Archytas clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+subgroup data
m Archy: schism isn't an exo
 
(86 intermediate revisions by 14 users not shown)
Line 1: Line 1:
The '''archytas clan''' tempers out the [[64/63|Archytas comma]], 64/63. This means that four stacked 3/2 fifths equal a 9/7 major third. (Note the similarity in function to [[81/80]] in meantone, where four stacked 3/2 fifths equal a 5/4 major third.) This leads to tunings with 3s and 7s quite sharp, such as those of [[22edo]].  
{{Technical data page}}
The '''archytas clan''' (or '''archy family''') [[tempering out|tempers out]] the [[64/63|Archytas' comma]], 64/63. This means a stack of two [[3/2]] fifths [[octave reduction|octave-reduced]] equals a whole tone of [[8/7]][[~]][[9/8]] tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a [[9/7]] major third. Note the similarity in function to [[81/80]] in meantone, where four stacked fifths octave-reduced equal a [[5/4]] major third. This leads to tunings with 3's and 7's quite sharp, such as those of [[22edo]], [[27edo]], or [[49edo]].  


Adding 50/49 to the list of commas gives pajara, 36/35 gives dominant, 16/15 gives mother, 126/125 gives augene, 28/27 gives blacksmith, 245/243 gives superpyth, 250/243 gives porcupine, 686/675 gives beatles, 360/343 gives schism, 3125/3087 gives passion, 2430/2401 gives quasisuper, and 4375/4374 gives modus.  
This article focuses on rank-2 temperaments. See [[Archytas family]] for the [[rank-3 temperament]] resulting from tempering out 64/63 alone in the full 7-limit.  


Discussed under subgroup temperaments is the 2.3.7 [[Subgroup temperaments #Archy|archy]]. Under their respective 5-limit families are [[Father family #Mother|mother]], [[Meantone family #Dominant|dominant]], [[Augmented family #Augene|augene]], [[Porcupine family|porcupine]], [[Diaschismic family #Pajara|pajara]], [[Tetracot family #Modus|modus]], and [[Immunity family #Immunized|immunized]]. The rest are considered below.
== Archy ==
{{Main| Superpyth }}


= Blacksmith =
[[Subgroup]]: 2.3.7


[[File:blacksmith10.jpg|alt=blacksmith10.jpg|thumb|Lattice of blacksmith]]
[[Comma list]]: 64/63


== 5-limit (blackwood) ==
{{Mapping|legend=2| 1 0 6 | 0 1 -2 }}


Period: 1\5
: sval mapping generators: ~2, ~3


Optimal ([[POTE]]) generator: ~5/4 = 399.594
{{Mapping|legend=3| 1 0 0 6 | 0 1 0 -2 }}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
: [[gencom]]: [2 3; 64/63]


Scales (Scala files):  
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1196.9552{{c}}, ~3/2 = 707.5215{{c}}
: [[error map]]: {{val| -3.045 +2.522 +3.952 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.3901{{c}}
: error map: {{val| 0.000 +7.435 +12.394 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Subgroup: 2.3.5
[[Badness]] (Sintel): 0.159


Comma list: 256/243
Scales: [[archy5]], [[archy7]], [[archy12]]


Mapping: [{{val| 5 8 0 }}, {{val| 0 0 1 }}]
=== Overview to extensions ===
==== 7-limit extensions ====
The second comma in the comma list defines which [[7-limit]] family member we are looking at:  
* [[#Schism|Schism]] adds 360/343, for a tuning around [[12edo]];
* Dominant adds [[36/35]], for a tuning between [[12edo]] and [[17edo|17c-edo]];
* [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]];
* [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]];
* [[#Quasiultra|Quasiultra]] adds 33614/32805, for a tuning between 27edo and [[32edo]];
* [[#Ultrapyth|Ultrapyth]] adds 6860/6561, for a tuning sharp of 32edo;
* Mother adds [[16/15]], for an exotemperament well tuned around [[5edo]].


Mapping generators: ~9/8, ~5
These all use the same generators as archy.


