|
|
(13 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| {{Infobox MOS | | {{Infobox MOS}} |
| | Name = superdiatonic, armotonic
| |
| | nLargeSteps = 7
| |
| | nSmallSteps = 2
| |
| | Equalized = 5
| |
| | Collapsed = 4
| |
| | Pattern = LLLLsLLLs
| |
| | Neutral = 5L 4s
| |
| }} | |
|
| |
|
| {{MOS intro}} | | {{MOS intro}} |
| | Scales of this form are strongly associated with [[Armodue theory]], as applied to septimal mavila and Hornbostel temperaments. [[Trismegistus]] is also a usable temperament. |
| | == Name == |
| | The [[TAMNAMS]] name for this pattern is '''armotonic''', in reference to Armodue theory. '''Superdiatonic''' is also in use. |
|
| |
|
| Scales of this form are strongly associated with [[Armodue theory]], as applied to septimal mavila and Hornbostel temperaments.
| | == Scale properties == |
| ==Name== | | {{TAMNAMS use}} |
| The [[TAMNAMS]] name for this pattern is '''superdiatonic''', in reference to the diatonic mos (5L 2s) having two additional large steps added, or '''armotonic''', in reference to Armodue theory.
| |
|
| |
|
| ==Intervals== | | === Intervals === |
| :''This article assumes [[TAMNAMS]] for naming step ratios, mossteps, and mosdegrees.''
| | {{MOS intervals}} |
| {{MOS intervals|MOS Prefix=arm}} | |
|
| |
|
| == Note names== | | === Generator chain === |
| 7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.
| | {{MOS genchain}} |
|
| |
|
| ==Theory== | | === Modes === |
| | {{MOS mode degrees}} |
|
| |
|
| === Temperament interpretations === | | === Proposed mode names === |
| [[Pelogic family#Mavila|Mavila]] is an important harmonic entropy minimum here, insofar as 678¢ can be considered a fifth. Other temperaments include septimal mavila and Hornbostel. | | The Ad- mode names proposed by [[groundfault]] have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc. |
| | {{MOS modes |
| | | Table Headers= |
| | Super- Mode Names $ |
| | Ad- Mode Names (ground) $ |
| | | Table Entries= |
| | Superlydian $ |
| | TBD $ |
| | Superionian $ |
| | Adlocrian $ |
| | Supermixolydian $ |
| | Adphrygian $ |
| | Supercorinthian $ |
| | Adaeolian $ |
| | Superolympian $ |
| | Addorian $ |
| | Superdorian $ |
| | Admixolydian $ |
| | Superaeolian $ |
| | Adionian $ |
| | Superphrygian $ |
| | Adlydian $ |
| | Superlocrian $ |
| | TBD |
| | }} |
|
| |
|
| ==Modes== | | == Note names== |
| {{MOS modes|Mode Names=Superlydian; Superionian; Supermixolidyan; Supercorintihan; Superolympian; Superdorian; Superaeolian; Superphrygian; Superlocrian}}
| | 7L 2s, when viewed under Armodue theory, can be notated using Armodue notation. |
|
| |
|
| ==Scale tree== | | == Theory == |
| Optional types of 'JI [[Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
| | === Temperament interpretations === |
