19-limit: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 391765674 - Original comment: corrected link targets WTF...**
Edo approximation: calibrate the list according to my research results
 
(30 intermediate revisions by 10 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Prime limit navigation|19}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The '''19-limit''' consists of [[just intonation]] [[interval]]s whose [[ratio]]s contain no [[prime factor]]s higher than 19. It is the 8th [[prime limit]] and is a superset of the [[17-limit]] and a subset of the [[23-limit]].  
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2012-12-12 17:05:23 UTC</tt>.<br>
: The original revision id was <tt>391765674</tt>.<br>
: The revision comment was: <tt>corrected link targets WTF...</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">In 19-limit [[Just Intonation]], all ratios in the system will contain no primes higher than 19.


==[[#x-17-limit Intervals]]19-odd limit Intervals==
The 19-limit is a [[rank and codimension|rank-8]] system, and can be modeled in a 7-dimensional [[lattice]], with the primes 3, 5, 7, 11, 13, 17, and 19 represented by each dimension. The prime 2 does not appear in the typical 19-limit lattice because [[octave equivalence]] is presumed. If octave equivalence is not presumed, an eighth dimension is needed.
||~ Ratio ||~ Cents Value ||~ Name ||
|| [[20_19|20/19]] || 88.801 || lesser undevicesimal semitone ||
|| [[19_18|19/18]] || 93.603 || greater undevicesimal semitone ||
|| [[19_17|19/17]] || 192.558 || undevicesimal whole tone ("meantone") ||
|| [[22_19|22/19]] || 253.805 ||  ||
|| [[19_16|19/16]] || 297.513 || undevicesimal minor third ||
|| [[24_19|24/19]] || 404.442 || lesser undevicesimal major third ||
|| [[19_15|19/15]] || 409.244 || greater undevicesimal major third ||
|| [[19_14|19/14]] || 528.687 || undevicesimal acute fourth ||
|| [[26_19|26/19]] || 543.015 || undevicesimal superfourth ||
|| [[19_13|19/13]] || 656.985 || undevicesimal subfifth ||
|| [[28_19|28/19]] || 671.313 || undevicesimal grave fifth ||
|| [[30_19|30/19]] || 790.756 || lesser undevicesimal minor sixth ||
|| [[19_12|19/12]] || 795.558 || lesser undevicesimal minor sixth ||
|| [[32_19|32/19]] || 902.487 || undevicesimal major sixth ||
|| [[19_11|19/11]] || 946.195 ||  ||
|| [[34_19|34/19]] || 1007.442 || undevicesimal minor seventh ||
|| [[36_19|36/19]] || 1106.397 || lesser undevicesimal major seventh ||
|| [[19_10|19/10]] || 1111.199 || greater undevicesimal major seventh ||


see [[Harmonic Limit]]</pre></div>
These things are contained by the 19-limit, but not the 17-limit:  
<h4>Original HTML content:</h4>
* The [[19-odd-limit|19-]] and [[21-odd-limit]];  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;19-limit&lt;/title&gt;&lt;/head&gt;&lt;body&gt;In 19-limit &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt;, all ratios in the system will contain no primes higher than 19.&lt;br /&gt;
* Mode 10 and 11 of the harmonic or subharmonic series.
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-19-odd limit Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:2:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@x-17-limit Intervals&amp;quot; title=&amp;quot;Anchor: x-17-limit Intervals&amp;quot;/&amp;gt; --&gt;&lt;a name="x-17-limit Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:2 --&gt;19-odd limit Intervals&lt;/h2&gt;