{{Val list|legend=1| 5, 10, 15 }}
[[686/675]] gives beatles, splitting the fifth in two. [[8748/8575]] gives immunized, splitting the twelfth in two. [[50/49]] gives pajara with a semioctave period. [[392/375]] gives progress, splitting the twelfth in three. [[250/243]] gives porcupine, splitting the fourth in three. [[126/125]] gives augene with a 1/3-octave period. [[4375/4374]] gives modus, splitting the fifth in four. [[3125/3024]] gives brightstone. [[9604/9375]] gives fervor. [[3125/2916]] gives sixix. [[3125/3087]] gives passion. Those split the generator in five in various ways. [[28/27]] gives blacksmith with a 1/5-octave period. Finally, [[15625/15552]] gives catalan, splitting the twelfth in six.


Badness: 0.0638
Temperaments discussed elsewhere are:  
* ''[[Mother]]'' (+16/15) → [[Father family #Mother|Father family]]
* [[Dominant (temperament)|Dominant]] (+36/35) → [[Meantone family #Dominant|Meantone family]]
* ''[[Medusa]]'' (+15/14) → [[Very low accuracy temperaments #Medusa|Very low accuracy temperaments]]
* ''[[Immunized]]'' (+8748/8575) → [[Immunity family #Immunized|Immunity family]]
* [[Pajara]] (+50/49) → [[Diaschismic family #Pajara|Diaschismic family]]
* [[Augene]] (+126/125) → [[Augmented family #Augene|Augmented family]]
* [[Porcupine]] (+250/243) → [[Porcupine family #Septimal porcupine|Porcupine family]]
* ''[[Modus]]'' (+4375/4374) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]]
* ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]]
* [[Blackwood]] (+28/27) → [[Limmic temperaments #Blackwood|Limmic temperaments]]
* ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]]


</div></div>
Considered below are superpyth, quasisuper, ultrapyth, quasiultra, schism, beatles, progress, fervor, and sixix.


== 7-limit ==
==== Subgroup extensions ====
Omitting prime 5, archy can be extended to the 2.3.7.11 subgroup by identifying 11/8 as a diminished fourth (C–Gb). This is called supra, given right below. Discussed elsewhere is [[suhajira]] of the [[neutral clan #Suhajira|neutral clan]].


Period: 1\5
=== Supra ===
Subgroup: 2.3.7.11


Optimal ([[POTE]]) generator: ~5/4 = 392.767
Comma list: 64/63, 99/98


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Sval mapping: {{mapping| 1 0 6 13 | 0 1 -2 -6 }}


Scales (Scala files):  
Gencom mapping: {{mapping| 1 0 0 6 13 | 0 1 0 -2 -6 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
: gencom: [2 3; 64/63 99/98]
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Subgroup: 2.3.5.7
Optimal tunings:  
* WE: ~2 = 1197.2650{{c}}, ~3/2 = 705.5803{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 707.4981{{c}}


Comma list: 28/27, 49/48
{{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }}


Mapping: [{{val| 5 8 0 14 }}, {{val| 0 0 1 0 }}]
Badness (Sintel): 0.352


Mapping generators: ~7/6, ~5
Scales: [[supra7]], [[supra12]]


Wedgie: {{wedgie| 0 5 0 8 0 -14 }}
==== Supraphon ====
Subgroup: 2.3.7.11.13


{{Val list|legend=1| 5, 10, 15, 40b, 55b }}
Comma list: 64/63, 78/77, 99/98


Badness: 0.0256
Sval mapping: {{mapping| 1 0 6 13 18 | 0 1 -2 -6 -9 }}


</div></div>
Gencom mapping: {{mapping| 1 0 0 6 13 18 | 0 1 0 -2 -6 -9 }}


== 11-limit ==
: gencom: [2 3; 64/63 78/77 99/98]


Period: 1\5
Optimal tunings:  
* WE: ~2 = 1197.1909{{c}}, ~3/2 = 704.4836{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 706.4289{{c}}


Optimal ([[POTE]]) generator: ~5/4 = 394.948
{{Optimal ET sequence|legend=0| 12f, 17 }}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Badness (Sintel): 0.498


Scales (Scala files):  
Scales: [[supra7]], [[supra12]]


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
== Superpyth ==
<div style="line-height:1.6;">Technical data</div>
{{Main| Superpyth }}
<div class="mw-collapsible-content">
: ''For the 5-limit version, see [[Syntonic–diatonic equivalence continuum #Superpyth (5-limit)]].''


Subgroup: 2.3.5.7.11
Superpyth, virtually the canonical extension, adds [[245/243]] and [[1728/1715]] to the comma list and can be described as {{nowrap| 22 & 27 }}. ~5/4 is found at +9 generator steps, as an augmented second (C–D#). 49edo remains an obvious tuning choice.  