| | [[Pelogic family#Mavila|Mavila]] is an important harmonic entropy minimum here, insofar as 670-680{{c}} can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus. |
|
| |
|
| | | == Scale tree == |
| Generator ranges:
| | {{MOS tuning spectrum |
| *Chroma-positive generator: 666.6667 cents (5\9) to 685.7143 cents (4\7)
| | | 1/1 = Near exact-7/6 [[Pelogic_family#Armodue|Armodue]] |
| * Chroma-negative generator: 514.2857 cents (3\7) to 533.3333 cents (4\9)
| | | 4/3 = Near exact-20/17 [[Pentagoth]] |
| | | | 7/5 = Near exact-5/4 [[Mavila]] |
| {| class="wikitable"
| | | 3/2 = Near exact-13/11 Pentagoth |
| |-
| | | 7/4 = Near exact-7/4 [[Pelogic_family#Armodue|Armodue]] |
| ! colspan="3" | Generator
| | | 10/3 = Near exact-6/5 [[Mavila]] |
| ! |<span style="display: block; text-align: center;">'''Generator size (cents)'''</span>
| | | 6/1 = [[Gravity]] ↓ |
| ! | Pentachord steps
| | }} |
| ! |Comments
| |
| |-
| |
| | |4\[[7edo|7]]
| |
| | |
| |
| | |
| |
| | |685.714
| |
| | |1 1 1 0
| |
| | |
| |
| |-
| |
| |53\93
| |
| |
| |
| |
| |
| | 683.871
| |
| |13 13 13 1
| |
| |
| |
| |-
| |
| | |
| |
| | |102\[[179edo|179]]
| |
| | |
| |
| | | 683.798
| |
| | |25 25 25 2
| |
| | | Approximately 0.03 cents away from [[95/64]]
| |
| |-
| |
| | 49\86
| |
| |
| |
| |
| |
| |683.721
| |
| |12 12 12 1
| |
| |
| |
| |-
| |
| |
| |
| |94\165
| |
| |
| |
| |683.636
| |
| |23 23 23 2
| |
| |
| |
| |-
| |
| |45\79
| |
| |
| |
| |
| |
| |683.544
| |
| |11 11 11 1
| |
| |
| |
| |-
| |
| |
| |
| |86\151
| |
| |
| |
| | 683.444
| |
| |21 21 21 2
| |
| |
| |
| |-
| |
| | 41\72
| |
| |
| |
| |
| |
| |683.333
| |
| | 10 10 10 1
| |
| |
| |
| |-
| |
| |
| |
| |78\137
| |
| |
| |
| |683.212
| |
| |19 19 19 2
| |
| |
| |
| |-
| |
| |37\65
| |
| |
| |
| |
| |
| |683.077
| |
| | 9 9 9 1
| |
| |
| |
| |-
| |
| |
| |
| |70\123
| |
| |
| |
| |682.927
| |
| |17 17 17 2
| |
| |
| |
| |-
| |
| | |33\[[58edo|58]]
| |
| | | | |
| | |
| |
| | |682.758
| |
| | |8 8 8 1
| |
| | |2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones.
| |
| |-
| |
| |
| |
| |62\109
| |
| |
| |
| |682.569
| |
| |15 15 15 2
| |
| |
| |
| |-
| |
| |29\51
| |
| |
| |
| |
| |
| |682.353
| |
| |7 7 7 1
| |
| |
| |
| |-
| |
| |
| |
| |54\95
| |
| |
| |
| |682.105
| |
| | 13 13 13 2
| |
| |
| |
| |-
| |
| |25\44
| |
| |
| |
| |
| |
| |681.818
| |
| |6 6 6 1
| |
| |
| |
| |-
| |
| |
| |
| |46\81
| |
| |
| |
| |681.4815
| |
| |11 11 11 2
| |
| |
| |
| |-
| |
| | | 21\37
| |
| | |
| |
| | |
| |
| | |681.081
| |
| | |5 5 5 1
| |
| | |
| |
| |-
| |
| |
| |
| |59\104
| |
| |
| |
| |680.769
| |
| |14 14 14 3
| |
| |
| |
| |-
| |
| |
| |
| |38\67
| |
| |
| |
| |680.597
| |
| |9 9 9 2
| |
| |
| |
| |-
| |
| |
| |
| |55\97
| |
| |
| |
| |680.412
| |
| |13 13 13 3
| |
| |
| |
| |-
| |
| | |17\30
| |
| | |
| |
| | |
| |
| | |680
| |
| | |4 4 4 1
| |
| | |L/s = 4
| |
| |-
| |
| |
| |
| |47\83
| |
| |
| |
| |679.518
| |
| |11 11 11 3
| |
| |
