6L 5s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 565766819 - Original comment: **
ArrowHead294 (talk | contribs)
m substitute deprecated template
 
(16 intermediate revisions by 10 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox MOS}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{MOS intro}} The name '''amsochromic''' has been proposed for this scale by [[User:Lériendil|Lériendil]], originally assigned to [[5L 6s]] by [[Praveen Venkataramana]] and standing for "acute [[major second]] chromatic"; the name was moved to 6L 5s due to the existing use of "slentonic" for the other MOS.
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-09 14:20:35 UTC</tt>.<br>
: The original revision id was <tt>565766819</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, generated by a medium major second of 200 (1/6edo) to 218.182 (2/11edo) cents, has a harmonic entropy minimum (Baldy) which is highly improper (L=8 s=1) in an optimal tuning, However, its saving grace is that it at least has index 2 in syntonic temperaments with wide fifths like superpyth (2.3.7) and pentacircle (2.3.11/7.13/11).
|| 1/6 ||  ||  ||  ||  || 200 ||
||  ||  ||  ||  || 6/35 || 205.714 ||
||  ||  ||  || 5/29 ||  || 206.897 ||
||  ||  ||  ||  || 9/52 || 207.692 ||
||  ||  ||  ||  ||  || 208.386 ||
||  ||  || 4/23 ||  ||  || 208.696 ||
||  ||  ||  ||  ||  || 209.385 ||
||  ||  ||  ||  || 11/63 || 209.524 ||
||  ||  ||  ||  ||  || 209.528 ||
||  ||  ||  || 7/40 ||  || 210 ||
||  ||  ||  ||  || 10/57 || 210.526 ||
||  || 3/17 ||  ||  ||  || 211.765 ||
||  ||  ||  ||  || 11/62 || 212.903 ||
||  ||  ||  ||  ||  || 212.9935 ||
||  ||  ||  || 8/45 ||  || 213.333 ||
||  ||  ||  ||  ||  || 213.598 ||
||  ||  ||  ||  || 13/73 || 213.699 ||
||  ||  ||  ||  ||  || 213.865 ||
||  ||  || 5/28 ||  ||  || 214.286 ||
||  ||  ||  ||  || 12/67 || 214.925 ||
||  ||  ||  || 7/39 ||  || 215.385 ||
||  ||  ||  ||  || 9/50 || 216 ||
|| 2/11 ||  ||  ||  ||  || 218.182 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;6L 5s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS, generated by a medium major second of 200 (1/6edo) to 218.182 (2/11edo) cents, has a harmonic entropy minimum (Baldy) which is highly improper (L=8 s=1) in an optimal tuning, However, its saving grace is that it at least has index 2 in syntonic temperaments with wide fifths like superpyth (2.3.7) and pentacircle (2.3.11/7.13/11).&lt;br /&gt;


This MOS has a [[harmonic entropy]] minimum ([[Baldy]]) which is highly improper ({{nowrap|L {{=}} 8|s {{=}} 1}}) in an optimal tuning, However, its saving grace is that it at least has [[index]] 2 in [[syntonic temperament]]s with wide fifths like [[superpyth]] (2.3.7) and [[pentacircle]] (2.3.11/7.13/11){{clarify | the subgroup provided doesn’t match the one on the Pentacircle page}}.


&lt;table class="wiki_table"&gt;
== Scale properties ==
    &lt;tr&gt;
{{TAMNAMS use}}
        &lt;td&gt;1/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205.714&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206.897&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;207.692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;208.386&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;208.696&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;209.385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;209.524&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;209.528&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210.526&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.765&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212.903&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212.9935&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;213.333&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;213.598&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/73&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;213.699&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;213.865&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;214.286&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;214.925&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;215.385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
=== Intervals ===
{{MOS intervals}}
 
=== Generator chain ===
{{MOS genchain}}
 
=== Modes ===
{{MOS mode degrees}}
 
== Scale tree ==
{{MOS tuning spectrum}}
 
{{todo|expand}}
 
[[Category:11-tone scales]]