Comma list: 28/27, 49/48, 55/54
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 5 8 0 14 29 }}, {{val| 0 0 1 0 -1 }}]
[[Comma list]]: 64/63, 245/243


{{Val list|legend=1| 5, 10, 15, 40be, 55be, 70bde, 85bcde}}
{{Mapping|legend=1| 1 0 -12 6 | 0 1 9 -2 }}


Badness: 0.0246
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1197.0549{{c}}, ~3/2 = 708.5478{{c}}
: [[error map]]: {{val| -2.945 +3.648 -0.548 +2.298 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 710.1193{{c}}
: error map: {{val| 0.000 +8.164 +4.760 +10.935 }}


</div></div>
{{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }}


=== 13-limit ===
[[Badness]] (Sintel): 0.818


Period: 1\5
=== 11-limit ===
The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double-augmented second (C–Dx) and finds the ~13/8 at +13 generator steps, as a double-augmented fourth (C–Fx).


Optimal ([[POTE]]) generator: ~5/4 = 391.0367
Subgroup: 2.3.5.7.11


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Comma list: 64/63, 100/99, 245/243


Scales (Scala files):  
Mapping: {{mapping| 1 0 -12 6 -22 | 0 1 9 -2 16 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Optimal tunings:
<div style="line-height:1.6;">Technical data</div>
* WE: ~2 = 1197.0673{{c}}, ~3/2 = 708.4391{{c}}
<div class="mw-collapsible-content">
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.0129{{c}}


Subgroup: 2.3.5.7.11.13
{{Optimal ET sequence|legend=0| 22, 27e, 49 }}


Comma list: 28/27, 40/39, 49/48, 55/54
Badness (Sintel): 0.826


Mapping: [{{val| 5 8 0 14 29 7 }}, {{val| 0 0 1 0 -1 1 }}]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Val list|legend=1| 5, 10, 15, 25e, 40bef}}
Comma list: 64/63, 78/77, 91/90, 100/99


Badness: 0.0205
Mapping: {{mapping| 1 0 -12 6 -22 -17 | 0 1 9 -2 16 13 }}


</div></div>
Optimal tunings:
* WE: ~2 = 1197.3011{{c}}, ~3/2 = 708.8813{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.3219{{c}}


== Farrier ==
{{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }}


Period: 1\5
Badness (Sintel): 1.02


Optimal ([[POTE]]) generator: ~5/4 = 398.070
==== Thomas ====
Subgroup: 2.3.5.7.11.13


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Comma list: 64/63, 100/99, 169/168, 245/243


Scales (Scala files):  
Mapping: {{mapping| 1 1 -3 4 -6 4 | 0 2 18 -4 32 -1 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Optimal tunings:
<div style="line-height:1.6;">Technical data</div>
* WE: ~2 = 1197.4942{{c}}, ~16/13 = 354.2950{{c}}
<div class="mw-collapsible-content">
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 354.9824{{c}}


Subgroup: 2.3.5.7.11
{{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }}


Comma list: 28/27, 49/48, 77/75
Badness (Sintel): 2.03


Mapping: [{{val| 5 8 0 14 -6 }}, {{val| 0 0 1 0 2 }}]
=== Suprapyth ===
Suprapyth finds the ~11/8 at the diminished fifth (C–Gb), and finds the ~13/8 at the diminished seventh (C–Bbb).


{{Val list|legend=1| 5e, 10e, 15 }}
Subgroup: 2.3.5.7.11


Badness: 0.0292
Comma list: 55/54, 64/63, 99/98


</div></div>
Mapping: {{mapping| 1 0 -12 6 13 | 0 1 9 -2 -6 }}


=== 13-limit ===
Optimal tunings:
* WE: ~2 = 1198.6960{{c}}, ~3/2 = 708.7235{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 709.4699{{c}}


Period: 1\5
{{Optimal ET sequence|legend=0| 5, 17, 22 }}


Optimal ([[POTE]]) generator: ~5/4 = 396.812
Badness (Sintel): 1.08


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Scales (Scala files):  
Comma list: 55/54, 64/63, 65/63, 99/98


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Mapping: {{mapping| 1 0 -12 6 13 18 | 0 1 9 -2 -6 -9 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Subgroup: 2.3.5.7.11.13
Optimal tunings:  
* WE: ~2 = 1199.9871{{c}}, ~3/2 = 708.6952{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.7028{{c}}


Comma list: 28/27, 40/39, 49/48, 66/65
{{Optimal ET sequence|legend=0| 5f, 17, 22 }}


Mapping: [{{val| 5 8 0 14 -6 7 }}, {{val| 0 0 1 0 2 1 }}]
Badness (Sintel): 1.50


{{Val list|legend=1| 5e, 10e, 15 }}
== Quasisuper ==
Quasisuper can be described as {{nowrap| 17c & 22 }}, with the ~5/4 mapped to -13 generator steps, as a double-diminished fifth (C–Gbb).


