|
|
(127 intermediate revisions by 26 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-05-26 01:38:30 UTC</tt>.<br>
| |
| : The original revision id was <tt>231971082</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This page is about [[MOSScales]] with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
| |
|
| |
|
| This MOS pattern is a wasteland as far as low-harmonic-entropy scales are concerned. If your harmonic entropy is coarse enough (that is, if 522 cents is an acceptable '4/3' to you [-//Of course, my dear//- TMDW and FFFF]), then [[Pelogic family|mavila]] could show up as a slight, broad minimum. So a general name for this MOS pattern could be "Mavila Superdiatonic".
| | {{MOS intro}} |
| | Scales of this form are strongly associated with [[Armodue theory]], as applied to septimal mavila and Hornbostel temperaments. [[Trismegistus]] is also a usable temperament. |
| | == Name == |
| | The [[TAMNAMS]] name for this pattern is '''armotonic''', in reference to Armodue theory. '''Superdiatonic''' is also in use. |
|
| |
|
| Optional types of 'JI Blown Fifths' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 145/98, 176/119 & 250/169.
| | == Scale properties == |
| ||||||||||||||~ Generator ||~ Scale steps ||~ Comments ||
| | {{TAMNAMS use}} |
| || 3\[[7edo|7]] || || || || || || || 1 1 1 0 1 1 1 1 0 || ||
| |
| || || || || || 16\37 || || || 5 5 5 1 5 5 5 5 1 || ||
| |
| || || || || 13\[[30edo|30]] || || || || 4 4 4 1 4 4 4 4 1 || ||
| |
| || || || || || 23\[[53edo|53]] || || || 7 7 7 2 7 7 7 7 2 || ||
| |
| || || || 10\[[23edo|23]] || || || || || 3 3 3 1 3 3 3 3 1 || HORNBOSTEL TEMPERAMENT (Armodue 1/3-tones) ||
| |
| || || || || || || 37\[[85edo|85]] || || 11 11 11 4 11 11 11 11 4 || Armodue-Hornbostel 1/11-tones ||
| |
| || || || || || 27\[[62edo|62]] || || || 8 8 8 3 8 8 8 8 3 || Armodue-Hornbostel 1/8-tones ||
| |
| || || || || 17\[[39edo|39]] || || || || 5 5 5 2 5 5 5 5 2 || Armodue-Hornbostel 1/5-tones ||
| |
| || || || || || 24\[[55edo|55]] || || || 7 7 7 3 7 7 7 7 3 || Armodue-Hornbostel 1/7-tones ||
| |
| || || || || || || 31\[[71edo|71]] || || 9 9 9 4 9 9 9 9 4 || UNFAIR Armodue-Hornbostel 1/9-tone ||
| |
| || || || || || || || 38\[[87edo|87]] || 11 11 11 5 11 11 11 11 5 || ||
| |
| || || 7\[[16edo|16]] || || || || || || 2 2 2 1 2 2 2 2 1 || ARMODUE ESADECAFONIA (or Goldsmith Temperament) ||
| |
| || || || || || || || 39\[[89edo|89]] || 11 11 11 6 11 11 11 11 6 || Armodue-Mesotonic 1/11-tone ||
| |
| || || || || || || 32\[[73edo|73]] || || 9 9 9 5 9 9 9 9 5 || Armodue-Mesotonic 1/9-tone (with an approximation
| |
| of the Perfect Fifth + 1/5 Pyth.Comma [706,8 Cents]) ||
| |
| || || || || || 25\[[57edo|57]] || || || 7 7 7 4 7 7 7 7 4 || Armodue-Mesotonic 1/7-tone (the best compromise for the [[7_4|7/4]] interval) ||
| |
| || || || || 18\[[41edo|41]] || || || || 5 5 5 3 5 5 5 5 3 || Armodue-Mesotonic 1/5-tone ||
| |
| || || || || || 29\[[66edo|66]] || || || 8 8 8 5 8 8 8 8 5 || ||
| |
| || || || 11\[[25edo|25]] || || || || || 3 3 3 2 3 3 3 3 2 || MESOTONIC Type of Armodue 1/3-tone ||
| |
| || || || || || 26\[[59edo|59]] || || || 7 7 7 5 7 7 7 7 5 || ||
| |
| || || || || 15\[[34edo|34]] || || || || 4 4 4 3 4 4 4 4 3 || ||
| |
| || || || || || 19\[[43edo|43]] || || || 5 5 5 4 5 5 5 5 4 || ||
| |
| || 4\[[9edo|9]] || || || || || || || 1 1 1 1 1 1 1 1 1 || ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>7L 2s</title></head><body>This page is about <a class="wiki_link" href="/MOSScales">MOSScales</a> with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).<br />
| |
| <br />
| |
| This MOS pattern is a wasteland as far as low-harmonic-entropy scales are concerned. If your harmonic entropy is coarse enough (that is, if 522 cents is an acceptable '4/3' to you [-<em>Of course, my dear</em>- TMDW and FFFF]), then <a class="wiki_link" href="/Pelogic%20family">mavila</a> could show up as a slight, broad minimum. So a general name for this MOS pattern could be &quot;Mavila Superdiatonic&quot;. <br />