| |
| |-
| |
| | |
| |
| | |30\53
| |
| | |
| |
| | |679.245
| |
| | |7 7 7 2
| |
| | |
| |
| |-
| |
| | |
| |
| | |43\76
| |
| | |
| |
| | |678.947
| |
| | |10 10 10 3
| |
| | |
| |
| |-
| |
| | |
| |
| | |56\99
| |
| | |
| |
| | | 678.788
| |
| | |13 13 13 4
| |
| | |
| |
| |-
| |
| | |
| |
| | | 69\122
| |
| | |
| |
| | |678.6885
| |
| | |16 16 16 5
| |
| | |
| |
| |-
| |
| | |
| |
| | |82\145
| |
| | |
| |
| | |678.621
| |
| | | 19 19 19 6
| |
| | |
| |
| |-
| |
| | |
| |
| | | 95\168
| |
| | |
| |
| | |678.571
| |
| | | 22 22 22 7
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |678.569
| |
| | |π π π 1
| |
| | |L/s = π
| |
| |-
| |
| | |
| |
| | |108\191
| |
| | |
| |
| | |678.534
| |
| | |25 25 25 8
| |
| | |
| |
| |-
| |
| | |
| |
| | |121\214
| |
| | |
| |
| | |678.505
| |
| | |28 28 28 9
| |
| | | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth)</span>
| |
| |-
| |
| | |
| |
| | |134\237
| |
| | |
| |
| | |678.481
| |
| | |31 31 31 10
| |
| | |HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span>
| |
| |-
| |
| | |13\23
| |
| | |
| |
| | |
| |
| | | 678.261
| |
| | |3 3 3 1
| |
| | |HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span>
| |
| |-
| |
| | |
| |
| | |126\223
| |
| | |
| |
| | |678.027
| |
| | |29 29 29 10
| |
| | |HORNBOSTEL TEMPERAMENT
| |
| | |
| <span style="font-size: 12.8000001907349px;">(Armodue 1/29-tone)</span>
| |
| |-
| |
| | |
| |
| | |113\200
| |
| | |
| |
| | |678
| |
| | |26 26 26 9
| |
| | | HORNBOSTEL (& [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')</span>
| |
| |-
| |
| | |
| |
| | |100\177
| |
| | |
| |
| | |677.966
| |
| | | 23 23 23 8 | |
| | |
| |
| |-
| |
| | |
| |
| | |87\154
| |
| | |
| |
| | |677.922
| |
| | |20 20 20 7
| |
| | |
| |
| |-
| |
| | |
| |
| | | 74\131
| |
| | |
| |
| | | 677.863
| |
| | |17 17 17 6
| |
| | |Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span>
| |
| |-
| |
| | |
| |
| | |61\108
| |
| | |
| |
| | |677.778
| |
| | |14 14 14 5
| |
| | |Armodue-Hornbostel 1/14-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | | 109\193
| |
| | |677.720
| |
| | |25 25 25 9
| |
| | |Armodue-Hornbostel 1/25-tone
| |
| |-
| |
| | |
| |
| | |48\85
| |
| | |
| |
| | |677.647
| |
| | | 11 11 11 4
| |
| | |Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span> | |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 677.562
| |
| | |e e e 1
| |
| | |L/s = e
| |
| |-
| |
| | |
| |
| | |35\62
| |
| | |
| |
| | |677.419
| |
| | | 8 8 8 3
| |
| | | Armodue-Hornbostel 1/8-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |92\163
| |
| | | 677.301
| |
| | |21 21 21 8
| |
| | | 21;8 Superdiatonic 1/21-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |677.28
| |
| | |<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ+1 φ+1 φ+1 1</span>
| |
| | |Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..)