Badness: 0.0223
[[Subgroup]]: 2.3.5.7


</div></div>
[[Comma list]]: 64/63, 2430/2401


== Ferrum ==
{{Mapping|legend=1| 1 0 23 6 | 0 1 -13 -2 }}


Period: 1\5
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1196.9830{{c}}, ~3/2 = 706.4578{{c}}
: [[error map]]: {{val| -3.017 +1.486 -0.435 +6.190 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 708.3716{{c}}
: error map: {{val| 0.000 +6.417 +4.855 +14.431 }}


Optimal ([[POTE]]) generator: ~5/4 = 374.763
{{Optimal ET sequence|legend=1| 17c, 22, 61d }}


EDO generators: [[10edo|3\10]]
[[Badness]] (Sintel): 1.61


Scales (Scala files):
=== Quasisupra ===
 
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament [[supra]], with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 28/27, 35/33, 49/48
Comma list: 64/63, 99/98, 121/120


Mapping: [{{val| 5 8 0 14 6 }}, {{val| 0 0 1 0 1 }}]
Mapping: {{mapping| 1 0 23 6 13 | 0 1 -13 -2 -6 }}


{{Val list|legend=1| 5e, 10 }}
Optimal tunings:
* WE: ~2 = 1197.5675{{c}}, ~3/2 = 706.7690{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.3200{{c}}


Badness: 0.0309
{{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }}


</div></div>
Badness (Sintel): 1.06


= Superpyth =
==== 13-limit ====
{{main| Superpyth }}
Subgroup: 2.3.5.7.11.13


Period: 1\1
Comma list: 64/63, 78/77, 91/90, 121/120


Optimal ([[POTE]]) generator: ~3/2 = 710.291
Mapping: {{mapping| 1 0 23 6 13 18 | 0 1 -13 -2 -6 -9 }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Optimal tunings:  
* WE: ~2 = 1198.2543{{c}}, ~3/2 = 706.9736{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0936{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 17c, 22, 39d }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 1.25
<div style="line-height:1.6;">Technical data</div>
 
<div class="mw-collapsible-content">
=== Quasisoup ===
Subgroup: 2.3.5.7.11


Subgroup: 2.3.5.7
Comma list: 55/54, 64/63, 2430/2401


Comma list: 64/63, 245/243
Mapping: {{mapping| 1 0 23 6 -22 | 0 1 -13 -2 16 }}


Mapping: [{{val| 1 0 -12 6 }}, {{val| 0 1 9 -2 }}]
Optimal tunings:  
* WE: ~2 = 1198.8446{{c}}, ~3/2 = 708.3388{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0252{{c}}


Wedgie: {{wedgie| 1 9 -2 12 -6 -30 }}
{{Optimal ET sequence|legend=0| 22 }}


{{Val list|legend=1| 5, 17, 22, 27, 49 }}
Badness (Sintel): 2.76


Badness: 0.0323
== Ultrapyth ==
{{Main| Ultrapyth }}


</div></div>
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).


== 11-limit ==
[[Subgroup]]: 2.3.5.7


Period: 1\1
[[Comma list]]: 64/63, 6860/6561


Optimal ([[POTE]]) generator: ~3/2 = 710.175
{{Mapping|legend=1| 1 0 -20 6 | 0 1 14 -2 }}


EDO generators: [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1197.2673{{c}}, ~3/2 = 712.0258{{c}}
: [[error map]]: {{val| -2.733 +7.338 -1.557 -3.808 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5430{{c}}
: error map: {{val| 0.000 +11.588 +3.288 +4.088 }}


Scales (Scala files):
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
[[Badness]] (Sintel): 2.74
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 64/63, 100/99, 245/243
Comma list: 55/54, 64/63, 2401/2376
 
Mapping: [{{val| 1 0 -12 6 -22 }}, {{val| 0 1 9 -2 16 }}]
 