| |
| <br />
| |
| Optional types of 'JI Blown Fifths' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 145/98, 176/119 &amp; 250/169.<br />
| |
|
| |
|
| | === Intervals === |
| | {{MOS intervals}} |
|
| |
|
| <table class="wiki_table">
| | === Generator chain === |
| <tr>
| | {{MOS genchain}} |
| <th colspan="7">Generator<br />
| |
| </th>
| |
| <th>Scale steps<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>3\<a class="wiki_link" href="/7edo">7</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1 1 1 0 1 1 1 1 0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5 5 5 1 5 5 5 5 1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\<a class="wiki_link" href="/30edo">30</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4 4 4 1 4 4 4 4 1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23\<a class="wiki_link" href="/53edo">53</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7 7 7 2 7 7 7 7 2<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10\<a class="wiki_link" href="/23edo">23</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3 3 3 1 3 3 3 3 1<br />
| |
| </td>
| |
| <td>HORNBOSTEL TEMPERAMENT (Armodue 1/3-tones)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>37\<a class="wiki_link" href="/85edo">85</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11 11 11 4 11 11 11 11 4<br />
| |
| </td>
| |
| <td>Armodue-Hornbostel 1/11-tones<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>27\<a class="wiki_link" href="/62edo">62</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8 8 8 3 8 8 8 8 3<br />
| |
| </td>
| |
| <td>Armodue-Hornbostel 1/8-tones<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17\<a class="wiki_link" href="/39edo">39</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5 5 5 2 5 5 5 5 2<br />
| |
| </td>
| |
| <td>Armodue-Hornbostel 1/5-tones<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>24\<a class="wiki_link" href="/55edo">55</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7 7 7 3 7 7 7 7 3<br />
| |
| </td>
| |
| <td>Armodue-Hornbostel 1/7-tones<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>31\<a class="wiki_link" href="/71edo">71</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9 9 9 4 9 9 9 9 4<br />
| |
| </td>
| |
| <td>UNFAIR Armodue-Hornbostel 1/9-tone<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>38\<a class="wiki_link" href="/87edo">87</a><br />
| |
| </td>
| |
| <td>11 11 11 5 11 11 11 11 5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>7\<a class="wiki_link" href="/16edo">16</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2 2 2 1 2 2 2 2 1<br />
| |
| </td>
| |
| <td>ARMODUE ESADECAFONIA (or Goldsmith Temperament)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>39\<a class="wiki_link" href="/89edo">89</a><br />
| |
| </td>
| |
| <td>11 11 11 6 11 11 11 11 6<br />
| |
| </td>
| |
| <td>Armodue-Mesotonic 1/11-tone<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>32\<a class="wiki_link" href="/73edo">73</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9 9 9 5 9 9 9 9 5<br />
| |
| </td>
| |
| <td>Armodue-Mesotonic 1/9-tone (with an approximation<br />
| |
| of the Perfect Fifth + 1/5 Pyth.Comma [706,8 Cents])<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>25\<a class="wiki_link" href="/57edo">57</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7 7 7 4 7 7 7 7 4<br />
| |
| </td>
| |
| <td>Armodue-Mesotonic 1/7-tone (the best compromise for the <a class="wiki_link" href="/7_4">7/4</a> interval)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18\<a class="wiki_link" href="/41edo">41</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5 5 5 3 5 5 5 5 3<br />
| |
| </td>
| |
| <td>Armodue-Mesotonic 1/5-tone<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>29\<a class="wiki_link" href="/66edo">66</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8 8 8 5 8 8 8 8 5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\<a class="wiki_link" href="/25edo">25</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3 3 3 2 3 3 3 3 2<br />