| |
| |-
| |
| | |
| |
| | | 57\101
| |
| | |
| |
| | |677.228
| |
| | |13 13 13 5
| |
| | |13;5 Superdiatonic 1/13-tone
| |
| |-
| |
| | |22\39
| |
| | |
| |
| | |
| |
| | |676.923
| |
| | | 5 5 5 2
| |
| | | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span>
| |
| |-
| |
| | |
| |
| | |75\133 | |
| | |
| |
| | |676.692
| |
| | |17 17 17 7
| |
| | |17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span>
| |
| |-
| |
| | |
| |
| | |53\94
| |
| | |
| |
| | | 676.596
| |
| | |12 12 12 5
| |
| | |
| |
| |-
| |
| | |
| |
| | |31\55
| |
| | |
| |
| | |676.364
| |
| | |7 7 7 3
| |
| | |7;3 Superdiatonic 1/7-tone
| |
| |-
| |
| | |
| |
| | |40\71
| |
| | |
| |
| | |676.056
| |
| | |9 9 9 4
| |
| | |9;4 Superdiatonic 1/9-tone
| |
| |-
| |
| | |
| |
| | | 49\87
| |
| | |
| |
| | | 675.862
| |
| | |11 11 11 5
| |
| | |11;5 Superdiatonic 1/11-tone
| |
| |-
| |
| | |
| |
| | |58\103
| |
| | |
| |
| | |675.728
| |
| | |13 13 13 6
| |
| | |13;6 Superdiatonic 1/13-tone
| |
| |-
| |
| | |9\16
| |
| | |
| |
| | |
| |
| | |675
| |
| | |2 2 2 1
| |
| | |<span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament)
| |
| |-
| |
| | |
| |
| | |59\105
| |
| | |
| |
| | |674.286
| |
| | | 13 13 13 7
| |
| | |Armodue-Mavila 1/13-tone
| |
| |-
| |
| | |
| |
| | |50\89
| |
| | |
| |
| | |674.157
| |
| | |11 11 11 6
| |
| | |Armodue-Mavila 1/11-tone
| |
| |- | |
| | |
| |
| | | 41\73
| |
| | |
| |
| | |673.973
| |
| | |9 9 9 5
| |
| | | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span>
| |
| |-
| |
| | |
| |
| | | 32\57
| |
| | |
| |
| | | 673.684
| |
| | |7 7 7 4
| |
| | |Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4]] interval, the note '8')</span>
| |
| |- | |
| | |
| |
| | |
| |
| | |
| |
| | | 673.577
| |
| | |<span style="background-color: #ffffff;">√3 √3 √3 1</span>
| |
| | |
| |
| |-
| |
| | |
| |
| | |55\98
| |
| | |
| |
| | |673.469
| |
| | |12 12 12 7
| |
| | |
| |
| |-
| |
| | |
| |
| | |78\139
| |
| | |
| |
| | |673.381
| |
| | |17 17 17 10
| |
| | |Armodue-Mavila 1/17-tone
| |
| |-
| |
| | |
| |
| | |101\180
| |
| | |
| |
| | |673.333
| |
| | | 22 22 22 13
| |
| | |
| |
| |-
| |
| | |23\41
| |
| | |
| |
| | |
| |
| | |673.171
| |
| | |5 5 5 3
| |
| | | 5;3 Golden Armodue-Mavila 1/5-tone
| |
| |-
| |
| | |
| |
| | |60\107
| |
| | |
| |
| | |672.897
| |
| | |13 13 13 8
| |
| | |13;8 Golden Mavila 1/13-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |672.85
| |
| | |<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span>
| |
| | |GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | |97\173
| |
| | |672.832
| |
| | |21 21 21 13
| |
| | |21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span>
| |
| |-
| |
| | |
| |
| | |37\66
| |
| | |
| |
| | |672.727
| |
| | |8 8 8 5
| |
| | | 8;5 Golden Mavila 1/8-tone
| |
| |-
| |
| | |
