 3 2 5 10 | 0 7 5 -4 }}


{{Multival|legend=1| 21 15 -12 -25 -78 -70 }}
: Mapping generators: ~63/50, ~35/32


[[POTE generator]]: ~35/32 = 157.480
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~35/32 = 157.480


{{Val list|legend=1| 15, 54b, 69, 84, 99, 282, 381 }}
{{Optimal ET sequence|legend=1| 15, 54b, 69, 84, 99, 282, 381 }}


[[Badness]]: 0.045048
[[Badness]]: 0.045048


== Septisuperfourth  ==
=== 11-limit ===
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 176/175, 250047/250000
 
Mapping: {{mapping| 3 2 5 10 8 | 0 7 5 -4 6 }}
 
Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520
 
{{Optimal ET sequence|legend=1| 15, 54be, 69e, 84e, 99 }}
 
Badness: 0.068427
 
=== Nessa ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 1344/1331, 4375/4356
 
Mapping: {{mapping| 3 2 5 10 10 | 0 7 5 -4 1 }}
 
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539
 
{{Optimal ET sequence|legend=1| 15, 54b, 69, 84, 99e }}
 
Badness: 0.048836


[[Comma list]]: 6144/6125, 118098/117649
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Mapping]]: [{{val| 2 4 4 7 }}, {{val| 0 -9 7 -15 }}]
Comma list: 144/143, 364/363, 441/440, 625/624


{{Multival|legend=1| 18 -14 30 -64 -3 109 }}
Mapping: {{mapping| 3 2 5 10 10 6 | 0 7 5 -4 1 13 }}


[[POTE generator]]: ~48/35 = 544.680
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429


{{Val list|legend=1| 22, 86, 108, 130, 152, 282 }}
{{Optimal ET sequence|legend=1| 15, 54bf, 69, 84, 99ef, 183ef, 282eeff }}


[[Badness]]: 0.059241
Badness: 0.037409


=== 11-limit ===
== Aufo ==
:''For the 5-limit version, see [[High badness temperaments #Untriton]].''
 
Also named by [[Petr Pařízek]] in 2011, ''aufo'' refers to the augmented fourth, which is a generator of this temperament<ref name="petr's long post"/>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 177147/175616
 
{{Mapping|legend=1| 1 6 -7 19 | 0 -9 19 -33 }}
 
: Mapping generators: ~2, ~45/32
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~45/32 = 588.782
 
{{Optimal ET sequence|legend=1| 53, 161, 214 }}
 
[[Badness]]: 0.121428
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 540/539, 4000/3993, 5632/5625
Comma list: 121/120, 176/175, 177147/175616


Mapping: [{{val| 2 4 4 7 6 }}, {{val| 0 -9 7 -15 10 }}]
Mapping: {{mapping| 1 6 -7 19 1 | 0 -9 19 -33 5 }}


POTE generator: ~48/35 = 544.696
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811


Vals: {{Val list| 22, 86, 108, 130, 152, 282, 434de, 716de }}
{{Optimal ET sequence|legend=1| 53, 108e, 161e }}


Badness: 0.024619
Badness: 0.088631


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 540/539, 729/728, 4000/3993, 21168/21125
Comma list: 121/120, 176/175, 351/350, 58806/57967
 
Mapping: {{mapping| 1 6 -7 19 1 -12 | 0 -9 19 -33 5 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788
 
{{Optimal ET sequence|legend=1| 53, 108e, 161e, 214ee }}
 
Badness: 0.058507
 
=== Aufic ===
Subgroup: 2.3.5.7.11
 
Comma list: 540/539, 5632/5625, 72171/71680


Mapping: [{{val| 2 4 4 7 6 11 }}, {{val| 0 -9 7 -15 10 -39 }}]
Mapping: {{mapping| 1 6 -7 19 -25 | 0 -9 19 -33 58 }}


POTE generator: ~48/35 = 544.675
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800


Vals: {{Val list| 22f, 108f, 130, 282 }}
{{Optimal ET sequence|legend=1| 53, 108, 161, 214, 375 }}


Badness: 0.022887
Badness: 0.075149


=== Septisuperquad  ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 364/363, 540/539, 5632/5625
Comma list: 351/350, 540/539, 847/845, 4096/4095


Mapping: [{{val| 2 4 4 7 6 5 }}, {{val| 0 -9 7 -15 10 26 }}]
Mapping: {{mapping| 1 6 -7 19 -25 -12 | 0 -9 19 -33 58 32 }}


POTE generator: ~48/35 = 544.641
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796


Vals: {{Val list| 22, 86f, 108, 130 }}
{{Optimal ET sequence|legend=1| 53, 108, 161, 214, 375, 589be }}


Badness: 0.033038
Badness: 0.039050


== Whoops ==
== Whoops ==
{{see also| Very high accuracy temperaments #Whoosh }}
:''For the 5-limit version, see [[Very high accuracy temperaments #Whoosh]].''