| |
| </td>
| |
| <td>MESOTONIC Type of Armodue 1/3-tone<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>26\<a class="wiki_link" href="/59edo">59</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7 7 7 5 7 7 7 7 5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15\<a class="wiki_link" href="/34edo">34</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4 4 4 3 4 4 4 4 3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19\<a class="wiki_link" href="/43edo">43</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5 5 5 4 5 5 5 5 4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4\<a class="wiki_link" href="/9edo">9</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1 1 1 1 1 1 1 1 1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | === Proposed mode names === |
| | The Ad- mode names proposed by [[groundfault]] have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc. |
| | {{MOS modes |
| | | Table Headers= |
| | Super- Mode Names $ |
| | Ad- Mode Names (ground) $ |
| | | Table Entries= |
| | Superlydian $ |
| | TBD $ |
| | Superionian $ |
| | Adlocrian $ |
| | Supermixolydian $ |
| | Adphrygian $ |
| | Supercorinthian $ |
| | Adaeolian $ |
| | Superolympian $ |
| | Addorian $ |
| | Superdorian $ |
| | Admixolydian $ |
| | Superaeolian $ |
| | Adionian $ |
| | Superphrygian $ |
| | Adlydian $ |
| | Superlocrian $ |
| | TBD |
| | }} |
| | |
| | == Note names== |
| | 7L 2s, when viewed under Armodue theory, can be notated using Armodue notation. |
| | |
| | == Theory == |
| | === Temperament interpretations === |
| | [[Pelogic family#Mavila|Mavila]] is an important harmonic entropy minimum here, insofar as 670-680{{c}} can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus. |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 1/1 = Near exact-7/6 [[Pelogic_family#Armodue|Armodue]] |
| | | 4/3 = Near exact-20/17 [[Pentagoth]] |
| | | 7/5 = Near exact-5/4 [[Mavila]] |
| | | 3/2 = Near exact-13/11 Pentagoth |
| | | 7/4 = Near exact-7/4 [[Pelogic_family#Armodue|Armodue]] |
| | | 10/3 = Near exact-6/5 [[Mavila]] |
| | | 6/1 = [[Gravity]] ↓ |
| | }} |
| | |
| | [[Category:9-tone scales]] |
| | [[Category:Mavila]] |
7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢.
Scales of this form are strongly associated with Armodue theory, as applied to septimal mavila and Hornbostel temperaments. Trismegistus is also a usable temperament.
Name
The TAMNAMS name for this pattern is armotonic, in reference to Armodue theory. Superdiatonic is also in use.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 7L 2s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-armstep
|
Perfect 0-armstep
|
P0arms
|
0
|
0.0 ¢
|
1-armstep
|
Minor 1-armstep
|
m1arms
|
s
|
0.0 ¢ to 133.3 ¢
|
Major 1-armstep
|
M1arms
|
L
|
133.3 ¢ to 171.4 ¢
|
2-armstep
|
Minor 2-armstep
|
m2arms
|
L + s
|
171.4 ¢ to 266.7 ¢
|
Major 2-armstep
|
M2arms
|
2L
|
266.7 ¢ to 342.9 ¢
|
3-armstep
|
Minor 3-armstep
|
m3arms
|
2L + s
|
342.9 ¢ to 400.0 ¢
|
Major 3-armstep
|
M3arms
|
3L
|
400.0 ¢ to 514.3 ¢
|
4-armstep
|
Perfect 4-armstep
|
P4arms
|
3L + s
|
514.3 ¢ to 533.3 ¢
|
Augmented 4-armstep
|
A4arms
|
4L
|
533.3 ¢ to 685.7 ¢
|
5-armstep
|
Diminished 5-armstep
|
d5arms
|
3L + 2s
|
514.3 ¢ to 666.7 ¢
|
Perfect 5-armstep
|
P5arms
|
4L + s
|
666.7 ¢ to 685.7 ¢
|
6-armstep
|
Minor 6-armstep
|
m6arms
|
4L + 2s
|
685.7 ¢ to 800.0 ¢
|
Major 6-armstep
|
M6arms
|
5L + s
|
800.0 ¢ to 857.1 ¢
|
7-armstep
|
Minor 7-armstep
|
m7arms
|
5L + 2s
|
857.1 ¢ to 933.3 ¢
|
Major 7-armstep
|
M7arms
|
6L + s
|
933.3 ¢ to 1028.6 ¢
|
8-armstep
|
Minor 8-armstep
|
m8arms
|
6L + 2s
|
1028.6 ¢ to 1066.7 ¢
|
Major 8-armstep
|
M8arms
|
7L + s
|
1066.7 ¢ to 1200.0 ¢
|
9-armstep
|
Perfect 9-armstep
|
P9arms
|
7L + 2s
|
1200.0 ¢
|
Generator chain
Generator chain of 7L 2s
Bright gens |
Scale degree |
Abbrev.
