Archytas clan: Difference between revisions
m + 27edo and 49edo as contenders |
m →Archy: schism isn't an exo |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 20: | Line 20: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1196.9552{{c}}, ~3/2 = 707.5215{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -3.045 +2.522 +3.952 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.3901{{c}} | ||
: error map: {{val| 0.000 +7. | : error map: {{val| 0.000 +7.435 +12.394 }} | ||
{{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }} | {{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }} | ||
Line 34: | Line 34: | ||
==== 7-limit extensions ==== | ==== 7-limit extensions ==== | ||
The second comma in the comma list defines which [[7-limit]] family member we are looking at: | The second comma in the comma list defines which [[7-limit]] family member we are looking at: | ||
* [[#Schism|Schism]] adds 360/343, for | * [[#Schism|Schism]] adds 360/343, for a tuning around [[12edo]]; | ||
* Dominant adds [[36/35]], for a tuning | * Dominant adds [[36/35]], for a tuning between [[12edo]] and [[17edo|17c-edo]]; | ||
* [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]]; | * [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]]; | ||
* [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]]; | * [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]]; | ||
Line 57: | Line 57: | ||
* ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]] | * ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]] | ||
* ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]] | * ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]] | ||
* | * [[Blackwood]] (+28/27) → [[Limmic temperaments #Blackwood|Limmic temperaments]] | ||
* ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]] | * ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]] | ||
Line 77: | Line 77: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.2650{{c}}, ~3/2 = 705.5803{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 707.4981{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }} | {{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }} | ||
Line 98: | Line 98: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.1909{{c}}, ~3/2 = 704.4836{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 706.4289{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 17 }} | {{Optimal ET sequence|legend=0| 12f, 17 }} | ||
Line 118: | Line 118: | ||
{{Mapping|legend=1| 1 0 -12 6 | 0 1 9 -2 }} | {{Mapping|legend=1| 1 0 -12 6 | 0 1 9 -2 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1197.0549{{c}}, ~3/2 = 708.5478{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -2.945 +3.648 -0.548 +2.298 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 710.1193{{c}} | ||
: error map: {{val| 0.000 +8. | : error map: {{val| 0.000 +8.164 +4.760 +10.935 }} | ||
{{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }} | {{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }} | ||
Line 141: | Line 139: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.0673{{c}}, ~3/2 = 708.4391{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.0129{{c}} | ||
{{Optimal ET sequence|legend=0| 22, 27e, 49 }} | {{Optimal ET sequence|legend=0| 22, 27e, 49 }} | ||
Line 156: | Line 154: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.3011{{c}}, ~3/2 = 708.8813{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.3219{{c}} | ||
{{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }} | {{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }} | ||
Line 171: | Line 169: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.4942{{c}}, ~16/13 = 354.2950{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~16/13 = 354.9824{{c}} | ||
{{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }} | {{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }} | ||
Line 188: | Line 186: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.6960{{c}}, ~3/2 = 708.7235{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 709.4699{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 17, 22 }} | {{Optimal ET sequence|legend=0| 5, 17, 22 }} | ||
Line 203: | Line 201: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1199.9871{{c}}, ~3/2 = 708.6952{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.7028{{c}} | ||
{{Optimal ET sequence|legend=0| 5f, 17, 22 }} | {{Optimal ET sequence|legend=0| 5f, 17, 22 }} | ||
Line 218: | Line 216: | ||
{{Mapping|legend=1| 1 0 23 6 | 0 1 -13 -2 }} | {{Mapping|legend=1| 1 0 23 6 | 0 1 -13 -2 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1196.9830{{c}}, ~3/2 = 706.4578{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -3.017 +1.486 -0.435 +6.190 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 708.3716{{c}} | ||
: error map: {{val| 0.000 +6. | : error map: {{val| 0.000 +6.417 +4.855 +14.431 }} | ||
{{Optimal ET sequence|legend=1| 17c, 22, 61d }} | {{Optimal ET sequence|legend=1| 17c, 22, 61d }} | ||