Subgroup: 2.3.5.7
Also named by [[Petr Pařízek]] in 2011, ''whoops'' is a relatively simple extension to the otherwise very accurate microtemperament known as ''whoosh''<ref name="petr's long post"/>.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 6144/6125, 244140625/243045684
[[Comma list]]: 6144/6125, 244140625/243045684


[[Mapping]]: [{{val| 1 17 14 -7 }}, {{val| 0 -33 -25 21 }}]
{{Mapping|legend=1| 1 17 14 -7 | 0 -33 -25 21 }}


{{Multival|legend=1| 33 25 -21 -37 -126 -119 }}
: Mapping generators: ~2, ~441/320


[[POTE generator]]: ~441/320 = 560.519
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~441/320 = 560.519


{{Val list|legend=1| 15, 122d, 137, 152, 608d, 623bd, 775bcd }}
{{Optimal ET sequence|legend=1| 15, 122d, 137, 152, 608d, 623bd, 775bcd }}


[[Badness]]: 0.1758
[[Badness]]: 0.175840


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4000/3993, 6144/6125
Comma list: 3025/3024, 4000/3993, 6144/6125


Mapping: [{{val| 1 17 14 -7 10 }}, {{val| 0 -33 -25 21 -14 }}]
Mapping: {{mapping| 1 17 14 -7 10 | 0 -33 -25 21 -14 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519
 
{{Optimal ET sequence|legend=1| 15, 122d, 137, 152, 608de, 623bde, 775bcde }}


POTE generator: ~242/175 = 560.519
Badness: 0.043743


Vals: {{Val list| 15, 122d, 137, 152, 608de, 623bde, 775bcde }}
== Polypyth ==
:''For the 5-limit version, see [[High badness temperaments #Leapday]].''


Badness: 0.0437
Polypyth (46 &amp; 121) tempers out the same 5-limit comma as the [[Hemifamity temperaments #Leapday|leapday temperament]] (29 &amp; 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.


== Polypyth  ==
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 6144/6125, 179200/177147
[[Comma list]]: 6144/6125, 179200/177147


[[Mapping]]: [{{val| 1 0 -31 52 }}, {{val| 0 1 21 -31 }}]
{{Mapping|legend=1| 1 0 -31 52 | 0 1 21 -31 }}


[[POTE generator]]: ~3/2 = 704.174
: Mapping generators: ~2, ~3


{{Val list|legend=1| 46, 121, 167, 288b, 455bcd, 743bcd }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.174
 
{{Optimal ET sequence|legend=1| 46, 121, 167, 288b, 455bcd, 743bcd }}


[[Badness]]: 0.137995
[[Badness]]: 0.137995


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 896/891, 2200/2187, 6144/6125
Comma list: 896/891, 2200/2187, 6144/6125


Mapping: [{{val| 1 0 -31 52 59 }}, {{val| 0 1 21 -31 -35 }}]
Mapping: {{mapping| 1 0 -31 52 59 | 0 1 21 -31 -35 }}


POTE generator: ~3/2 = 704.177
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177


Vals: {{Val list| 46, 121, 167, 288be, 455bcde }}
{{Optimal ET sequence|legend=1| 46, 121, 167, 288be, 455bcde }}


Badness: 0.051131
Badness: 0.051131


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 325/324, 352/351, 364/363, 1716/1715
Comma list: 325/324, 352/351, 364/363, 1716/1715


Mapping: [{{val| 1 0 -31 52 59 64 }}, {{val| 0 1 21 -31 -35 -38 }}]
Mapping: {{mapping| 1 0 -31 52 59 64 | 0 1 21 -31 -35 -38 }}


POTE generator: ~3/2 = 704.168
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168


Vals: {{Val list| 46, 121, 167, 288be }}
{{Optimal ET sequence|legend=1| 46, 121, 167, 288be }}


Badness: 0.030292
Badness: 0.030292


=== 17-limit ===
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715
Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715