&lt;table class="wiki_table"&gt;
== Terminology and notation ==
    &lt;tr&gt;
[[Interval_region|Interval categories]] of [[harmonic class|HC19]] are relatively clear. [[19/16]] is most commonly considered a minor third, as 1–19/16–3/2 is an important {{w|tertian}} chord (the [[Functional Just System]] and [[Helmholtz–Ellis notation]] agree). However, 19/16 may act as an augmented second in certain cases. This is more complex on its own but may simplify certain combinations with other intervals, especially if [[17/16]] is considered an augmented unison and/or if [[23/16]] is considered an augmented fourth. Perhaps most interestingly, [[Sagittal notation]] provides an accidental to enharmonically spell intervals of HC19 this way.
        &lt;th&gt;Ratio&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Cents Value&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Name&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/20_19"&gt;20/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88.801&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;lesser undevicesimal semitone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_18"&gt;19/18&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;93.603&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;greater undevicesimal semitone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_17"&gt;19/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;192.558&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal whole tone (&amp;quot;meantone&amp;quot;)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/22_19"&gt;22/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;253.805&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;297.513&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal minor third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/24_19"&gt;24/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;404.442&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;lesser undevicesimal major third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_15"&gt;19/15&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;409.244&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;greater undevicesimal major third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_14"&gt;19/14&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;528.687&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal acute fourth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/26_19"&gt;26/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;543.015&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal superfourth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_13"&gt;19/13&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;656.985&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal subfifth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/28_19"&gt;28/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;671.313&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal grave fifth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/30_19"&gt;30/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;790.756&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;lesser undevicesimal minor sixth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_12"&gt;19/12&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;795.558&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;lesser undevicesimal minor sixth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/32_19"&gt;32/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;902.487&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal major sixth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_11"&gt;19/11&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;946.195&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/34_19"&gt;34/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1007.442&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;undevicesimal minor seventh&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/36_19"&gt;36/19&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1106.397&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;lesser undevicesimal major seventh&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_10"&gt;19/10&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1111.199&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;greater undevicesimal major seventh&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
== Edo approximation ==
see &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;Harmonic Limit&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
Here is a list of [[edo]]s with progressively better tunings for 19-limit intervals ([[monotonicity limit]] ≥ 19 and decreasing [[TE error]]): {{EDOs| 34dh, 38df, 41, 50, 53, 58h, 68, 72, 94, 103h, 111, 121, 130, 140, 152fg, 159, 161, 183, 190g, 193, 212gh, 217, 243e, 270, 311, 400, 422, 460, 525, 581, 742, 935, 954h }} and so on. For a more comprehensive list, see [[Sequence of equal temperaments by error]].
 
Here is a list of edos which provides relatively good tunings for 19-limit intervals ([[TE relative error]] < 5%): {{EDOs| 72, 111, 217, 243e, 270, 282, 311, 354, 364, 373g, 400, 422, 460, 494(h), 525, 540, 581, 597, 624, 643, 653, 692, 718, 742, 764h, 814, 836f, 882, 908, 925, 935, 954h and }} so on.
 
: '''Note''': [[wart notation]] is used to specify the [[val]] chosen for the edo. In the above list, "34dh" means taking the second closest approximations of harmonics 7 and 19.
 
== Intervals ==
 
Here are all the [[21-odd-limit]] intervals of 19-limit:
 
{| class="wikitable"
! Ratio
! Cents Value
! colspan="2" | Color Name
! Interval Name
|-
| [[20/19]]
| 88.801
| 19uy1
| nuyo 1son
| small undevicesimal semitone
|-
| [[19/18]]
| 93.603
| 19o2
| ino 2nd
| large undevicesimal semitone
|-
| [[21/19]]
| 173.268
| 19uz2
| nuzo 2nd
| small undevicesimal whole tone
|-
| [[19/17]]
| 192.558
| 19o17u2
| nosu 2nd
| large undevicesimal whole tone, quasi-meantone
|-
| [[22/19]]
| 253.805
| 19u1o2
| nulo 2nd
| undevicesimal second-third
|-
| [[19/16]]
| 297.513
| 19o3
| ino 3rd
| undevicesimal minor third
|-
| [[24/19]]
| 404.442
| 19u3
| inu 3rd
| small undevicesimal major third
|-
| [[19/15]]
| 409.244
| 19og4
| nogu 4th
| large undevicesimal major third
|-
| [[19/14]]
| 528.687
| 19or4
| noru 4th
| undevicesimal acute fourth
|-
| [[26/19]]
| 543.015
| 19u3o4
| nutho 4th
| undevicesimal super fourth
|-
| [[19/13]]
| 656.985
| 19o3u5
| nothu 5th
| undevicesimal subfifth
|-
| [[28/19]]
| 671.313
| 19uz5
| nuzo 5th
| undevicesimal gravefifth
|-
| [[30/19]]
| 790.756
| 19uy5
| nuyo 5th
| small undevicesimal minor sixth
|-
| [[19/12]]
| 795.558
| 19o6
| ino 6th
| large undevicesimal minor sixth
|-
| [[32/19]]
| 902.487
| 19u6
| inu 6th
| undevicesimal major sixth
|-
| [[19/11]]
| 946.195
| 19o1u7
| nolu 7th
| undevicesimal sixth-seventh
|-
| [[34/19]]
| 1007.442
| 19u17o7
| nuso 7th
| small undevicesimal minor seventh
|-
| [[38/21]]
| 1026.732
| 19or7
| noru 7th
| large undevicesimal minor seventh
|-
| [[36/19]]
| 1106.397
| 19u7
| inu 7th
| small undevicesimal major seventh
|-
| [[19/10]]
| 1111.199
| 19og8
| nogu 8ve
| large undevicesimal major seventh
|}
 