{{Val list|legend=1| 22, 27e, 49 }}
 
Badness: 0.0250
 
</div></div>
 
=== 13-limit ===
 
Period: 1\1


Optimal ([[POTE]]) generator: ~3/2 = 710.479
Mapping: {{mapping| 1 0 -20 6 21 | 0 1 14 -2 -11 }}


EDO generators: [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Optimal tunings:  
* WE: ~2 = 1198.0290{{c}}, ~3/2 = 712.2235{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.3754{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 5, 32, 37 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 2.26
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 64/63, 78/77, 91/90, 100/99
Comma list: 55/54, 64/63, 91/90, 1573/1568
 
Mapping: [{{val| 1 0 -12 6 -22 -17 }}, {{val| 0 1 9 -2 16 13 }}]
 
{{Val list|legend=1| 22, 27e, 49, 76bcde }}
 
Badness: 0.0247
 
</div></div>


== Suprapyth ==
Mapping: {{mapping| 1 0 -20 6 21 -25 | 0 1 14 -2 -11 18 }}


Period: 1\1
Optimal tunings:  
* WE: ~2 = 1198.1911{{c}}, ~3/2 = 712.4243{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.4684{{c}}


Optimal ([[POTE]]) generator: ~3/2 = 709.495
{{Optimal ET sequence|legend=0| 5, 32, 37 }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]]
Badness (Sintel): 2.03
 
Scales (Scala files):  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


=== Ultramarine ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 55/54, 64/63, 99/98
Comma list: 64/63, 100/99, 3773/3645
 
Mapping: [{{val| 1 0 -12 6 13 }}, {{val| 0 1 9 -2 -6 }}]


{{Val list|legend=1| 17, 22 }}
Mapping: {{mapping| 1 0 -20 6 -38 | 0 1 14 -2 26 }}


Badness: 0.0328
Optimal tunings:  
* WE: ~2 = 1197.2230{{c}}, ~3/2 = 712.1393{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.6928{{c}}


</div></div>
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }}


=== 13-limit ===
Badness (Sintel): 2.58
 
Period: 1\1
 
Optimal ([[POTE]]) generator: ~3/2 = 708.703
 
EDO generators: [[17edo|11\17]], [[22edo|14\22]]
 
Scales (Scala files):
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 55/54, 64/63, 65/63, 99/98
Comma list: 64/63, 91/90, 100/99, 847/845
 
Mapping: [{{val| 1 0 -12 6 13 18 }}, {{val| 0 1 9 -2 -6 -9 }}]
 
{{Val list|legend=1| 17, 22, 83cdf }}
 
Badness: 0.0363
 
</div></div>


= Quasisuper =
Mapping: {{mapping| 1 0 -20 6 -38 -25 | 0 1 14 -2 26 18 }}


Period: 1\1
Optimal tunings:  
* WE: ~2 = 1197.2739{{c}}, ~3/2 = 712.1893{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.7079{{c}}


Optimal ([[POTE]]) generator: ~3/2 = 708.328
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
Badness (Sintel): 1.89


Scales (Scala files):
== Quasiultra ==
Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the {{nowrap| 27 & 32 }} temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C–Abbb).


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
[[Subgroup]]: 2.3.5.7
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Subgroup: 2.3.5.7
[[Comma list]]: 64/63, 33614/32805


Comma list: 64/63, 2430/2401
{{Mapping|legend=1| 1 0 31 6 | 0 1 -18 -2 }}


Mapping: [{{val| 1 0 23 6 }}, {{val| 0 1 -13 -2 }}]
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.9257{{c}}, ~3/2 = 709.6211{{c}}
: [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 711.5429{{c}}
: error map: {{val| 0.000 +9.588 +5.914 +8.088 }}


Wedgie: {{wedgie| 1 -13 -2 -23 -2 -6 32 }}
{{Optimal ET sequence|legend=1| 27, 86bd, 113bcd, 140bbcd }}


{{Val list|legend=1| 17c, 22, 61d }}
[[Badness]] (Sintel): 3.34


Badness: 0.0638
== Schism ==
{{See also| Schismatic family #Schism }}


</div></div>
Schism tempers out the [[schisma]], mapping the ~5/4 to -8 fifths as a diminished fourth (C–Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53dd val) can be used.


== Quasisupra ==
[[Subgroup]]: 2.3.5.7
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament [[supra]], with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).