Mapping: [{{val| 1 0 -31 52 59 64 39 }}, {{val| 0 1 21 -31 -35 -38 -22 }}]
Mapping: {{mapping| 1 0 -31 52 59 64 39 | 0 1 21 -31 -35 -38 -22 }}


POTE generator: ~3/2 = 704.168
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168


Vals: {{Val list| 46, 121, 167, 288beg }}
{{Optimal ET sequence|legend=1| 46, 121, 167, 288beg }}


Badness: 0.019051
Badness: 0.019051


== Icositritonic ==
== Icositritonic ==
The ''icositritonic'' temperament (46&amp;161, named by [[User:Xenllium|Xenllium]]) has a period of 1/23 octave, so six period represents [[6/5]] and nine period represents [[21/16]].
{{ See also | 23rd-octave temperaments }}
The icositritonic temperament (46 &amp; 161) has a period of 1/23 octave, so six period represents [[6/5]] and nine period represents [[21/16]].


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 6144/6125, 9920232/9765625
[[Comma list]]: 6144/6125, 9920232/9765625


[[Mapping]]: [{{val| 23 37 54 64 }}, {{val| 0 -1 -1 1 }}]
{{Mapping|legend=1| 23 0 17 101 | 0 1 1 -1 }}


{{Multival|legend=1| 23 23 -23 -17 -101 -118 }}
: Mapping generators: ~1323/1280, ~3


[[POTE generator]]: ~64/63 = 29.3586
[[Optimal tuning]] ([[POTE]]): ~1323/1280 = 1\23, ~64/63 = 29.3586


{{Val list|legend=1| 23, 46, 115, 161, 207, 368c }}
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}


[[Badness]]: 0.196622
[[Badness]]: 0.196622


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 441/440, 6144/6125, 35937/35840
Comma list: 441/440, 6144/6125, 35937/35840


Mapping: [{{val| 23 37 54 64 79 }}, {{val| 0 -1 -1 1 1 }}]
Mapping: {{mapping| 23 0 17 101 116 | 0 1 1 -1 -1 }}


POTE generator: ~64/63 = 29.3980
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980


Vals: {{Val list| 23, 46, 115, 161, 207, 368c }}
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}


Badness: 0.064613
Badness: 0.064613


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 441/440, 847/845, 3584/3575
Comma list: 351/350, 441/440, 847/845, 3584/3575


Mapping: [{{val| 23 37 54 64 79 84 }}, {{val| 0 -1 -1 1 1 2 }}]
Mapping: {{mapping| 23 0 17 101 116 158 | 0 1 1 -1 -1 -2 }}


POTE generator: ~64/63 = 29.2830
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830


Vals: {{Val list| 46, 115, 161, 207, 368c }}
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}


Badness: 0.040484
Badness: 0.040484


=== 17-limit ===
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088
Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088


Mapping: [{{val| 23 37 54 64 79 84 94 }}, {{val| 0 -1 -1 1 1 2 0 }}]
Mapping: {{mapping| 23 0 17 101 116 158 94 | 0 1 1 -1 -1 -2 0 }}


POTE generator: ~64/63 = 29.2800
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800


Vals: {{Val list| 46, 115, 161, 207, 368c }}
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}


Badness: 0.024676
Badness: 0.024676


=== 19-limit ===
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845
Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845


Mapping: [{{val| 23 37 54 64 79 84 94 96 }}, {{val| 0 -1 -1 1 1 2 0 3 }}]
Mapping: {{mapping| 23 0 17 101 116 158 94 207 | 0 1 1 -1 -1 -2 0 -3 }}


POTE generator: ~64/63 = 29.3760
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760


Vals: {{Val list| 46, 115, 161, 207, 368c }}
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}


Badness: 0.021579
Badness: 0.021579


=== 23-limit ===
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
Subgroup: 2.3.5.7.11.13.17.19.23


Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845
Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845


Mapping: [{{val| 23 37 54 64 79 84 94 96 104 }}, {{val| 0 -1 -1 1 1 2 0 3 0 }}]
Mapping: {{mapping| 23 0 17 101 116 158 94 207 104 | 0 1 1 -1 -1 -2 0 -3 0 }}


POTE generator: ~64/63 = 29.3471
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471


Vals: {{Val list| 46, 115, 161, 207, 368ci }}
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368ci }}