Latest revision as of 14:01, 5 May 2025

↖ 5L 4s ↑ 6L 4s 7L 4s ↗
← 5L 5s 6L 5s 7L 5s →
↙ 5L 6s ↓ 6L 6s 7L 6s ↘
┌╥╥┬╥┬╥┬╥┬╥┬┐
│║║│║│║│║│║││
│││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLsLsLsLsLs
sLsLsLsLsLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 9\11 to 5\6 (981.8 ¢ to 1000.0 ¢)
Dark 1\6 to 2\11 (200.0 ¢ to 218.2 ¢)
TAMNAMS information
Related to 5L 1s (machinoid)
With tunings 1:1 to 2:1 (soft-of-basic)
Related MOS scales
Parent 5L 1s
Sister 5L 6s
Daughters 11L 6s, 6L 11s
Neutralized 1L 10s
2-Flought 17L 5s, 6L 16s
Equal tunings
Equalized (L:s = 1:1) 9\11 (981.8 ¢)
Supersoft (L:s = 4:3) 32\39 (984.6 ¢)
Soft (L:s = 3:2) 23\28 (985.7 ¢)
Semisoft (L:s = 5:3) 37\45 (986.7 ¢)
Basic (L:s = 2:1) 14\17 (988.2 ¢)
Semihard (L:s = 5:2) 33\40 (990.0 ¢)
Hard (L:s = 3:1) 19\23 (991.3 ¢)
Superhard (L:s = 4:1) 24\29 (993.1 ¢)
Collapsed (L:s = 1:0) 5\6 (1000.0 ¢)

6L 5s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 5 small steps, repeating every octave. 6L 5s is a child scale of 5L 1s, expanding it by 5 tones. Generators that produce this scale range from 981.8 ¢ to 1000 ¢, or from 200 ¢ to 218.2 ¢. The name amsochromic has been proposed for this scale by Lériendil, originally assigned to 5L 6s by Praveen Venkataramana and standing for "acute major second chromatic"; the name was moved to 6L 5s due to the existing use of "slentonic" for the other MOS.

This MOS has a harmonic entropy minimum (Baldy) which is highly improper (L = 8, s = 1) in an optimal tuning, However, its saving grace is that it at least has index 2 in syntonic temperaments with wide fifths like superpyth (2.3.7) and pentacircle (2.3.11/7.13/11)[clarification needed].

Scale properties

This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.

Intervals

Intervals of 6L 5s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0 ¢
1-mosstep Minor 1-mosstep m1ms s 0.0 ¢ to 109.1 ¢
Major 1-mosstep M1ms L 109.1 ¢ to 200.0 ¢
2-mosstep Perfect 2-mosstep P2ms L + s 200.0 ¢ to 218.2 ¢
Augmented 2-mosstep A2ms 2L 218.2 ¢ to 400.0 ¢
3-mosstep Minor 3-mosstep m3ms L + 2s 200.0 ¢ to 327.3 ¢
Major 3-mosstep M3ms 2L + s 327.3 ¢ to 400.0 ¢
4-mosstep Minor 4-mosstep m4ms 2L + 2s 400.0 ¢ to 436.4 ¢
Major 4-mosstep M4ms 3L + s 436.4 ¢ to 600.0 ¢
5-mosstep Minor 5-mosstep m5ms 2L + 3s 400.0 ¢ to 545.5 ¢
Major 5-mosstep M5ms 3L + 2s 545.5 ¢ to 600.0 ¢
6-mosstep Minor 6-mosstep m6ms 3L + 3s 600.0 ¢ to 654.5 ¢
Major 6-mosstep M6ms 4L + 2s 654.5 ¢ to 800.0 ¢
7-mosstep Minor 7-mosstep m7ms 3L + 4s 600.0 ¢ to 763.6 ¢
Major 7-mosstep M7ms 4L + 3s 763.6 ¢ to 800.0 ¢
8-mosstep Minor 8-mosstep m8ms 4L + 4s 800.0 ¢ to 872.7 ¢
Major 8-mosstep M8ms 5L + 3s 872.7 ¢ to 1000.0 ¢
9-mosstep Diminished 9-mosstep d9ms 4L + 5s 800.0 ¢ to 981.8 ¢
Perfect 9-mosstep P9ms 5L + 4s 981.8 ¢ to 1000.0 ¢
10-mosstep Minor 10-mosstep m10ms 5L + 5s 1000.0 ¢ to 1090.9 ¢
Major 10-mosstep M10ms 6L + 4s 1090.9 ¢ to 1200.0 ¢
11-mosstep Perfect 11-mosstep P11ms 6L + 5s 1200.0 ¢