Line 241: | Line 237: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.5675{{c}}, ~3/2 = 706.7690{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.3200{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }} | {{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }} | ||
Line 256: | Line 252: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.2543{{c}}, ~3/2 = 706.9736{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0936{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 22, 39d }} | {{Optimal ET sequence|legend=0| 17c, 22, 39d }} | ||
Line 271: | Line 267: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.8446{{c}}, ~3/2 = 708.3388{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0252{{c}} | ||
{{Optimal ET sequence|legend=0| 22 }} | {{Optimal ET sequence|legend=0| 22 }} | ||
Line 279: | Line 275: | ||
== Ultrapyth == | == Ultrapyth == | ||
{{Main| Ultrapyth }} | |||
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx). | Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx). | ||
Line 286: | Line 284: | ||
{{Mapping|legend=1| 1 0 -20 6 | 0 1 14 -2 }} | {{Mapping|legend=1| 1 0 -20 6 | 0 1 14 -2 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1197.2673{{c}}, ~3/2 = 712.0258{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -2.733 +7.338 -1.557 -3.808 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5430{{c}} | ||
: error map: {{val| 0.000 +11. | : error map: {{val| 0.000 +11.588 +3.288 +4.088 }} | ||
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }} | {{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }} | ||
Line 307: | Line 303: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.0290{{c}}, ~3/2 = 712.2235{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.3754{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 32, 37 }} | {{Optimal ET sequence|legend=0| 5, 32, 37 }} | ||
Line 322: | Line 318: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.1911{{c}}, ~3/2 = 712.4243{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.4684{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 32, 37 }} | {{Optimal ET sequence|legend=0| 5, 32, 37 }} | ||
Line 337: | Line 333: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.2230{{c}}, ~3/2 = 712.1393{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.6928{{c}} | ||
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }} | {{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }} | ||
Line 352: | Line 348: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.2739{{c}}, ~3/2 = 712.1893{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.7079{{c}} | ||
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }} | {{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }} | ||
Line 367: | Line 363: | ||
{{Mapping|legend=1| 1 0 31 6 | 0 1 -18 -2 }} | {{Mapping|legend=1| 1 0 31 6 | 0 1 -18 -2 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1196.9257{{c}}, ~3/2 = 709.6211{{c}} | ||
: [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }} | : [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }} | ||
* [[CWE]]: ~2 = 1200. | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 711.5429{{c}} | ||
: error map: {{val| 0.000 +9.588 +5.914 +8.088 }} | : error map: {{val| 0.000 +9.588 +5.914 +8.088 }} | ||
Line 392: | Line 386: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1197.3598{{c}}, ~3/2 = 700.0126{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -2.640 -4.583 -4.896 +20.588 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.7376{{c}} | ||
: error map: {{val| 0.000 -0. | : error map: {{val| 0.000 -0.217 -0.214 +27.699 }} | ||
{{Optimal ET sequence|legend=1| 5c, 7c, 12 }} | {{Optimal ET sequence|legend=1| 5c, 7c, 12 }} | ||
Line 411: | Line 403: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1196.1607{{c}}, ~3/2 = 699.8897{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 702.4385{{c}} | ||
{{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }} | {{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }} | ||
Line 420: | Line 412: | ||
== Beatles == | == Beatles == | ||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].'' | : ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].'' | ||
Beatles tempers out 686/675, which may also be characterized by saying it tempers out [[2401/2400]]. It may be described as the {{nowrap| 10 & 17c }} temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its [[ploidacot]] is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities. | |||
Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 426: | Line 422: | ||
{{Mapping|legend=1| 1 1 5 4 | 0 2 -9 -4 }} | {{Mapping|legend=1| 1 1 5 4 | 0 2 -9 -4 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1196.6244{{c}}, ~49/40 = 354.9029{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -3.376 +4.475 +2.682 -1.940 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~49/40 = 356.0819{{c}} | ||
: error map: {{val| 0.000 + | : error map: {{val| 0.000 +10.209 +8.949 +6.847 }} | ||
{{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }} | {{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }} | ||
Line 450: | Line 444: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1196.7001{{c}}, ~49/40 = 355.1606{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.2795{{c}} | ||
