624edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 623edo 624edo 625edo →
Prime factorization 24 × 3 × 13
Step size 1.92308¢ 
Fifth 365\624 (701.923¢)
Semitones (A1:m2) 59:47 (113.5¢ : 90.38¢)
Consistency limit 27
Distinct consistency limit 27

624 equal divisions of the octave (abbreviated 624edo or 624ed2), also called 624-tone equal temperament (624tet) or 624 equal temperament (624et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 624 equal parts of about 1.92 ¢ each. Each step represents a frequency ratio of 21/624, or the 624th root of 2.

Theory

624edo is consistent to the 27-odd-limit. As an equal temperament, it tempers out [23 6 -14 (vishnuzma) and [-69 45 -1 (counterschisma) in the 5-limit; 250047/250000, 2460375/2458624, and 134217728/133984375 in the 7-limit; 9801/9800, 46656/46585, 131072/130977, and 151263/151250 in the 11-limit; 1716/1715, 2080/2079, 4096/4095, 34398/34375, and 39366/39325 in the 13-limit; 936/935, 1701/1700, 2025/2023, and 2058/2057 in the 17-limit; 1521/1520, 2376/2375, 2432/2431, and 3328/3325 in the 19-limit; 2024/2023, 2025/2024, 2646/2645, 3520/3519, and 3888/3887 in the 23-limit.

It provides an excellent optimal patent val for the rank-6 temperament tempering out 936/935, as well as the rank-5 2.3.5.11.13.17-subgroup restriction thereof.

Prime harmonics

Approximation of prime harmonics in 624edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.032 +0.225 +0.405 +0.605 -0.143 +0.814 +0.564 +0.572 -0.731 -0.805
Relative (%) +0.0 -1.7 +11.7 +21.1 +31.5 -7.4 +42.3 +29.3 +29.7 -38.0 -41.8
Steps
(reduced)
624
(0)
989
(365)
1449
(201)
1752
(504)
2159
(287)
2309
(437)
2551
(55)
2651
(155)
2823
(327)
3031
(535)
3091
(595)

Subsets and supersets

Since 624 factors into 24 × 3 × 13, 624edo has subset edos 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 156, and 312.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-989 624 [624 989]] +0.0101 0.0101 0.52
2.3.5 [23 6 -14, [-69 45 -1 [624 989 1449]] −0.0256 0.0510 2.65
2.3.5.7 250047/250000, 2460375/2458624, [27 0 -8 -3 [624 989 1449 1752]] −0.0552 0.0678 3.52
2.3.5.7.11 9801/9800, 46656/46585, 131072/130977, 151263/151250 [624 989 1449 1752 2159]] −0.0792 0.0772 4.02
2.3.5.7.11.13 1716/1715, 2080/2079, 4096/4095, 34398/34375, 39366/39325 [624 989 1449 1752 2159 2309]] −0.0595 0.0831 4.32
2.3.5.7.11.13.17 936/935, 1701/1700, 1716/1715, 2025/2023, 4096/4095, 11016/11011 [624 989 1449 1752 2159 2309 2551]] −0.0795 0.0911 4.74
2.3.5.7.11.13.17.19 936/935, 1521/1520, 1701/1700, 1716/1715, 2025/2023, 2376/2375, 11016/11011 [624 989 1449 1752 2159 2309 2551 2651]] −0.0861 0.0870 4.53
2.3.5.7.11.13.17.19.23 936/935, 1521/1520, 1701/1700, 1716/1715, 2024/2023, 2025/2023, 2376/2375, 2646/2645 [624 989 1449 1752 2159 2309 2551 2651 2823]] −0.0906 0.0830 4.32

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 259\624 498.08 4/3 Counterschismic
1 311\624 598.08 847/600 Vydubychi
2 37\624 71.15 25/24 Vishnu (5-limit)
3 73\624 140.38 243/224 Septichrome
6 177\624
(31\624)
340.38
(59.62)
162/133
(88/85)
Semiseptichrome
12 259\624
(1\624)
498.08
(1.92)
4/3
(32805/32768)
Atomic
13 259\624
(19\624)
498.08
(36.54)
4/3
(?)
Aluminium (5-limit)
16 259\624
(14\624)
498.08
(48.077)
4/3
(?)
Sulfur
24 303\624
(17\624)
582.692
(32.692)
7/5
(?)
Chromium
26 259\624
(19\624)
498.08
(36.54)
4/3
(?)
Iron

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Eliora