|
|
(16 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} The name '''amsochromic''' has been proposed for this scale by [[User:Lériendil|Lériendil]], originally assigned to [[5L 6s]] by [[Praveen Venkataramana]] and standing for "acute [[major second]] chromatic"; the name was moved to 6L 5s due to the existing use of "slentonic" for the other MOS. |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-09 14:20:35 UTC</tt>.<br>
| |
| : The original revision id was <tt>565766819</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, generated by a medium major second of 200 (1/6edo) to 218.182 (2/11edo) cents, has a harmonic entropy minimum (Baldy) which is highly improper (L=8 s=1) in an optimal tuning, However, its saving grace is that it at least has index 2 in syntonic temperaments with wide fifths like superpyth (2.3.7) and pentacircle (2.3.11/7.13/11).
| |
| || 1/6 || || || || || 200 ||
| |
| || || || || || 6/35 || 205.714 ||
| |
| || || || || 5/29 || || 206.897 ||
| |
| || || || || || 9/52 || 207.692 ||
| |
| || || || || || || 208.386 ||
| |
| || || || 4/23 || || || 208.696 ||
| |
| || || || || || || 209.385 ||
| |
| || || || || || 11/63 || 209.524 ||
| |
| || || || || || || 209.528 ||
| |
| || || || || 7/40 || || 210 ||
| |
| || || || || || 10/57 || 210.526 ||
| |
| || || 3/17 || || || || 211.765 ||
| |
| || || || || || 11/62 || 212.903 ||
| |
| || || || || || || 212.9935 ||
| |
| || || || || 8/45 || || 213.333 ||
| |
| || || || || || || 213.598 ||
| |
| || || || || || 13/73 || 213.699 ||
| |
| || || || || || || 213.865 ||
| |
| || || || 5/28 || || || 214.286 ||
| |
| || || || || || 12/67 || 214.925 ||
| |
| || || || || 7/39 || || 215.385 ||
| |
| || || || || || 9/50 || 216 ||
| |
| || 2/11 || || || || || 218.182 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>6L 5s</title></head><body>This MOS, generated by a medium major second of 200 (1/6edo) to 218.182 (2/11edo) cents, has a harmonic entropy minimum (Baldy) which is highly improper (L=8 s=1) in an optimal tuning, However, its saving grace is that it at least has index 2 in syntonic temperaments with wide fifths like superpyth (2.3.7) and pentacircle (2.3.11/7.13/11).<br />
| |
|
| |
|
| | This MOS has a [[harmonic entropy]] minimum ([[Baldy]]) which is highly improper ({{nowrap|L {{=}} 8|s {{=}} 1}}) in an optimal tuning, However, its saving grace is that it at least has [[index]] 2 in [[syntonic temperament]]s with wide fifths like [[superpyth]] (2.3.7) and [[pentacircle]] (2.3.11/7.13/11){{clarify | the subgroup provided doesn’t match the one on the Pentacircle page}}. |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <td>1/6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>200<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6/35<br />
| |
| </td>
| |
| <td>205.714<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/29<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>206.897<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/52<br />
| |
| </td>
| |
| <td>207.692<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>208.386<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>208.696<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>209.385<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/63<br />
| |
| </td>
| |
| <td>209.524<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>209.528<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/40<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>210<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10/57<br />
| |
| </td>
| |
| <td>210.526<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>3/17<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>211.765<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/62<br />
| |
| </td>
| |
| <td>212.903<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>212.9935<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/45<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>213.333<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>213.598<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/73<br />
| |
| </td>
| |
| <td>213.699<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>213.865<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/28<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>214.286<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12/67<br />
| |
| </td>
| |
| <td>214.925<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/39<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>215.385<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/50<br />
| |
| </td>
| |
| <td>216<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>218.182<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum}} |
| | |
| | {{todo|expand}} |
| | |
| | [[Category:11-tone scales]] |
6L 5s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 5 small steps, repeating every octave. 6L 5s is a child scale of 5L 1s, expanding it by 5 tones. Generators that produce this scale range from 981.8 ¢ to 1000 ¢, or from 200 ¢ to 218.2 ¢. The name amsochromic has been proposed for this scale by Lériendil, originally assigned to 5L 6s by Praveen Venkataramana and standing for "acute major second chromatic"; the name was moved to 6L 5s due to the existing use of "slentonic" for the other MOS.