{{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }} | {{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }} | ||
Line 465: | Line 459: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.2504{{c}}, ~16/13 = 355.4132{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.3273{{c}} | ||
{{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }} | {{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }} | ||
Line 480: | Line 474: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1195.4102{{c}}, ~11/9 = 354.0597{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5207{{c}} | ||
{{Optimal ET sequence|legend=0| 10, 17c, 27e }} | {{Optimal ET sequence|legend=0| 10, 17c, 27e }} | ||
Line 495: | Line 489: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1195.9943{{c}}, ~11/9 = 354.2695{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5398{{c}} | ||
{{Optimal ET sequence|legend=0| 10, 17c, 27e }} | {{Optimal ET sequence|legend=0| 10, 17c, 27e }} | ||
Line 510: | Line 504: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.9660{{c}}, ~49/40 = 356.1056{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.7075{{c}} | ||
{{Optimal ET sequence|legend=0| 10, 27, 37 }} | {{Optimal ET sequence|legend=0| 10, 27, 37 }} | ||
Line 525: | Line 519: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.1741{{c}}, ~16/13 = 356.1582{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.7008{{c}} | ||
{{Optimal ET sequence|legend=0| 10, 27, 37 }} | {{Optimal ET sequence|legend=0| 10, 27, 37 }} | ||
Line 533: | Line 527: | ||
== Progress == | == Progress == | ||
{{Distinguish| Progression }} | |||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].'' | : ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].'' | ||
Progress tempers out 392/375 and may be described as {{nowrap| 15 & 17c }}. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 542: | Line 539: | ||
: mapping generators: ~2, ~10/7 | : mapping generators: ~2, ~10/7 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1195.1377{{c}}, ~10/7 = 635.2932{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -4.862 +3.925 +12.908 -9.759 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 638.0791{{c}} | ||
: error map: {{val| 0.000 + | : error map: {{val| 0.000 +12.282 +23.291 +2.700 }} | ||
{{Optimal ET sequence|legend=1| 2, 13, 15, 32c }} | {{Optimal ET sequence|legend=1| 2, 13, 15, 32c }} | ||
Line 563: | Line 558: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1195.4920{{c}}, ~10/7 = 635.5183{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 638.0884{{c}} | ||
{{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }} | {{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }} | ||
Line 578: | Line 573: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1195.0786{{c}}, ~10/7 = 635.0197{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 637.6691{{c}} | ||
{{Optimal ET sequence|legend=0| 15, 17c, 32cf }} | {{Optimal ET sequence|legend=0| 15, 17c, 32cf }} | ||
Line 593: | Line 588: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1196.0245{{c}}, ~10/7 = 634.6516{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 636.9528{{c}} | ||
{{Optimal ET sequence|legend=0| 2f, 15f, 17c }} | {{Optimal ET sequence|legend=0| 2f, 15f, 17c }} | ||
Line 602: | Line 597: | ||
== Fervor == | == Fervor == | ||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].'' | : ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].'' | ||
Fervor tempers out 9704/9375 and may be described as {{nowrap| 25 & 27 }}. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 607: | Line 604: | ||
[[Comma list]]: 64/63, 9604/9375 | [[Comma list]]: 64/63, 9604/9375 | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 -1 7 8 | 0 5 -9 -10 }} | ||
: mapping generators: ~2, ~7 | : mapping generators: ~2, ~10/7 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1196.2742{{c}}, ~10/7 = 620.2918{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -3.726 +3.230 +4.980 -1.550 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 622.3179{{c}} | ||
: error map: {{val| 0.000 +9. | : error map: {{val| 0.000 +9.634 +12.826 +7.996 }} | ||
{{Optimal ET sequence|legend=1| 2, 25, 27 }} | {{Optimal ET sequence|legend=1| 2, 25, 27 }} | ||
Line 628: | Line 623: | ||
Comma list: 56/55, 64/63, 1350/1331 | Comma list: 56/55, 64/63, 1350/1331 | ||
Mapping: {{mapping| 1 4 | Mapping: {{mapping| 1 -1 7 8 4 | 0 5 -9 -10 -1 }} | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1195.4148{{c}}, ~10/7 = 619.7729{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.2525{{c}} | ||
{{Optimal ET sequence|legend=0| 2, 25e, 27e }} | {{Optimal ET sequence|legend=0| 2, 25e, 27e }} | ||
Line 643: | Line 638: | ||
Comma list: 56/55, 64/63, 78/77, 507/500 | Comma list: 56/55, 64/63, 78/77, 507/500 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 -1 7 8 4 12 | 0 5 -9 -10 -1 -16 }} | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1195.6284{{c}}, ~10/7 = 619.6738{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.0631{{c}} | ||