Badness: 0.017745
Badness: 0.017745


== Countermiracle ==
== Countermiracle ==
The ''countermiracle'' temperament (31&amp;145, named by [[User:Xenllium|Xenllium]]) tempers out the trimyna, 50421/50000 and the [[Quince clan|quince comma]], 823543/819200.
The ''countermiracle'' temperament (31 &amp; 145) tempers out the trimyna, 50421/50000 and the [[quince comma]], 823543/819200.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 6144/6125, 50421/50000
[[Comma list]]: 6144/6125, 50421/50000


[[Mapping]]: [{{val|1 4 3 3}}, {{val|0 -25 -7 -2}}]
{{Mapping|legend=1| 1 4 3 3 | 0 -25 -7 -2 }}


{{Multival|legend=1| 25 7 2 -47 -67 -15 }}
: Mapping generators: ~2, ~343/320


[[POTE generator]]: ~343/320 = 115.917
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/320 = 115.9169


{{Val list|legend=1| 31, 114, 145, 176, 559cc, 735cc }}
{{Optimal ET sequence|legend=1| 31, 114, 145, 176, 559cc, 735cc }}


[[Badness]]: 0.102326
[[Badness]]: 0.102326


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 441/440, 3388/3375, 6144/6125
Comma list: 441/440, 3388/3375, 6144/6125


Mapping: [{{val|1 4 3 3 8}}, {{val|0 -25 -7 -2 -47}}]
Mapping: {{mapping| 1 4 3 3 8 | 0 -25 -7 -2 -47 }}


POTE generator: ~77/72 = 115.916
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158


Vals: {{Val list| 31, 114e, 145, 176 }}
{{Optimal ET sequence|legend=1| 31, 114e, 145, 176 }}


Badness: 0.039162
Badness: 0.039162


==== Countermiraculous ====
==== Countermiraculous ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 196/195, 352/351, 1001/1000, 6144/6125
Comma list: 196/195, 352/351, 1001/1000, 6144/6125


Mapping: [{{val|1 4 3 3 8 1}}, {{val|0 -25 -7 -2 -47 28}}]
Mapping: {{mapping| 1 4 3 3 8 1 | 0 -25 -7 -2 -47 28 }}


POTE generator: ~77/72 = 115.880
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803


Vals: {{Val list| 31, 83e, 114e, 145, 321ceff }}
{{Optimal ET sequence|legend=1| 31, 83e, 114e, 145, 321ceff }}


Badness: 0.039271
Badness: 0.039271


==== Counterbenediction ====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224
 
Mapping: {{mapping| 1 4 3 3 8 1 1 | 0 -25 -7 -2 -47 28 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756
 
{{Optimal ET sequence|legend=1| 31, 83e, 114e, 145 }}
 
Badness: 0.029496
 
==== Counterbenediction ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 441/440, 3146/3125, 3584/3575
Comma list: 351/350, 441/440, 3146/3125, 3584/3575


Mapping: [{{val|1 4 3 3 8 -2}}, {{val|0 -25 -7 -2 -47 59}}]
Mapping: {{mapping| 1 4 3 3 8 -2 | 0 -25 -7 -2 -47 59 }}


POTE generator: ~77/72 = 115.933
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335


Vals: {{Val list| 31, 145f, 176, 207, 383c, 590cc }}
{{Optimal ET sequence|legend=1| 31, 114ef, 145f, 176, 207, 383c, 590cc }}


Badness: 0.045569
Badness: 0.045569


=== Counterrevelation ===
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125
 
Mapping: {{mapping| 1 4 3 3 8 -2 -2 | 0 -25 -7 -2 -47 59 63 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391
 
{{Optimal ET sequence|legend=1| 31, 114efg, 145fg, 176, 207 }}
 
Badness: 0.036289
 
==== Countermanna ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 441/440, 3388/3375, 6144/6125
 
Mapping: {{mapping| 1 4 3 3 8 15  0 -25 -7 -2 -47 -117 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898
 
{{Optimal ET sequence|legend=1| 145, 176, 321ce }}
 
Badness: 0.053409
 
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375
 
Mapping: {{mapping| 1 4 3 3 8 15 15 | 0 -25 -7 -2 -47 -117 -113 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832
 
{{Optimal ET sequence|legend=1| 145, 321ce }}
 
Badness: 0.040898
 
=== Counterrevelation ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 121/120, 176/175, 50421/50000
Comma list: 121/120, 176/175, 50421/50000


Mapping: [{{val|1 4 3 3 5}}, {{val|0 -25 -7 -2 -16}}]
Mapping: {{mapping| 1 4 3 3 5 | 0 -25 -7 -2 -16 }}