| |
| | |51\91
| |
| | |
| |
| | | 672.527
| |
| | |11 11 11 7
| |
| | |11;7 Superdiatonic 1/11-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |672.523
| |
| | |π π π 2
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |116\207
| |
| | |672.464
| |
| | | 25 25 25 16
| |
| | |25;16 Superdiatonic 1/25-tone
| |
| |-
| |
| | |
| |
| | |65\116
| |
| | |
| |
| | |672.414
| |
| | |14 14 14 9
| |
| | |14;9 Superdiatonic 1/14-tone
| |
| |-
| |
| | |
| |
| | |79\141
| |
| | |
| |
| | |672.340
| |
| | |17 17 17 11
| |
| | |17;11 Superdiatonic 1/17-tone
| |
| |-
| |
| | |
| |
| | |93\166
| |
| | |
| |
| | |672.289
| |
| | |20 20 20 13
| |
| | |
| |
| |-
| |
| | |
| |
| | |107\191
| |
| | |
| |
| | |672.251
| |
| | |23 23 23 15
| |
| | |
| |
| |-
| |
| | |
| |
| | |121\216
| |
| | |
| |
| | |672.222
| |
| | |26 26 26 17
| |
| | | 26;17 Superdiatonic 1/26-tone
| |
| |-
| |
| | |
| |
| | |135\241
| |
| | |
| |
| | |672.199
| |
| | |29 29 29 19
| |
| | |29;19 Superdiatonic 1/29-tone
| |
| |-
| |
| | |14\25
| |
| | |
| |
| | |
| |
| | |672
| |
| | |3 3 3 2
| |
| | |3;2 Golden Armodue-Mavila 1/3-tone
| |
| |-
| |
| | |
| |
| | |145\259
| |
| | |
| |
| | |671.815
| |
| | |31 31 31 21
| |
| | |31;21 Superdiatonic 1/31-tone
| |
| |-
| |
| | |
| |
| | |131\234
| |
| | |
| |
| | |671.795
| |
| | |28 28 28 19
| |
| | |28;19 Superdiatonic 1/28-tone
| |
| |-
| |
| | |
| |
| | | 117\209
| |
| | |
| |
| | |671.770
| |
| | |25 25 25 17
| |
| | |
| |
| |-
| |
| | |
| |
| | |103\184
| |
| | |
| |
| | |671.739
| |
| | |22 22 22 15
| |
| | |
| |
| |-
| |
| | |
| |
| | |89\159
| |
| | |
| |
| | |671.698
| |
| | |19 19 19 13
| |
| | |
| |
| |-
| |
| | |
| |
| | |75\134
| |
| | |
| |
| | | 671.642
| |
| | |16 16 16 11
| |
| | |
| |
| |-
| |
| | |
| |
| | |61\109
| |
| | |
| |
| | | 671.560
| |
| | | 13 13 13 9
| |
| | |
| |
| |-
| |
| | |
| |
| | |47\84
| |
| | |
| |
| | |671.429
| |
| | |10 10 10 7
| |
| | |
| |
| |-
| |
| |
| |
| |
| |
| |80\143
| |
| | 671.329
| |
| |17 17 17 12
| |
| |
| |
| |-
| |
| | |
| |
| | |33\59
| |
| | |
| |
| | |671.186
| |
| | | 7 7 7 5
| |
| | |
| |
| |-
| |
| |
| |
| |52\93
| |
| |
| |
| |670.968
| |
| | 11 11 11 8
| |
| |
| |
| |-
| |
| | |19\34
| |
| | |
| |
| | |
| |
| | |670.588
| |
| | |4 4 4 3
| |
| | |
| |
| |-
| |
| |
| |
| | 43\77
| |
| |
| |
| |670.13
| |
| |9 9 9 7
| |
| |
| |
| |-
| |
| | | 24\43
| |
| | |
| |
| | |
| |
| | |669.767
| |
| | |5 5 5 4
| |
| | |
| |
| |-
| |
| |
| |
| |53\95
| |
| |
| |
| | 669.474
| |
| |11 11 11 9
| |
| |
| |
| |-
| |
| |29\52
| |
| |
| |
| |
| |
| |669.231
| |
| | 6 6 6 5
| |
| |
| |
| |-
| |
| |
| |
| |63\113
| |
| |
| |
| |669.0265
| |
| |13 13 13 11
| |
| |
| |
| |-
| |
| |34\61
| |
| |
| |
| |
| |
| |668.8525
| |
| |7 7 7 6
| |
| |
| |
| |-
| |
| |
| |
| | 73\131
| |
| |
| |
| |668.702
| |
| |15 15 15 13