{{Optimal ET sequence|legend=0| 2f, 27e }} | {{Optimal ET sequence|legend=0| 2f, 27e }} | ||
Line 657: | Line 652: | ||
{{See also| Dual-fifth temperaments #Dual-3 Sixix }} | {{See also| Dual-fifth temperaments #Dual-3 Sixix }} | ||
Sixix is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. | Sixix tempers out 3125/2916 and may be described as {{nowrap| 25 & 32 }}. It is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 664: | Line 659: | ||
{{Mapping|legend=1| 1 3 4 0 | 0 -5 -6 10 }} | {{Mapping|legend=1| 1 3 4 0 | 0 -5 -6 10 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1198.9028{{c}}, ~6/5 = 337.1334{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -1.097 +9.086 -13.503 +2.508 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~6/5 = 337.4588{{c}} | ||
: error map: {{val| 0.000 +10. | : error map: {{val| 0.000 +10.751 -11.066 +5.762 }} | ||
{{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }} | {{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }} | ||
Line 685: | Line 678: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1198.5480{{c}}, ~6/5 = 337.1557{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.6000{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 25e, 32 }} | {{Optimal ET sequence|legend=0| 7, 25e, 32 }} | ||
Line 700: | Line 693: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.7111{{c}}, ~6/5 = 336.8391{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5336{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 25e, 32f }} | {{Optimal ET sequence|legend=0| 7, 25e, 32f }} | ||
Line 715: | Line 708: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1197.7807{{c}}, ~6/5 = 336.8884{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5279{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 25e, 32f }} | {{Optimal ET sequence|legend=0| 7, 25e, 32f }} | ||
Line 724: | Line 717: | ||
[[Category:Archytas clan| ]] <!-- main article --> | [[Category:Archytas clan| ]] <!-- main article --> | ||
[[Category:Temperament clans]] | [[Category:Temperament clans]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Latest revision as of 12:52, 22 July 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The archytas clan (or archy family) tempers out the Archytas' comma, 64/63. This means a stack of two 3/2 fifths octave-reduced equals a whole tone of 8/7~9/8 tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a 9/7 major third. Note the similarity in function to 81/80 in meantone, where four stacked fifths octave-reduced equal a 5/4 major third. This leads to tunings with 3's and 7's quite sharp, such as those of 22edo, 27edo, or 49edo.
This article focuses on rank-2 temperaments. See Archytas family for the rank-3 temperament resulting from tempering out 64/63 alone in the full 7-limit.
Archy
Subgroup: 2.3.7
Comma list: 64/63
Sval mapping: [⟨1 0 6], ⟨0 1 -2]]
- sval mapping generators: ~2, ~3
Gencom mapping: [⟨1 0 0 6], ⟨0 1 0 -2]]
- gencom: [2 3; 64/63]
- WE: ~2 = 1196.9552 ¢, ~3/2 = 707.5215 ¢
- error map: ⟨-3.045 +2.522 +3.952]
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 709.3901 ¢
- error map: ⟨0.000 +7.435 +12.394]
Optimal ET sequence: 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd
Badness (Sintel): 0.159
Scales: archy5, archy7, archy12
Overview to extensions
7-limit extensions
The second comma in the comma list defines which 7-limit family member we are looking at:
- Schism adds 360/343, for a tuning around 12edo;
- Dominant adds 36/35, for a tuning between 12edo and 17c-edo;
- Quasisuper adds 2430/2401, for a tuning between 17c-edo and 22edo;
- Superpyth adds 245/243, for a tuning between 22edo and 27edo;
- Quasiultra adds 33614/32805, for a tuning between 27edo and 32edo;
- Ultrapyth adds 6860/6561, for a tuning sharp of 32edo;
- Mother adds 16/15, for an exotemperament well tuned around 5edo.
These all use the same generators as archy.
686/675 gives beatles, splitting the fifth in two. 8748/8575 gives immunized, splitting the twelfth in two. 50/49 gives pajara with a semioctave period. 392/375 gives progress, splitting the twelfth in three. 250/243 gives porcupine, splitting the fourth in three. 126/125 gives augene with a 1/3-octave period. 4375/4374 gives modus, splitting the fifth in four. 3125/3024 gives brightstone. 9604/9375 gives fervor. 3125/2916 gives sixix. 3125/3087 gives passion. Those split the generator in five in various ways. 28/27 gives blacksmith with a 1/5-octave period. Finally, 15625/15552 gives catalan, splitting the twelfth in six.
Temperaments discussed elsewhere are:
- Mother (+16/15) → Father family
- Dominant (+36/35) → Meantone family
- Medusa (+15/14) → Very low accuracy temperaments
- Immunized (+8748/8575) → Immunity family
- Pajara (+50/49) → Diaschismic family
- Augene (+126/125) → Augmented family
- Porcupine (+250/243) → Porcupine family
- Modus (+4375/4374) → Tetracot family
- Brightstone (+3125/3024) → Magic family
- Passion (+3125/3087) → Passion family
- Blackwood (+28/27) → Limmic temperaments
- Catalan (+15625/15552) → Kleismic family
Considered below are superpyth, quasisuper, ultrapyth, quasiultra, schism, beatles, progress, fervor, and sixix.