POTE generator: ~343/320 = 115.919
Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192


Vals: {{Val list| 31, 114, 145e, 176e }}
{{Optimal ET sequence|legend=1| 31, 114, 145e, 176e }}


Badness: 0.064070
Badness: 0.064070


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 121/120, 176/175, 196/195, 13750/13689
Comma list: 121/120, 176/175, 196/195, 13750/13689


Mapping: [{{val|1 4 3 3 5 1}}, {{val|0 -25 -7 -2 -16 28}}]
Mapping: {{mapping| 1 4 3 3 5 1 | 0 -25 -7 -2 -16 28 }}


POTE generator: ~273/256 = 115.862
Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624


Vals: {{Val list| 31, 83, 114, 145e }}
{{Optimal ET sequence|legend=1| 31, 83, 114, 145e }}


Badness: 0.057497
Badness: 0.057497


[[Category:Regular temperament theory]]
==== 17-limit ====
[[Category:Temperament collection]]
Subgroup: 2.3.5.7.11.13.17
[[Category:Porwell]]
 
[[Category:Hemischis]]
Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625
 
Mapping: {{mapping| 1 4 3 3 5 1 1 | 0 -25 -7 -2 -16 28 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527
 
{{Optimal ET sequence|legend=1| 31, 83, 114, 145e }}
 
Badness: 0.044043
 
== Absurdity ==
: ''For the 5-limit version, see [[Syntonic–chromatic equivalence continuum #Absurdity]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 177147/175000
 
{{Mapping|legend=1| 7 0 -17 64 | 0 1 3 -4 }}
 
: Mapping generators: ~972/875, ~3
 
[[Optimal tuning]] ([[POTE]]): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)
 
{{Optimal ET sequence|legend=1| 77, 84, 161 }}
 
[[Badness]]: 0.133520
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 6144/6125, 72171/71680
 
{{Mapping|legend=1| 7 0 -17 64 124 | 0 1 3 -4 -9 }}
 
Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497)
 
{{Optimal ET sequence|legend=1| 77, 84, 161 }}
 
Badness: 0.081564
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 351/350, 441/440, 1188/1183, 3584/3575
 
{{Mapping|legend=1| 7 0 -17 64 124 37 | 0 1 3 -4 -9 -1 }}
 
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434)
 
{{Optimal ET sequence|legend=1| 77, 84, 161 }}
 
Badness: 0.041600
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 | 0 1 3 -4 -9 -1 7 }}
 
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667)
 
{{Optimal ET sequence|legend=1| 77, 161 }}
 
Badness: 0.031783
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 | 0 1 3 -4 -9 -1 7 -3 }}
 
Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708)
 
{{Optimal ET sequence|legend=1| 77, 161 }}
 
Badness: 0.022291
 
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 | 0 1 3 -4 -9 -1 7 -3 -4 }}
 
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
 
{{Optimal ET sequence|legend=0| 77, 84, 161 }}
 
=== 29-limit ===
{{ See also | Fifth-chroma temperaments }}
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 34 | 0 1 3 -4 -9 -1 7 -3 -4 0 }}
 
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
 
{{Optimal ET sequence|legend=0| 77, 84, 161 }}
 
== Dodifo ==
: ''For the 5-limit version, see [[High badness temperaments #Dodifo]].''
 
Also named by [[Petr Pařízek]] in 2011, ''dodifo'' refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament<ref name="petr's long post"/>. The extension here is a less accurate 7-limit intepretation.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 2500000/2470629
 
{{Mapping|legend=1| 1 12 5 4 | 0 -35 -9 -4 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 357.070
 
{{Optimal ET sequence|legend=1| 37, 84, 121, 205 }}
 
[[Badness]]: 0.179692
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 1375/1372, 2560/2541, 4375/4356
 
Mapping: {{mapping| 1 12 5 4 -1 | 0 -35 -9 -4 15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048
 
{{Optimal ET sequence|legend=1| 37, 84, 121, 326dee }}
 
Badness: 0.081923
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 625/624, 640/637, 1375/1372
 
Mapping: {{mapping| 1 12 5 4 -1 4 | 0 -35 -9 -4 15 -1 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049
 
{{Optimal ET sequence|legend=1| 37, 84, 121, 326deef }}
 
Badness: 0.039533
 
== Notes ==
 
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Porwell temperaments| ]] <!-- main article -->
[[Category:Porwell| ]] <!-- key article -->
[[Category:Hendecatonic]]
[[Category:Hendecatonic]]
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 00:28, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

This is a collection of temperaments that tempers out the porwell comma, [11 1 -3 -2 (6144/6125), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.