Generator chain

Generator chain of 6L 5s
Bright gens Scale degree Abbrev.
16 Augmented 1-mosdegree A1md
15 Augmented 3-mosdegree A3md
14 Augmented 5-mosdegree A5md
13 Augmented 7-mosdegree A7md
12 Augmented 9-mosdegree A9md
11 Augmented 0-mosdegree A0md
10 Augmented 2-mosdegree A2md
9 Major 4-mosdegree M4md
8 Major 6-mosdegree M6md
7 Major 8-mosdegree M8md
6 Major 10-mosdegree M10md
5 Major 1-mosdegree M1md
4 Major 3-mosdegree M3md
3 Major 5-mosdegree M5md
2 Major 7-mosdegree M7md
1 Perfect 9-mosdegree P9md
0 Perfect 0-mosdegree
Perfect 11-mosdegree
P0md
P11md
−1 Perfect 2-mosdegree P2md
−2 Minor 4-mosdegree m4md
−3 Minor 6-mosdegree m6md
−4 Minor 8-mosdegree m8md
−5 Minor 10-mosdegree m10md
−6 Minor 1-mosdegree m1md
−7 Minor 3-mosdegree m3md
−8 Minor 5-mosdegree m5md
−9 Minor 7-mosdegree m7md
−10 Diminished 9-mosdegree d9md
−11 Diminished 11-mosdegree d11md
−12 Diminished 2-mosdegree d2md
−13 Diminished 4-mosdegree d4md
−14 Diminished 6-mosdegree d6md
−15 Diminished 8-mosdegree d8md
−16 Diminished 10-mosdegree d10md

Modes

Scale degrees of the modes of 6L 5s
UDP Cyclic
order
Step
pattern
Scale degree (mosdegree)
0 1 2 3 4 5 6 7 8 9 10 11
10|0 1 LLsLsLsLsLs Perf. Maj. Aug. Maj. Maj. Maj. Maj. Maj. Maj. Perf. Maj. Perf.
9|1 10 LsLLsLsLsLs Perf. Maj. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Perf. Maj. Perf.
8|2 8 LsLsLLsLsLs Perf. Maj. Perf. Maj. Min. Maj. Maj. Maj. Maj. Perf. Maj. Perf.
7|3 6 LsLsLsLLsLs Perf. Maj. Perf. Maj. Min. Maj. Min. Maj. Maj. Perf. Maj. Perf.
6|4 4 LsLsLsLsLLs Perf. Maj. Perf. Maj. Min. Maj. Min. Maj. Min. Perf. Maj. Perf.
5|5 2 LsLsLsLsLsL Perf. Maj. Perf. Maj. Min. Maj. Min. Maj. Min. Perf. Min. Perf.
4|6 11 sLLsLsLsLsL Perf. Min. Perf. Maj. Min. Maj. Min. Maj. Min. Perf. Min. Perf.
3|7 9 sLsLLsLsLsL Perf. Min. Perf. Min. Min. Maj. Min. Maj. Min. Perf. Min. Perf.
2|8 7 sLsLsLLsLsL Perf. Min. Perf. Min. Min. Min. Min. Maj. Min. Perf. Min. Perf.
1|9 5 sLsLsLsLLsL Perf. Min. Perf. Min. Min. Min. Min. Min. Min. Perf. Min. Perf.
0|10 3 sLsLsLsLsLL Perf. Min. Perf. Min. Min. Min. Min. Min. Min. Dim. Min. Perf.

Scale tree

Scale tree and tuning spectrum of 6L 5s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
9\11 981.818 218.182 1:1 1.000 Equalized 6L 5s
50\61 983.607 216.393 6:5 1.200
41\50 984.000 216.000 5:4 1.250
73\89 984.270 215.730 9:7 1.286
32\39 984.615 215.385 4:3 1.333 Supersoft 6L 5s
87\106 984.906 215.094 11:8 1.375
55\67 985.075 214.925 7:5 1.400
78\95 985.263 214.737 10:7 1.429
23\28 985.714 214.286 3:2 1.500 Soft 6L 5s
83\101 986.139 213.861 11:7 1.571
60\73 986.301 213.699 8:5 1.600
97\118 986.441 213.559 13:8 1.625
37\45 986.667 213.333 5:3 1.667 Semisoft 6L 5s
88\107 986.916 213.084 12:7 1.714
51\62 987.097 212.903 7:4 1.750
65\79 987.342 212.658 9:5 1.800
14\17 988.235 211.765 2:1 2.000 Basic 6L 5s
Scales with tunings softer than this are proper
61\74 989.189 210.811 9:4 2.250
47\57 989.474 210.526 7:3 2.333
80\97 989.691 210.309 12:5 2.400
33\40 990.000 210.000 5:2 2.500 Semihard 6L 5s
85\103 990.291 209.709 13:5 2.600
52\63 990.476 209.524 8:3 2.667
71\86 990.698 209.302 11:4 2.750
19\23 991.304 208.696 3:1 3.000 Hard 6L 5s
62\75 992.000 208.000 10:3 3.333
43\52 992.308 207.692 7:2 3.500
67\81 992.593 207.407 11:3 3.667
24\29 993.103 206.897 4:1 4.000 Superhard 6L 5s
53\64 993.750 206.250 9:2 4.500
29\35 994.286 205.714 5:1 5.000
34\41 995.122 204.878 6:1 6.000
5\6 1000.000 200.000 1:0 → ∞ Collapsed 6L 5s