Subgroup extensions
Omitting prime 5, archy can be extended to the 2.3.7.11 subgroup by identifying 11/8 as a diminished fourth (C–Gb). This is called supra, given right below. Discussed elsewhere is suhajira of the neutral clan.
Supra
Subgroup: 2.3.7.11
Comma list: 64/63, 99/98
Sval mapping: [⟨1 0 6 13], ⟨0 1 -2 -6]]
Gencom mapping: [⟨1 0 0 6 13], ⟨0 1 0 -2 -6]]
- gencom: [2 3; 64/63 99/98]
Optimal tunings:
- WE: ~2 = 1197.2650 ¢, ~3/2 = 705.5803 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 707.4981 ¢
Optimal ET sequence: 5, 12, 17, 39d, 56d
Badness (Sintel): 0.352
Supraphon
Subgroup: 2.3.7.11.13
Comma list: 64/63, 78/77, 99/98
Sval mapping: [⟨1 0 6 13 18], ⟨0 1 -2 -6 -9]]
Gencom mapping: [⟨1 0 0 6 13 18], ⟨0 1 0 -2 -6 -9]]
- gencom: [2 3; 64/63 78/77 99/98]
Optimal tunings:
- WE: ~2 = 1197.1909 ¢, ~3/2 = 704.4836 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 706.4289 ¢
Badness (Sintel): 0.498
Superpyth
- For the 5-limit version, see Syntonic–diatonic equivalence continuum #Superpyth (5-limit).
Superpyth, virtually the canonical extension, adds 245/243 and 1728/1715 to the comma list and can be described as 22 & 27. ~5/4 is found at +9 generator steps, as an augmented second (C–D#). 49edo remains an obvious tuning choice.
Subgroup: 2.3.5.7
Comma list: 64/63, 245/243
Mapping: [⟨1 0 -12 6], ⟨0 1 9 -2]]
- WE: ~2 = 1197.0549 ¢, ~3/2 = 708.5478 ¢
- error map: ⟨-2.945 +3.648 -0.548 +2.298]
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.1193 ¢
- error map: ⟨0.000 +8.164 +4.760 +10.935]
Optimal ET sequence: 5, 17, 22, 27, 49, 174bbcddd
Badness (Sintel): 0.818
11-limit
The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double-augmented second (C–Dx) and finds the ~13/8 at +13 generator steps, as a double-augmented fourth (C–Fx).
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 245/243
Mapping: [⟨1 0 -12 6 -22], ⟨0 1 9 -2 16]]
Optimal tunings:
- WE: ~2 = 1197.0673 ¢, ~3/2 = 708.4391 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.0129 ¢
Optimal ET sequence: 22, 27e, 49
Badness (Sintel): 0.826
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 78/77, 91/90, 100/99
Mapping: [⟨1 0 -12 6 -22 -17], ⟨0 1 9 -2 16 13]]
Optimal tunings:
- WE: ~2 = 1197.3011 ¢, ~3/2 = 708.8813 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.3219 ¢
Optimal ET sequence: 22, 27e, 49, 76bcde
Badness (Sintel): 1.02
Thomas
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 100/99, 169/168, 245/243
Mapping: [⟨1 1 -3 4 -6 4], ⟨0 2 18 -4 32 -1]]
Optimal tunings:
- WE: ~2 = 1197.4942 ¢, ~16/13 = 354.2950 ¢
- CWE: ~2 = 1200.0000 ¢, ~16/13 = 354.9824 ¢
Optimal ET sequence: 27e, 44, 71d, 98bde
Badness (Sintel): 2.03
Suprapyth
Suprapyth finds the ~11/8 at the diminished fifth (C–Gb), and finds the ~13/8 at the diminished seventh (C–Bbb).
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 99/98
Mapping: [⟨1 0 -12 6 13], ⟨0 1 9 -2 -6]]
Optimal tunings:
- WE: ~2 = 1198.6960 ¢, ~3/2 = 708.7235 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 709.4699 ¢
Optimal ET sequence: 5, 17, 22
Badness (Sintel): 1.08
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 99/98
Mapping: [⟨1 0 -12 6 13 18], ⟨0 1 9 -2 -6 -9]]
Optimal tunings:
- WE: ~2 = 1199.9871 ¢, ~3/2 = 708.6952 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.7028 ¢
Optimal ET sequence: 5f, 17, 22
Badness (Sintel): 1.50
Quasisuper
Quasisuper can be described as 17c & 22, with the ~5/4 mapped to -13 generator steps, as a double-diminished fifth (C–Gbb).