Discussed elsewhere are:

Hendecatonic

The hendecatonic temperament has a period of 1/11 octave, which represents 16/15 and four times of which represent 9/7.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 10976/10935

Mapping[11 0 43 -4], 0 1 -1 2]]

Mapping generators: ~16/15, ~3

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.054

Optimal ET sequence22, 55, 77, 99

Badness: 0.041081

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 10976/10935

Mapping[11 0 43 -4 38], 0 1 -1 2 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636

Optimal ET sequence: 22, 55, 77, 99, 176e, 275e

Badness: 0.046088

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 4459/4455

Mapping[11 0 43 -4 38 93], 0 1 -1 2 0 -3]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291

Optimal ET sequence: 22, 55, 77, 99, 176e

Badness: 0.040099

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023

Mapping[11 0 43 -4 38 93 45], 0 1 -1 2 0 -3 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301

Optimal ET sequence: 22, 55, 77, 99, 176eg

Badness: 0.029054

Cohendecatonic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 896/891, 4375/4356

Mapping[11 0 43 -4 73], 0 1 -1 2 -2]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686

Optimal ET sequence: 22, 77e, 99e, 121, 220e

Badness: 0.038042

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363, 540/539, 625/624

Mapping[11 0 43 -4 73 128], 0 1 -1 2 -2 -5]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888

Optimal ET sequence: 22, 77eff, 99ef, 121, 341bdeeff

Badness: 0.036112

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 352/351, 364/363, 375/374, 540/539

Mapping[11 0 43 -4 73 128 45], 0 1 -1 2 -2 -5 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877

Optimal ET sequence: 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg

Badness: 0.022590

Icosidillic

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 6144/6125, 9801/9800

Mapping[22 0 86 -8 111], 0 1 -1 2 -1]]

Mapping generators: ~33/32, ~3

Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914

Optimal ET sequence: 22, 154, 176, 198

Badness: 0.057725

Twothirdtonic

Subgroup: 2.3.5.7

Comma list: 686/675, 6144/6125

Mapping[1 3 2 4], 0 -13 3 -11]]

Mapping generators: ~2, ~15/14

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.401

Optimal ET sequence9, 28b, 37, 46

Badness: 0.099601

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 686/675

Mapping: [1 3 2 4 4], 0 -13 3 -11 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430

Optimal ET sequence9, 28b, 37, 46

Badness: 0.040768

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 169/168, 176/175

Mapping: [1 3 2 4 4 5], 0 -13 3 -11 -5 -12]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409

Optimal ET sequence9, 28b, 37, 46

Badness: 0.025941

Semaja

Cryptically named by Petr Pařízek in 2011, semaja adds the gariboh comma to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10[1].

Subgroup: 2.3.5.7

Comma list: 3125/3087, 6144/6125

Mapping[1 -2 1 3], 0 19 7 -1]]

Mapping generators: ~2, ~8/7

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4834

Optimal ET sequence16, 37, 53, 196d

Badness: 0.107023

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 3125/3087

Mapping: [1 -2 1 3 1], 0 19 7 -1 13]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856

Optimal ET sequence16, 37, 53

Badness: 0.059838

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 275/273

Mapping: [1 -2 1 3 1 2], 0 19 7 -1 13 9]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794

Optimal ET sequence16, 37, 53

Badness: 0.032564

Nessafof

For the 5-limit version, see Miscellaneous 5-limit temperaments#Nessafof.

Cryptically named by Petr Pařízek in 2011[2], nessafof adds the landscape comma and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 250047/250000

Mapping[3 2 5 10], 0 7 5 -4]]

Mapping generators: ~63/50, ~35/32

Optimal tuning (POTE): ~63/50 = 1\3, ~35/32 = 157.480

Optimal ET sequence15, 54b, 69, 84, 99, 282, 381

Badness: 0.045048

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 250047/250000

Mapping: [3 2 5 10 8], 0 7 5 -4 6]]

Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520

Optimal ET sequence15, 54be, 69e, 84e, 99

Badness: 0.068427

Nessa

Subgroup: 2.3.5.7.11

Comma list: 441/440, 1344/1331, 4375/4356

Mapping: [3 2 5 10 10], 0 7 5 -4 1]]

Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539

Optimal ET sequence15, 54b, 69, 84, 99e

Badness: 0.048836

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 364/363, 441/440, 625/624

Mapping: [3 2 5 10 10 6], 0 7 5 -4 1 13]]

Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429

Optimal ET sequence15, 54bf, 69, 84, 99ef, 183ef, 282eeff

Badness: 0.037409

Aufo

For the 5-limit version, see High badness temperaments #Untriton.