| |
| |
| |
| |-
| |
| | 39\70
| |
| |
| |
| |
| |
| |668.571
| |
| |8 8 8 7
| |
| |
| |
| |-
| |
| |
| |
| |83\149
| |
| |
| |
| | 668.456
| |
| |17 17 17 15
| |
| |
| |
| |-
| |
| | 44\79
| |
| |
| |
| |
| |
| | 668.354
| |
| |9 9 9 8
| |
| |
| |
| |-
| |
| |
| |
| |93\167
| |
| |
| |
| |668.2365
| |
| |19 19 19 17
| |
| |
| |
| |-
| |
| |49\88
| |
| |
| |
| |
| |
| |668.182
| |
| | 10 10 10 9
| |
| |
| |
| |-
| |
| |
| |
| |103\185
| |
| |
| |
| |668.108
| |
| |21 21 21 9
| |
| |
| |
| |-
| |
| |54\97
| |
| |
| |
| |
| |
| | 668.041
| |
| |11 11 11 10
| |
| |
| |
| |-
| |
| |
| |
| | 113\203
| |
| |
| |
| |667.98
| |
| |23 23 23 21
| |
| |
| |
| |-
| |
| |59\106
| |
| |
| |
| |
| |
| |667.925
| |
| |12 12 12 11
| |
| |
| |
| |-
| |
| |
| |
| |123\221
| |
| |
| |
| | 667.873
| |
| |25 25 25 23
| |
| |
| |
| |-
| |
| |64\115
| |
| |
| |
| |
| |
| |667.826
| |
| |13 13 13 12
| |
| |
| |
| |-
| |
| | |5\[[9edo|9]]
| |
| | |
| |
| | |
| |
| | | 666.667
| |
| | |1 1 1 1
| |
| | |
| |
| |}
| |
|
| |
|
| [[Category:9-tone scales]] | | [[Category:9-tone scales]] |
| [[Category:Mavila]] | | [[Category:Mavila]] |
| [[Category:Superdiatonic]]
| |
7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢.
Scales of this form are strongly associated with Armodue theory, as applied to septimal mavila and Hornbostel temperaments. Trismegistus is also a usable temperament.
Name
The TAMNAMS name for this pattern is armotonic, in reference to Armodue theory. Superdiatonic is also in use.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 7L 2s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-armstep
|
Perfect 0-armstep
|
P0arms
|
0
|
0.0 ¢
|
1-armstep
|
Minor 1-armstep
|
m1arms
|
s
|
0.0 ¢ to 133.3 ¢
|
Major 1-armstep
|
M1arms
|
L
|
133.3 ¢ to 171.4 ¢
|
2-armstep
|
Minor 2-armstep
|
m2arms
|
L + s
|
171.4 ¢ to 266.7 ¢
|
Major 2-armstep
|
M2arms
|
2L
|
266.7 ¢ to 342.9 ¢
|
3-armstep
|
Minor 3-armstep
|
m3arms
|
2L + s
|
342.9 ¢ to 400.0 ¢
|
Major 3-armstep
|
M3arms
|
3L
|
400.0 ¢ to 514.3 ¢
|
4-armstep
|
Perfect 4-armstep
|
P4arms
|
3L + s
|
514.3 ¢ to 533.3 ¢
|
Augmented 4-armstep
|
A4arms
|
4L
|
533.3 ¢ to 685.7 ¢
|
5-armstep
|
Diminished 5-armstep
|
d5arms
|
3L + 2s
|
514.3 ¢ to 666.7 ¢
|
Perfect 5-armstep
|
P5arms
|
4L + s
|
666.7 ¢ to 685.7 ¢
|
6-armstep
|
Minor 6-armstep
|
m6arms
|
4L + 2s
|
685.7 ¢ to 800.0 ¢
|
Major 6-armstep
|
M6arms
|
5L + s
|
800.0 ¢ to 857.1 ¢
|
7-armstep
|
Minor 7-armstep
|
m7arms
|
5L + 2s
|
857.1 ¢ to 933.3 ¢
|
Major 7-armstep
|
M7arms
|
6L + s
|
933.3 ¢ to 1028.6 ¢
|
8-armstep
|
Minor 8-armstep
|
m8arms
|
6L + 2s
|
1028.6 ¢ to 1066.7 ¢
|
Major 8-armstep
|
M8arms
|
7L + s
|
1066.7 ¢ to 1200.0 ¢
|
9-armstep
|
Perfect 9-armstep
|
P9arms
|
7L + 2s
|
1200.0 ¢
|
Generator chain
Generator chain of 7L 2s
Bright gens |
Scale degree |
Abbrev.