Subgroup: 2.3.5.7
Comma list: 64/63, 2430/2401
Mapping: [⟨1 0 23 6], ⟨0 1 -13 -2]]
- WE: ~2 = 1196.9830 ¢, ~3/2 = 706.4578 ¢
- error map: ⟨-3.017 +1.486 -0.435 +6.190]
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.3716 ¢
- error map: ⟨0.000 +6.417 +4.855 +14.431]
Optimal ET sequence: 17c, 22, 61d
Badness (Sintel): 1.61
Quasisupra
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).
Subgroup: 2.3.5.7.11
Comma list: 64/63, 99/98, 121/120
Mapping: [⟨1 0 23 6 13], ⟨0 1 -13 -2 -6]]
Optimal tunings:
- WE: ~2 = 1197.5675 ¢, ~3/2 = 706.7690 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.3200 ¢
Optimal ET sequence: 17c, 22, 39d, 61d
Badness (Sintel): 1.06
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 78/77, 91/90, 121/120
Mapping: [⟨1 0 23 6 13 18], ⟨0 1 -13 -2 -6 -9]]
Optimal tunings:
- WE: ~2 = 1198.2543 ¢, ~3/2 = 706.9736 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.0936 ¢
Optimal ET sequence: 17c, 22, 39d
Badness (Sintel): 1.25
Quasisoup
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 2430/2401
Mapping: [⟨1 0 23 6 -22], ⟨0 1 -13 -2 16]]
Optimal tunings:
- WE: ~2 = 1198.8446 ¢, ~3/2 = 708.3388 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.0252 ¢
Optimal ET sequence: 22
Badness (Sintel): 2.76
Ultrapyth
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).
Subgroup: 2.3.5.7
Comma list: 64/63, 6860/6561
Mapping: [⟨1 0 -20 6], ⟨0 1 14 -2]]
- WE: ~2 = 1197.2673 ¢, ~3/2 = 712.0258 ¢
- error map: ⟨-2.733 +7.338 -1.557 -3.808]
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.5430 ¢
- error map: ⟨0.000 +11.588 +3.288 +4.088]
Optimal ET sequence: 5, 27c, 32, 37
Badness (Sintel): 2.74
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 2401/2376
Mapping: [⟨1 0 -20 6 21], ⟨0 1 14 -2 -11]]
Optimal tunings:
- WE: ~2 = 1198.0290 ¢, ~3/2 = 712.2235 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.3754 ¢
Optimal ET sequence: 5, 32, 37
Badness (Sintel): 2.26
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 1573/1568
Mapping: [⟨1 0 -20 6 21 -25], ⟨0 1 14 -2 -11 18]]
Optimal tunings:
- WE: ~2 = 1198.1911 ¢, ~3/2 = 712.4243 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.4684 ¢
Optimal ET sequence: 5, 32, 37
Badness (Sintel): 2.03
Ultramarine
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 3773/3645
Mapping: [⟨1 0 -20 6 -38], ⟨0 1 14 -2 26]]
Optimal tunings:
- WE: ~2 = 1197.2230 ¢, ~3/2 = 712.1393 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.6928 ¢
Optimal ET sequence: 5e, 32e, 37, 79bce
Badness (Sintel): 2.58
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 91/90, 100/99, 847/845
Mapping: [⟨1 0 -20 6 -38 -25], ⟨0 1 14 -2 26 18]]
Optimal tunings:
- WE: ~2 = 1197.2739 ¢, ~3/2 = 712.1893 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.7079 ¢
Optimal ET sequence: 5e, 32e, 37, 79bcef
Badness (Sintel): 1.89
Quasiultra
Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the 27 & 32 temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C–Abbb).
Subgroup: 2.3.5.7
Comma list: 64/63, 33614/32805
Mapping: [⟨1 0 31 6], ⟨0 1 -18 -2]]
- WE: ~2 = 1196.9257 ¢, ~3/2 = 709.6211 ¢
- error map: ⟨0.000 +9.883 +0.608 +7.499]
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 711.5429 ¢
- error map: ⟨0.000 +9.588 +5.914 +8.088]
Optimal ET sequence: 27, 86bd, 113bcd, 140bbcd
Badness (Sintel): 3.34
Schism
Schism tempers out the schisma, mapping the ~5/4 to -8 fifths as a diminished fourth (C–Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53dd val) can be used.