Also named by Petr Pařízek in 2011, aufo refers to the augmented fourth, which is a generator of this temperament[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175616

Mapping[1 6 -7 19], 0 -9 19 -33]]

Mapping generators: ~2, ~45/32

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.782

Optimal ET sequence53, 161, 214

Badness: 0.121428

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 177147/175616

Mapping: [1 6 -7 19 1], 0 -9 19 -33 5]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811

Optimal ET sequence53, 108e, 161e

Badness: 0.088631

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 58806/57967

Mapping: [1 6 -7 19 1 -12], 0 -9 19 -33 5 32]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788

Optimal ET sequence53, 108e, 161e, 214ee

Badness: 0.058507

Aufic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5632/5625, 72171/71680

Mapping: [1 6 -7 19 -25], 0 -9 19 -33 58]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800

Optimal ET sequence53, 108, 161, 214, 375

Badness: 0.075149

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 847/845, 4096/4095

Mapping: [1 6 -7 19 -25 -12], 0 -9 19 -33 58 32]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796

Optimal ET sequence53, 108, 161, 214, 375, 589be

Badness: 0.039050

Whoops

For the 5-limit version, see Very high accuracy temperaments #Whoosh.

Also named by Petr Pařízek in 2011, whoops is a relatively simple extension to the otherwise very accurate microtemperament known as whoosh[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 244140625/243045684

Mapping[1 17 14 -7], 0 -33 -25 21]]

Mapping generators: ~2, ~441/320

Optimal tuning (POTE): ~2 = 1\1, ~441/320 = 560.519

Optimal ET sequence15, 122d, 137, 152, 608d, 623bd, 775bcd

Badness: 0.175840

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 6144/6125

Mapping: [1 17 14 -7 10], 0 -33 -25 21 -14]]

Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519

Optimal ET sequence15, 122d, 137, 152, 608de, 623bde, 775bcde

Badness: 0.043743

Polypyth

For the 5-limit version, see High badness temperaments #Leapday.

Polypyth (46 & 121) tempers out the same 5-limit comma as the leapday temperament (29 & 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 179200/177147

Mapping[1 0 -31 52], 0 1 21 -31]]

Mapping generators: ~2, ~3

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.174

Optimal ET sequence46, 121, 167, 288b, 455bcd, 743bcd

Badness: 0.137995

11-limit

Subgroup: 2.3.5.7.11

Comma list: 896/891, 2200/2187, 6144/6125

Mapping: [1 0 -31 52 59], 0 1 21 -31 -35]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177

Optimal ET sequence46, 121, 167, 288be, 455bcde

Badness: 0.051131

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64], 0 1 21 -31 -35 -38]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168

Optimal ET sequence46, 121, 167, 288be

Badness: 0.030292

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64 39], 0 1 21 -31 -35 -38 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168

Optimal ET sequence46, 121, 167, 288beg

Badness: 0.019051

Icositritonic

The icositritonic temperament (46 & 161) has a period of 1/23 octave, so six period represents 6/5 and nine period represents 21/16.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 9920232/9765625

Mapping[23 0 17 101], 0 1 1 -1]]

Mapping generators: ~1323/1280, ~3

Optimal tuning (POTE): ~1323/1280 = 1\23, ~64/63 = 29.3586

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.196622

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 35937/35840

Mapping: [23 0 17 101 116], 0 1 1 -1 -1]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.064613

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 847/845, 3584/3575

Mapping: [23 0 17 101 116 158], 0 1 1 -1 -1 -2]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.040484

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088

Mapping: [23 0 17 101 116 158 94], 0 1 1 -1 -1 -2 0]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.024676

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845

Mapping: [23 0 17 101 116 158 94 207], 0 1 1 -1 -1 -2 0 -3]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.021579

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845

Mapping: [23 0 17 101 116 158 94 207 104], 0 1 1 -1 -1 -2 0 -3 0]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471