|
15 |
Augmented 3-armdegree |
A3armd
|
14 |
Augmented 7-armdegree |
A7armd
|
13 |
Augmented 2-armdegree |
A2armd
|
12 |
Augmented 6-armdegree |
A6armd
|
11 |
Augmented 1-armdegree |
A1armd
|
10 |
Augmented 5-armdegree |
A5armd
|
9 |
Augmented 0-armdegree |
A0armd
|
8 |
Augmented 4-armdegree |
A4armd
|
7 |
Major 8-armdegree |
M8armd
|
6 |
Major 3-armdegree |
M3armd
|
5 |
Major 7-armdegree |
M7armd
|
4 |
Major 2-armdegree |
M2armd
|
3 |
Major 6-armdegree |
M6armd
|
2 |
Major 1-armdegree |
M1armd
|
1 |
Perfect 5-armdegree |
P5armd
|
0 |
Perfect 0-armdegree Perfect 9-armdegree |
P0armd P9armd
|
−1 |
Perfect 4-armdegree |
P4armd
|
−2 |
Minor 8-armdegree |
m8armd
|
−3 |
Minor 3-armdegree |
m3armd
|
−4 |
Minor 7-armdegree |
m7armd
|
−5 |
Minor 2-armdegree |
m2armd
|
−6 |
Minor 6-armdegree |
m6armd
|
−7 |
Minor 1-armdegree |
m1armd
|
−8 |
Diminished 5-armdegree |
d5armd
|
−9 |
Diminished 9-armdegree |
d9armd
|
−10 |
Diminished 4-armdegree |
d4armd
|
−11 |
Diminished 8-armdegree |
d8armd
|
−12 |
Diminished 3-armdegree |
d3armd
|
−13 |
Diminished 7-armdegree |
d7armd
|
−14 |
Diminished 2-armdegree |
d2armd
|
−15 |
Diminished 6-armdegree |
d6armd
|
Modes
Scale degrees of the modes of 7L 2s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (armdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
8|0
|
1
|
LLLLsLLLs
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
7|1
|
6
|
LLLsLLLLs
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
6|2
|
2
|
LLLsLLLsL
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
5|3
|
7
|
LLsLLLLsL
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
4|4
|
3
|
LLsLLLsLL
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
3|5
|
8
|
LsLLLLsLL
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
2|6
|
4
|
LsLLLsLLL
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
1|7
|
9
|
sLLLLsLLL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
0|8
|
5
|
sLLLsLLLL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Proposed mode names
The Ad- mode names proposed by groundfault have the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc.
Modes of 7L 2s
UDP |
Cyclic order |
Step pattern |
Super- Mode Names |
Ad- Mode Names (ground)
|
8|0 |
1 |
LLLLsLLLs |
Superlydian |
TBD
|
7|1 |
6 |
LLLsLLLLs |
Superionian |
Adlocrian
|
6|2 |
2 |
LLLsLLLsL |
Supermixolydian |
Adphrygian
|
5|3 |
7 |
LLsLLLLsL |
Supercorinthian |
Adaeolian
|
4|4 |
3 |
LLsLLLsLL |
Superolympian |
Addorian
|
3|5 |
8 |
LsLLLLsLL |
Superdorian |
Admixolydian
|
2|6 |
4 |
LsLLLsLLL |
Superaeolian |
Adionian
|
1|7 |
9 |
sLLLLsLLL |
Superphrygian |
Adlydian
|
0|8 |
5 |
sLLLsLLLL |
Superlocrian |
TBD
|
Note names
7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.
Theory
Temperament interpretations
Mavila is an important harmonic entropy minimum here, insofar as 670-680 ¢ can be considered a fifth. Other temperaments include septimal mavila, hornbostel, and trismegistus.