Subgroup: 2.3.5.7
Comma list: 64/63, 360/343
Mapping: [⟨1 0 15 6], ⟨0 1 -8 -2]]
- WE: ~2 = 1197.3598 ¢, ~3/2 = 700.0126 ¢
- error map: ⟨-2.640 -4.583 -4.896 +20.588]
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 701.7376 ¢
- error map: ⟨0.000 -0.217 -0.214 +27.699]
Optimal ET sequence: 5c, 7c, 12
Badness (Sintel): 1.43
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 64/63, 99/98
Mapping: [⟨1 0 15 6 13], ⟨0 1 -8 -2 -6]]
Optimal tunings:
- WE: ~2 = 1196.1607 ¢, ~3/2 = 699.8897 ¢
- CWE: ~2 = 1200.0000 ¢, ~3/2 = 702.4385 ¢
Optimal ET sequence: 5c, 7ce, 12, 29de
Badness (Sintel): 1.24
Beatles
- For the 5-limit version, see Miscellaneous 5-limit temperaments #Beatles.
Beatles tempers out 686/675, which may also be characterized by saying it tempers out 2401/2400. It may be described as the 10 & 17c temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its ploidacot is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.
Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.
Subgroup: 2.3.5.7
Comma list: 64/63, 686/675
Mapping: [⟨1 1 5 4], ⟨0 2 -9 -4]]
- WE: ~2 = 1196.6244 ¢, ~49/40 = 354.9029 ¢
- error map: ⟨-3.376 +4.475 +2.682 -1.940]
- CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.0819 ¢
- error map: ⟨0.000 +10.209 +8.949 +6.847]
Optimal ET sequence: 10, 17c, 27, 64b, 91bcd, 118bccd
Badness (Sintel): 1.16
- Music
11-limit
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 686/675
Mapping: [⟨1 1 5 4 10], ⟨0 2 -9 -4 -22]]
Optimal tunings:
- WE: ~2 = 1196.7001 ¢, ~49/40 = 355.1606 ¢
- CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.2795 ¢
Optimal ET sequence: 10e, 17cee, 27e, 64be, 91bcdee
Badness (Sintel): 1.51
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 91/90, 100/99, 169/168
Mapping: [⟨1 1 5 4 10 4], ⟨0 2 -9 -4 -22 -1]]
Optimal tunings:
- WE: ~2 = 1197.2504 ¢, ~16/13 = 355.4132 ¢
- CWE: ~2 = 1200.0000 ¢, ~16/13 = 356.3273 ¢
Optimal ET sequence: 10e, 27e, 37, 64be
Badness (Sintel): 1.25
Ringo
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 540/539
Mapping: [⟨1 1 5 4 2], ⟨0 2 -9 -4 5]]
Optimal tunings:
- WE: ~2 = 1195.4102 ¢, ~11/9 = 354.0597 ¢
- CWE: ~2 = 1200.0000 ¢, ~11/9 = 355.5207 ¢
Optimal ET sequence: 10, 17c, 27e
Badness (Sintel): 1.09
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 78/77, 91/90
Mapping: [⟨1 1 5 4 2 4], ⟨0 2 -9 -4 5 -1]]
Optimal tunings:
- WE: ~2 = 1195.9943 ¢, ~11/9 = 354.2695 ¢
- CWE: ~2 = 1200.0000 ¢, ~11/9 = 355.5398 ¢
Optimal ET sequence: 10, 17c, 27e
Badness (Sintel): 0.935
Beetle
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 686/675
Mapping: [⟨1 1 5 4 -1], ⟨0 2 -9 -4 15]]
Optimal tunings:
- WE: ~2 = 1197.9660 ¢, ~49/40 = 356.1056 ¢
- CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.7075 ¢
Optimal ET sequence: 10, 27, 37
Badness (Sintel): 1.92
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 169/168
Mapping: [⟨1 1 5 4 -1 4], ⟨0 2 -9 -4 15 -1]]
Optimal tunings:
- WE: ~2 = 1198.1741 ¢, ~16/13 = 356.1582 ¢
- CWE: ~2 = 1200.0000 ¢, ~16/13 = 356.7008 ¢
Optimal ET sequence: 10, 27, 37
Badness (Sintel): 1.40
Progress
- Not to be confused with Progression.
- For the 5-limit version, see Miscellaneous 5-limit temperaments #Progress.
Progress tempers out 392/375 and may be described as 15 & 17c. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.