|
15 |
Augmented 3-armdegree |
A3armd
|
14 |
Augmented 7-armdegree |
A7armd
|
13 |
Augmented 2-armdegree |
A2armd
|
12 |
Augmented 6-armdegree |
A6armd
|
11 |
Augmented 1-armdegree |
A1armd
|
10 |
Augmented 5-armdegree |
A5armd
|
9 |
Augmented 0-armdegree |
A0armd
|
8 |
Augmented 4-armdegree |
A4armd
|
7 |
Major 8-armdegree |
M8armd
|
6 |
Major 3-armdegree |
M3armd
|
5 |
Major 7-armdegree |
M7armd
|
4 |
Major 2-armdegree |
M2armd
|
3 |
Major 6-armdegree |
M6armd
|
2 |
Major 1-armdegree |
M1armd
|
1 |
Perfect 5-armdegree |
P5armd
|
0 |
Perfect 0-armdegree Perfect 9-armdegree |
P0armd P9armd
|
−1 |
Perfect 4-armdegree |
P4armd
|
−2 |
Minor 8-armdegree |
m8armd
|
−3 |
Minor 3-armdegree |
m3armd
|
−4 |
Minor 7-armdegree |
m7armd
|
−5 |
Minor 2-armdegree |
m2armd
|
−6 |
Minor 6-armdegree |
m6armd
|
−7 |
Minor 1-armdegree |
m1armd
|
−8 |
Diminished 5-armdegree |
d5armd
|
−9 |
Diminished 9-armdegree |
d9armd
|
−10 |
Diminished 4-armdegree |
d4armd
|
−11 |
Diminished 8-armdegree |
d8armd
|
−12 |
Diminished 3-armdegree |
d3armd
|
−13 |
Diminished 7-armdegree |
d7armd
|
−14 |
Diminished 2-armdegree |
d2armd
|
−15 |
Diminished 6-armdegree |
d6armd
|
Modes
Scale degrees of the modes of 7L 2s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (armdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
8|0
|
1
|
LLLLsLLLs
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
7|1
|
6
|
LLLsLLLLs
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
6|2
|
2
|
LLLsLLLsL
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
5|3
|
7
|
LLsLLLLsL
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
4|4
|
3
|
LLsLLLsLL
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
3|5
|
8
|
LsLLLLsLL
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
2|6
|
4
|
LsLLLsLLL
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
1|7
|
9
|
sLLLLsLLL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
0|8
|
5
|
sLLLsLLLL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Proposed mode names
The Ad- mode names proposed by groundfault have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc.
Modes of 7L 2s
UDP |
Cyclic order |
Step pattern |
Super- Mode Names |
Ad- Mode Names (ground)
|
8|0 |
1 |
LLLLsLLLs |
Superlydian |
TBD
|
7|1 |
6 |
LLLsLLLLs |
Superionian |
Adlocrian
|
6|2 |
2 |
LLLsLLLsL |
Supermixolydian |
Adphrygian
|
5|3 |
7 |
LLsLLLLsL |
Supercorinthian |
Adaeolian
|
4|4 |
3 |
LLsLLLsLL |
Superolympian |
Addorian
|
3|5 |
8 |
LsLLLLsLL |
Superdorian |
Admixolydian
|
2|6 |
4 |
LsLLLsLLL |
Superaeolian |
Adionian
|
1|7 |
9 |
sLLLLsLLL |
Superphrygian |
Adlydian
|
0|8 |
5 |
sLLLsLLLL |
Superlocrian |
TBD
|
Note names
7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.