Optimal ET sequence46, 115, 161, 207, 368ci

Badness: 0.017745

Countermiracle

The countermiracle temperament (31 & 145) tempers out the trimyna, 50421/50000 and the quince comma, 823543/819200.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 50421/50000

Mapping[1 4 3 3], 0 -25 -7 -2]]

Mapping generators: ~2, ~343/320

Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9169

Optimal ET sequence31, 114, 145, 176, 559cc, 735cc

Badness: 0.102326

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8], 0 -25 -7 -2 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158

Optimal ET sequence31, 114e, 145, 176

Badness: 0.039162

Countermiraculous

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 1001/1000, 6144/6125

Mapping: [1 4 3 3 8 1], 0 -25 -7 -2 -47 28]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803

Optimal ET sequence31, 83e, 114e, 145, 321ceff

Badness: 0.039271

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224

Mapping: [1 4 3 3 8 1 1], 0 -25 -7 -2 -47 28 32]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756

Optimal ET sequence31, 83e, 114e, 145

Badness: 0.029496

Counterbenediction

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 3146/3125, 3584/3575

Mapping: [1 4 3 3 8 -2], 0 -25 -7 -2 -47 59]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335

Optimal ET sequence31, 114ef, 145f, 176, 207, 383c, 590cc

Badness: 0.045569

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125

Mapping: [1 4 3 3 8 -2 -2], 0 -25 -7 -2 -47 59 63]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391

Optimal ET sequence31, 114efg, 145fg, 176, 207

Badness: 0.036289

Countermanna

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8 15 0 -25 -7 -2 -47 -117]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898

Optimal ET sequence145, 176, 321ce

Badness: 0.053409

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375

Mapping: [1 4 3 3 8 15 15], 0 -25 -7 -2 -47 -117 -113]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832

Optimal ET sequence145, 321ce

Badness: 0.040898

Counterrevelation

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 50421/50000

Mapping: [1 4 3 3 5], 0 -25 -7 -2 -16]]

Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192

Optimal ET sequence31, 114, 145e, 176e

Badness: 0.064070

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 13750/13689

Mapping: [1 4 3 3 5 1], 0 -25 -7 -2 -16 28]]

Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624

Optimal ET sequence31, 83, 114, 145e

Badness: 0.057497

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625

Mapping: [1 4 3 3 5 1 1], 0 -25 -7 -2 -16 28 32]]

Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527

Optimal ET sequence31, 83, 114, 145e

Badness: 0.044043

Absurdity

For the 5-limit version, see Syntonic–chromatic equivalence continuum #Absurdity.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175000

Mapping[7 0 -17 64], 0 1 3 -4]]

Mapping generators: ~972/875, ~3

Optimal tuning (POTE): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)

Optimal ET sequence77, 84, 161

Badness: 0.133520

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 72171/71680

Mapping[7 0 -17 64 124], 0 1 3 -4 -9]]

Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497)

Optimal ET sequence77, 84, 161

Badness: 0.081564

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 1188/1183, 3584/3575

Mapping[7 0 -17 64 124 37], 0 1 3 -4 -9 -1]]

Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434)

Optimal ET sequence77, 84, 161

Badness: 0.041600

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625

Mapping[7 0 -17 64 124 37 -49], 0 1 3 -4 -9 -1 7]]

Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667)

Optimal ET sequence77, 161

Badness: 0.031783

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63], 0 1 3 -4 -9 -1 7 -3]]

Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708)

Optimal ET sequence77, 161

Badness: 0.022291

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63 76], 0 1 3 -4 -9 -1 7 -3 -4]]

Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)

Optimal ET sequence: 77, 84, 161

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63 76 34], 0 1 3 -4 -9 -1 7 -3 -4 0]]

Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)

Optimal ET sequence: 77, 84, 161

Dodifo

For the 5-limit version, see High badness temperaments #Dodifo.

Also named by Petr Pařízek in 2011, dodifo refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament[1]. The extension here is a less accurate 7-limit intepretation.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 2500000/2470629

Mapping[1 12 5 4], 0 -35 -9 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.070

Optimal ET sequence37, 84, 121, 205

Badness: 0.179692

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 2560/2541, 4375/4356

Mapping: [1 12 5 4 -1], 0 -35 -9 -4 15]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048

Optimal ET sequence37, 84, 121, 326dee

Badness: 0.081923

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 625/624, 640/637, 1375/1372

Mapping: [1 12 5 4 -1 4], 0 -35 -9 -4 15 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049

Optimal ET sequence37, 84, 121, 326deef

Badness: 0.039533

Notes