Subgroup: 2.3.5.7
Comma list: 64/63, 392/375
Mapping: [⟨1 0 5 6], ⟨0 3 -5 -6]]
- mapping generators: ~2, ~10/7
- WE: ~2 = 1195.1377 ¢, ~10/7 = 635.2932 ¢
- error map: ⟨-4.862 +3.925 +12.908 -9.759]
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 638.0791 ¢
- error map: ⟨0.000 +12.282 +23.291 +2.700]
Optimal ET sequence: 2, 13, 15, 32c
Badness (Sintel): 1.68
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 77/75
Mapping: [⟨1 0 5 6 4], ⟨0 3 -5 -6 -1]]
Optimal tunings:
- WE: ~2 = 1195.4920 ¢, ~10/7 = 635.5183 ¢
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 638.0884 ¢
Optimal ET sequence: 2, 13, 15, 32c, 47bc
Badness (Sintel): 1.03
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 66/65, 77/75
Mapping: [⟨1 0 5 6 4 0], ⟨0 3 -5 -6 -1 7]]
Optimal tunings:
- WE: ~2 = 1195.0786 ¢, ~10/7 = 635.0197 ¢
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 637.6691 ¢
Optimal ET sequence: 15, 17c, 32cf
Badness (Sintel): 1.08
Progressive
Subgroup: 2.3.5.7.11.13
Comma list: 26/25, 56/55, 64/63, 77/75
Mapping: [⟨1 0 5 6 4 9], ⟨0 3 -5 -6 -1 -10]]
Optimal tunings:
- WE: ~2 = 1196.0245 ¢, ~10/7 = 634.6516 ¢
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 636.9528 ¢
Optimal ET sequence: 2f, 15f, 17c
Badness (Sintel): 1.35
Fervor
- For the 5-limit version, see Miscellaneous 5-limit temperaments #Fervor.
Fervor tempers out 9704/9375 and may be described as 25 & 27. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.
Subgroup: 2.3.5.7
Comma list: 64/63, 9604/9375
Mapping: [⟨1 -1 7 8], ⟨0 5 -9 -10]]
- mapping generators: ~2, ~10/7
- WE: ~2 = 1196.2742 ¢, ~10/7 = 620.2918 ¢
- error map: ⟨-3.726 +3.230 +4.980 -1.550]
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.3179 ¢
- error map: ⟨0.000 +9.634 +12.826 +7.996]
Optimal ET sequence: 2, 25, 27
Badness (Sintel): 2.74
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 1350/1331
Mapping: [⟨1 -1 7 8 4], ⟨0 5 -9 -10 -1]]
Optimal tunings:
- WE: ~2 = 1195.4148 ¢, ~10/7 = 619.7729 ¢
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.2525 ¢
Optimal ET sequence: 2, 25e, 27e
Badness (Sintel): 1.72
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 78/77, 507/500
Mapping: [⟨1 -1 7 8 4 12], ⟨0 5 -9 -10 -1 -16]]
Optimal tunings:
- WE: ~2 = 1195.6284 ¢, ~10/7 = 619.6738 ¢
- CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.0631 ¢
Badness (Sintel): 1.64
Sixix
- For the 5-limit version, see Syntonic–chromatic equivalence continuum #Sixix (5-limit).
Sixix tempers out 3125/2916 and may be described as 25 & 32. It is related to the kleismic family in a way similar to the one between meantone and mavila. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.
Subgroup: 2.3.5.7
Comma list: 64/63, 3125/2916
Mapping: [⟨1 3 4 0], ⟨0 -5 -6 10]]
- WE: ~2 = 1198.9028 ¢, ~6/5 = 337.1334 ¢
- error map: ⟨-1.097 +9.086 -13.503 +2.508]
- CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.4588 ¢
- error map: ⟨0.000 +10.751 -11.066 +5.762]
Optimal ET sequence: 7, 18d, 25, 32
Badness (Sintel): 4.02
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 125/121
Mapping: [⟨1 3 4 0 6], ⟨0 -5 -6 10 -9]]
Optimal tunings:
- WE: ~2 = 1198.5480 ¢, ~6/5 = 337.1557 ¢
- CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.6000 ¢
Optimal ET sequence: 7, 25e, 32
Badness (Sintel): 2.34
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 125/121
Mapping: [⟨1 3 4 0 6 4], ⟨0 -5 -6 10 -9 -1]]
Optimal tunings:
- WE: ~2 = 1197.7111 ¢, ~6/5 = 336.8391 ¢
- CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.5336 ¢
Optimal ET sequence: 7, 25e, 32f
Badness (Sintel): 1.91
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 40/39, 55/54, 64/63, 85/84, 125/121
Mapping: [⟨1 3 4 0 6 4 1], ⟨0 -5 -6 10 -9 -1 11]]
Optimal tunings:
- WE: ~2 = 1197.7807 ¢, ~6/5 = 336.8884 ¢
- CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.5279 ¢
Optimal ET sequence: 7, 25e, 32f
Badness (Sintel): 2.00