Theory
Temperament interpretations
Mavila is an important harmonic entropy minimum here, insofar as 670-680 ¢ can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus.
Scale tree
Scale tree and tuning spectrum of 7L 2s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\9
|
|
|
|
|
|
666.667
|
533.333
|
1:1
|
1.000
|
Equalized 7L 2s Near exact-7/6 Armodue
|
|
|
|
|
|
29\52
|
669.231
|
530.769
|
6:5
|
1.200
|
|
|
|
|
|
24\43
|
|
669.767
|
530.233
|
5:4
|
1.250
|
|
|
|
|
|
|
43\77
|
670.130
|
529.870
|
9:7
|
1.286
|
|
|
|
|
19\34
|
|
|
670.588
|
529.412
|
4:3
|
1.333
|
Supersoft 7L 2s Near exact-20/17 Pentagoth
|
|
|
|
|
|
52\93
|
670.968
|
529.032
|
11:8
|
1.375
|
|
|
|
|
|
33\59
|
|
671.186
|
528.814
|
7:5
|
1.400
|
Near exact-5/4 Mavila
|
|
|
|
|
|
47\84
|
671.429
|
528.571
|
10:7
|
1.429
|
|
|
|
14\25
|
|
|
|
672.000
|
528.000
|
3:2
|
1.500
|
Soft 7L 2s Near exact-13/11 Pentagoth
|
|
|
|
|
|
51\91
|
672.527
|
527.473
|
11:7
|
1.571
|
|
|
|
|
|
37\66
|
|
672.727
|
527.273
|
8:5
|
1.600
|
|
|
|
|
|
|
60\107
|
672.897
|
527.103
|
13:8
|
1.625
|
|
|
|
|
23\41
|
|
|
673.171
|
526.829
|
5:3
|
1.667
|
Semisoft 7L 2s
|
|
|
|
|
|
55\98
|
673.469
|
526.531
|
12:7
|
1.714
|
|
|
|
|
|
32\57
|
|
673.684
|
526.316
|
7:4
|
1.750
|
Near exact-7/4 Armodue
|
|
|
|
|
|
41\73
|
673.973
|
526.027
|
9:5
|
1.800
|
|
|
9\16
|
|
|
|
|
675.000
|
525.000
|
2:1
|
2.000
|
Basic 7L 2s Scales with tunings softer than this are proper
|
|
|
|
|
|
40\71
|
676.056
|
523.944
|
9:4
|
2.250
|
|
|
|
|
|
31\55
|
|
676.364
|
523.636
|
7:3
|
2.333
|
|
|
|
|
|
|
53\94
|
676.596
|
523.404
|
12:5
|
2.400
|
|
|
|
|
22\39
|
|
|
676.923
|
523.077
|
5:2
|
2.500
|
Semihard 7L 2s
|
|
|
|
|
|
57\101
|
677.228
|
522.772
|
13:5
|
2.600
|
|
|
|
|
|
35\62
|
|
677.419
|
522.581
|
8:3
|
2.667
|
|
|
|
|
|
|
48\85
|
677.647
|
522.353
|
11:4
|
2.750
|
|
|
|
13\23
|
|
|
|
678.261
|
521.739
|
3:1
|
3.000
|
Hard 7L 2s
|
|
|
|
|
|
43\76
|
678.947
|
521.053
|
10:3
|
3.333
|
Near exact-6/5 Mavila
|
|
|
|
|
30\53
|
|
679.245
|
520.755
|
7:2
|
3.500
|
|
|
|
|
|
|
47\83
|
679.518
|
520.482
|
11:3
|
3.667
|
|
|
|
|
17\30
|
|
|
680.000
|
520.000
|
4:1
|
4.000
|
Superhard 7L 2s
|
|
|
|
|
|
38\67
|
680.597
|
519.403
|
9:2
|
4.500
|
|
|
|
|
|
21\37
|
|
681.081
|
518.919
|
5:1
|
5.000
|
|
|
|
|
|
|
25\44
|
681.818
|
518.182
|
6:1
|
6.000
|
Gravity ↓
|
4\7
|
|
|
|
|
|
685.714
|
514.286
|
1:0
|
→ ∞
|
Collapsed 7L 2s
|