== Music ==
; [[Domin]]
* [https://www.youtube.com/watch?v=WTo5YihoLqs ''Asuttan''] (2024)
* [https://www.youtube.com/watch?v=OPt3Y9VSliU ''Asuttan Bouta''] (2024)
 
; [[Joseph Monzo]]
* [https://www.youtube.com/watch?v=it5avwRE8PI ''Theme from Invisible Haircut''] (1990)
 
[[Category:19-limit| ]] <!-- main article -->

Latest revision as of 16:23, 20 August 2025

The 19-limit consists of just intonation intervals whose ratios contain no prime factors higher than 19. It is the 8th prime limit and is a superset of the 17-limit and a subset of the 23-limit.

The 19-limit is a rank-8 system, and can be modeled in a 7-dimensional lattice, with the primes 3, 5, 7, 11, 13, 17, and 19 represented by each dimension. The prime 2 does not appear in the typical 19-limit lattice because octave equivalence is presumed. If octave equivalence is not presumed, an eighth dimension is needed.

These things are contained by the 19-limit, but not the 17-limit:

  • The 19- and 21-odd-limit;
  • Mode 10 and 11 of the harmonic or subharmonic series.

Terminology and notation

Interval categories of HC19 are relatively clear. 19/16 is most commonly considered a minor third, as 1–19/16–3/2 is an important tertian chord (the Functional Just System and Helmholtz–Ellis notation agree). However, 19/16 may act as an augmented second in certain cases. This is more complex on its own but may simplify certain combinations with other intervals, especially if 17/16 is considered an augmented unison and/or if 23/16 is considered an augmented fourth. Perhaps most interestingly, Sagittal notation provides an accidental to enharmonically spell intervals of HC19 this way.

Edo approximation

Here is a list of edos with progressively better tunings for 19-limit intervals (monotonicity limit ≥ 19 and decreasing TE error): 34dh, 38df, 41, 50, 53, 58h, 68, 72, 94, 103h, 111, 121, 130, 140, 152fg, 159, 161, 183, 190g, 193, 212gh, 217, 243e, 270, 311, 400, 422, 460, 525, 581, 742, 935, 954h and so on. For a more comprehensive list, see Sequence of equal temperaments by error.

Here is a list of edos which provides relatively good tunings for 19-limit intervals (TE relative error < 5%): 72, 111, 217, 243e, 270, 282, 311, 354, 364, 373g, 400, 422, 460, 494(h), 525, 540, 581, 597, 624, 643, 653, 692, 718, 742, 764h, 814, 836f, 882, 908, 925, 935, 954h and so on.

Note: wart notation is used to specify the val chosen for the edo. In the above list, "34dh" means taking the second closest approximations of harmonics 7 and 19.

Intervals

Here are all the 21-odd-limit intervals of 19-limit:

Ratio Cents Value Color Name Interval Name
20/19 88.801 19uy1 nuyo 1son small undevicesimal semitone
19/18 93.603 19o2 ino 2nd large undevicesimal semitone
21/19 173.268 19uz2 nuzo 2nd small undevicesimal whole tone
19/17 192.558 19o17u2 nosu 2nd large undevicesimal whole tone, quasi-meantone
22/19 253.805 19u1o2 nulo 2nd undevicesimal second-third
19/16 297.513 19o3 ino 3rd undevicesimal minor third
24/19 404.442 19u3 inu 3rd small undevicesimal major third
19/15 409.244 19og4 nogu 4th large undevicesimal major third
19/14 528.687 19or4 noru 4th undevicesimal acute fourth
26/19 543.015 19u3o4 nutho 4th undevicesimal super fourth
19/13 656.985 19o3u5 nothu 5th undevicesimal subfifth
28/19 671.313 19uz5 nuzo 5th undevicesimal gravefifth
30/19 790.756 19uy5 nuyo 5th small undevicesimal minor sixth
19/12 795.558 19o6 ino 6th large undevicesimal minor sixth
32/19 902.487 19u6 inu 6th undevicesimal major sixth
19/11 946.195 19o1u7 nolu 7th undevicesimal sixth-seventh
34/19 1007.442 19u17o7 nuso 7th small undevicesimal minor seventh
38/21 1026.732 19or7 noru 7th large undevicesimal minor seventh
36/19 1106.397 19u7 inu 7th small undevicesimal major seventh
19/10 1111.199 19og8 nogu 8ve large undevicesimal major seventh

Music

Domin
Joseph Monzo