This MOS has a harmonic entropy minimum (Baldy) which is highly improper (L = 8, s = 1) in an optimal tuning, However, its saving grace is that it at least has index 2 in syntonic temperaments with wide fifths like superpyth (2.3.7) and pentacircle (2.3.11/7.13/11)[clarification needed].
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 6L 5s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 109.1 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
109.1 ¢ to 200.0 ¢
|
2-mosstep
|
Perfect 2-mosstep
|
P2ms
|
L + s
|
200.0 ¢ to 218.2 ¢
|
Augmented 2-mosstep
|
A2ms
|
2L
|
218.2 ¢ to 400.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
L + 2s
|
200.0 ¢ to 327.3 ¢
|
Major 3-mosstep
|
M3ms
|
2L + s
|
327.3 ¢ to 400.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
2L + 2s
|
400.0 ¢ to 436.4 ¢
|
Major 4-mosstep
|
M4ms
|
3L + s
|
436.4 ¢ to 600.0 ¢
|
5-mosstep
|
Minor 5-mosstep
|
m5ms
|
2L + 3s
|
400.0 ¢ to 545.5 ¢
|
Major 5-mosstep
|
M5ms
|
3L + 2s
|
545.5 ¢ to 600.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
3L + 3s
|
600.0 ¢ to 654.5 ¢
|
Major 6-mosstep
|
M6ms
|
4L + 2s
|
654.5 ¢ to 800.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
3L + 4s
|
600.0 ¢ to 763.6 ¢
|
Major 7-mosstep
|
M7ms
|
4L + 3s
|
763.6 ¢ to 800.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
4L + 4s
|
800.0 ¢ to 872.7 ¢
|
Major 8-mosstep
|
M8ms
|
5L + 3s
|
872.7 ¢ to 1000.0 ¢
|
9-mosstep
|
Diminished 9-mosstep
|
d9ms
|
4L + 5s
|
800.0 ¢ to 981.8 ¢
|
Perfect 9-mosstep
|
P9ms
|
5L + 4s
|
981.8 ¢ to 1000.0 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
5L + 5s
|
1000.0 ¢ to 1090.9 ¢
|
Major 10-mosstep
|
M10ms
|
6L + 4s
|
1090.9 ¢ to 1200.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
6L + 5s
|
1200.0 ¢
|
Generator chain
Generator chain of 6L 5s
Bright gens |
Scale degree |
Abbrev.
|
16 |
Augmented 1-mosdegree |
A1md
|
15 |
Augmented 3-mosdegree |
A3md
|
14 |
Augmented 5-mosdegree |
A5md
|
13 |
Augmented 7-mosdegree |
A7md
|
12 |
Augmented 9-mosdegree |
A9md
|
11 |
Augmented 0-mosdegree |
A0md
|
10 |
Augmented 2-mosdegree |
A2md
|
9 |
Major 4-mosdegree |
M4md
|
8 |
Major 6-mosdegree |
M6md
|
7 |
Major 8-mosdegree |
M8md
|
6 |
Major 10-mosdegree |
M10md
|
5 |
Major 1-mosdegree |
M1md
|
4 |
Major 3-mosdegree |
M3md
|
3 |
Major 5-mosdegree |
M5md
|
2 |
Major 7-mosdegree |
M7md
|
1 |
Perfect 9-mosdegree |
P9md
|
0 |
Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md
|
−1 |
Perfect 2-mosdegree |
P2md
|
−2 |
Minor 4-mosdegree |
m4md
|
−3 |
Minor 6-mosdegree |
m6md
|
−4 |
Minor 8-mosdegree |
m8md
|
−5 |
Minor 10-mosdegree |
m10md
|
−6 |
Minor 1-mosdegree |
m1md
|
−7 |
Minor 3-mosdegree |
m3md
|
−8 |
Minor 5-mosdegree |
m5md
|
−9 |
Minor 7-mosdegree |
m7md
|
−10 |
Diminished 9-mosdegree |
d9md
|
−11 |
Diminished 11-mosdegree |
d11md
|
−12 |
Diminished 2-mosdegree |
d2md
|
−13 |
Diminished 4-mosdegree |
d4md
|
−14 |
Diminished 6-mosdegree |
d6md
|
−15 |
Diminished 8-mosdegree |
d8md
|
−16 |
Diminished 10-mosdegree |
d10md
|
Modes
Scale degrees of the modes of 6L 5s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (mosdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
10|0
|
1
|
LLsLsLsLsLs
|
Perf.
|
Maj.