Scale tree
Scale tree and tuning spectrum of 7L 2s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\9
|
|
|
|
|
|
666.667
|
533.333
|
1:1
|
1.000
|
Equalized 7L 2s Near exact-7/6 Armodue
|
|
|
|
|
|
29\52
|
669.231
|
530.769
|
6:5
|
1.200
|
|
|
|
|
|
24\43
|
|
669.767
|
530.233
|
5:4
|
1.250
|
|
|
|
|
|
|
43\77
|
670.130
|
529.870
|
9:7
|
1.286
|
|
|
|
|
19\34
|
|
|
670.588
|
529.412
|
4:3
|
1.333
|
Supersoft 7L 2s Near exact-20/17 Pentagoth
|
|
|
|
|
|
52\93
|
670.968
|
529.032
|
11:8
|
1.375
|
|
|
|
|
|
33\59
|
|
671.186
|
528.814
|
7:5
|
1.400
|
Near exact-5/4 Mavila
|
|
|
|
|
|
47\84
|
671.429
|
528.571
|
10:7
|
1.429
|
|
|
|
14\25
|
|
|
|
672.000
|
528.000
|
3:2
|
1.500
|
Soft 7L 2s Near exact-13/11 Pentagoth
|
|
|
|
|
|
51\91
|
672.527
|
527.473
|
11:7
|
1.571
|
|
|
|
|
|
37\66
|
|
672.727
|
527.273
|
8:5
|
1.600
|
|
|
|
|
|
|
60\107
|
672.897
|
527.103
|
13:8
|
1.625
|
|
|
|
|
23\41
|
|
|
673.171
|
526.829
|
5:3
|
1.667
|
Semisoft 7L 2s
|
|
|
|
|
|
55\98
|
673.469
|
526.531
|
12:7
|
1.714
|
|
|
|
|
|
32\57
|
|
673.684
|
526.316
|
7:4
|
1.750
|
Near exact-7/4 Armodue
|
|
|
|
|
|
41\73
|
673.973
|
526.027
|
9:5
|
1.800
|
|
|
9\16
|
|
|
|
|
675.000
|
525.000
|
2:1
|
2.000
|
Basic 7L 2s Scales with tunings softer than this are proper
|
|
|
|
|
|
40\71
|
676.056
|
523.944
|
9:4
|
2.250
|
|
|
|
|
|
31\55
|
|
676.364
|
523.636
|
7:3
|
2.333
|
|
|
|
|
|
|
53\94
|
676.596
|
523.404
|
12:5
|
2.400
|
|
|
|
|
22\39
|
|
|
676.923
|
523.077
|
5:2
|
2.500
|
Semihard 7L 2s
|
|
|
|
|
|
57\101
|
677.228
|
522.772
|
13:5
|
2.600
|
|
|
|
|
|
35\62
|
|
677.419
|
522.581
|
8:3
|
2.667
|
|
|
|
|
|
|
48\85
|
677.647
|
522.353
|
11:4
|
2.750
|
|
|
|
13\23
|
|
|
|
678.261
|
521.739
|
3:1
|
3.000
|
Hard 7L 2s
|
|
|
|
|
|
43\76
|
678.947
|
521.053
|
10:3
|
3.333
|
Near exact-6/5 Mavila
|
|
|
|
|
30\53
|
|
679.245
|
520.755
|
7:2
|
3.500
|
|
|
|
|
|
|
47\83
|
679.518
|
520.482
|
11:3
|
3.667
|
|
|
|
|
17\30
|
|
|
680.000
|
520.000
|
4:1
|
4.000
|
Superhard 7L 2s
|
|
|
|
|
|
38\67
|
680.597
|
519.403
|
9:2
|
4.500
|
|
|
|
|
|
21\37
|
|
681.081
|
518.919
|
5:1
|
5.000
|
|
|
|
|
|
|
25\44
|
681.818
|
518.182
|
6:1
|
6.000
|
Gravity ↓
|
4\7
|
|
|
|
|
|
685.714
|
514.286
|
1:0
|
→ ∞
|
Collapsed 7L 2s
|