|
Aug.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
9|1
|
10
|
LsLLsLsLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
8|2
|
8
|
LsLsLLsLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
7|3
|
6
|
LsLsLsLLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
6|4
|
4
|
LsLsLsLsLLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Perf.
|
Maj.
|
Perf.
|
5|5
|
2
|
LsLsLsLsLsL
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
4|6
|
11
|
sLLsLsLsLsL
|
Perf.
|
Min.
|
Perf.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
3|7
|
9
|
sLsLLsLsLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
2|8
|
7
|
sLsLsLLsLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
1|9
|
5
|
sLsLsLsLLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
0|10
|
3
|
sLsLsLsLsLL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Dim.
|
Min.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 6L 5s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
9\11
|
|
|
|
|
|
981.818
|
218.182
|
1:1
|
1.000
|
Equalized 6L 5s
|
|
|
|
|
|
50\61
|
983.607
|
216.393
|
6:5
|
1.200
|
|
|
|
|
|
41\50
|
|
984.000
|
216.000
|
5:4
|
1.250
|
|
|
|
|
|
|
73\89
|
984.270
|
215.730
|
9:7
|
1.286
|
|
|
|
|
32\39
|
|
|
984.615
|
215.385
|
4:3
|
1.333
|
Supersoft 6L 5s
|
|
|
|
|
|
87\106
|
984.906
|
215.094
|
11:8
|
1.375
|
|
|
|
|
|
55\67
|
|
985.075
|
214.925
|
7:5
|
1.400
|
|
|
|
|
|
|
78\95
|
985.263
|
214.737
|
10:7
|
1.429
|
|
|
|
23\28
|
|
|
|
985.714
|
214.286
|
3:2
|
1.500
|
Soft 6L 5s
|
|
|
|
|
|
83\101
|
986.139
|
213.861
|
11:7
|
1.571
|
|
|
|
|
|
60\73
|
|
986.301
|
213.699
|
8:5
|
1.600
|
|
|
|
|
|
|
97\118
|
986.441
|
213.559
|
13:8
|
1.625
|
|
|
|
|
37\45
|
|
|
986.667
|
213.333
|
5:3
|
1.667
|
Semisoft 6L 5s
|
|
|
|
|
|
88\107
|
986.916
|
213.084
|
12:7
|
1.714
|
|
|
|
|
|
51\62
|
|
987.097
|
212.903
|
7:4
|
1.750
|
|
|
|
|
|
|
65\79
|
987.342
|
212.658
|
9:5
|
1.800
|
|
|
14\17
|
|
|
|
|
988.235
|
211.765
|
2:1
|
2.000
|
Basic 6L 5s Scales with tunings softer than this are proper
|
|
|
|
|
|
61\74
|
989.189
|
210.811
|
9:4
|
2.250
|
|
|
|
|
|
47\57
|
|
989.474
|
210.526
|
7:3
|
2.333
|
|
|
|
|
|
|
80\97
|
989.691
|
210.309
|
12:5
|
2.400
|
|
|
|
|
33\40
|
|
|
990.000
|
210.000
|
5:2
|
2.500
|
Semihard 6L 5s
|
|
|
|
|
|
85\103
|
990.291
|
209.709
|
13:5
|
2.600
|
|
|
|
|
|
52\63
|
|
990.476
|
209.524
|
8:3
|
2.667
|
|
|
|
|
|
|
71\86
|
990.698
|
209.302
|
11:4
|
2.750
|
|
|
|
19\23
|
|
|
|
991.304
|
208.696
|
3:1
|
3.000
|
Hard 6L 5s
|
|
|
|
|
|
62\75
|
992.000
|
208.000
|
10:3
|
3.333
|
|
|
|
|
|
43\52
|
|
992.308
|
207.692
|
7:2
|
3.500
|
|
|
|
|
|
|
67\81
|
992.593
|
207.407
|
11:3
|
3.667
|
|
|
|
|
24\29
|
|
|
993.103
|
206.897
|
4:1
|
4.000
|
Superhard 6L 5s
|
|
|
|
|
|
53\64
|
993.750
|
206.250
|
9:2
|
4.500
|
|
|
|
|
|
29\35
|
|
994.286
|
205.714
|
5:1
|
5.000
|
|
|
|
|
|
|
34\41
|
995.122
|
204.878
|
6:1
|
6.000
|
|
5\6
|
|
|
|
|
|
1000.000
|
200.000
|
1:0
|
→ ∞
|
Collapsed 6L 5s
|