Period: 1\1
[[Comma list]]: 64/63, 360/343


Optimal ([[POTE]]) generator: ~3/2 = 708.205
{{Mapping|legend=1| 1 0 15 6 | 0 1 -8 -2 }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1197.3598{{c}}, ~3/2 = 700.0126{{c}}
: [[error map]]: {{val| -2.640 -4.583 -4.896 +20.588 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.7376{{c}}
: error map: {{val| 0.000 -0.217 -0.214 +27.699 }}


Scales (Scala files):
{{Optimal ET sequence|legend=1| 5c, 7c, 12 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
[[Badness]] (Sintel): 1.43
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 64/63, 99/98, 121/120
Comma list: 45/44, 64/63, 99/98
 
Mapping: [{{val| 1 2 -3 2 1 }}, {{val| 0 -1 13 2 6 }}]
 
{{Val list|legend=1| 17c, 22, 39d, 61d }}
 
Badness: 0.0322
 
</div></div>
 
=== 13-limit ===
 
Period: 1\1
 
Optimal ([[POTE]]) generator: ~3/2 = 708.004
 
EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]


Scales (Scala files):  
Mapping: {{mapping| 1 0 15 6 13 | 0 1 -8 -2 -6 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Optimal tunings:
<div style="line-height:1.6;">Technical data</div>
* WE: ~2 = 1196.1607{{c}}, ~3/2 = 699.8897{{c}}
<div class="mw-collapsible-content">
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 702.4385{{c}}


Subgroup: 2.3.5.7.11.13
{{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }}


Comma list: 64/63, 78/77, 91/90, 121/120
Badness (Sintel): 1.24


Mapping: [{{val| 1 0 23 6 13 18 }}, {{val| 0 1 -13 -2 -6 -9 }}]
== Beatles ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].''


{{Val list|legend=1| 17c, 22, 39d, 61df, 100bcdf }}
Beatles tempers out 686/675, which may also be characterized by saying it tempers out [[2401/2400]]. It may be described as the {{nowrap| 10 & 17c }} temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its [[ploidacot]] is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.


Badness: 0.0302
Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.  


</div></div>
[[Subgroup]]: 2.3.5.7


== Quasisoup ==
[[Comma list]]: 64/63, 686/675


Period: 1\1
{{Mapping|legend=1| 1 1 5 4 | 0 2 -9 -4 }}


Optimal ([[POTE]]) generator: ~3/2 = 709.021
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.6244{{c}}, ~49/40 = 354.9029{{c}}
: [[error map]]: {{val| -3.376 +4.475 +2.682 -1.940 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~49/40 = 356.0819{{c}}
: error map: {{val| 0.000 +10.209 +8.949 +6.847 }}


EDO generators: [[22edo|14\22]]
{{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }}


Scales (Scala files):  
[[Badness]] (Sintel): 1.16


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
; Music
<div style="line-height:1.6;">Technical data</div>
* [https://web.archive.org/web/20201127013829/http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/beatles-improv.mp3 ''Beatles Improv''] by [[Herman Miller]]
<div class="mw-collapsible-content">


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 55/54, 64/63, 2430/2401
Comma list: 64/63, 100/99, 686/675


Mapping: [{{val| 1 0 23 6 -22 }}, {{val| 0 1 -13 -2 16 }}]
Mapping: {{mapping| 1 1 5 4 10 | 0 2 -9 -4 -22 }}


{{Val list|legend=1| 22 }}
Optimal tunings:
* WE: ~2 = 1196.7001{{c}}, ~49/40 = 355.1606{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.2795{{c}}


Badness: 0.0835
{{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }}


</div></div>
Badness (Sintel): 1.51


= Beatles =
==== 13-limit ====
== 5-limit ==
Subgroup: 2.3.5.7.11.13
Comma list: 524288/492075


POTE generator: ~512/405 = 355.930
Comma list: 64/63, 91/90, 100/99, 169/168


Mapping: [{{val| 1 1 5 }}, {{val| 0 2 -9 }}]
Mapping: {{mapping| 1 1 5 4 10 4 | 0 2 -9 -4 -22 -1 }}


{{Val list|legend=1| 10, 17c, 27, 64b, 91bc, 118bc }}
Optimal tunings:
* WE: ~2 = 1197.2504{{c}}, ~16/13 = 355.4132{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.3273{{c}}


Badness: 0.3585
{{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }}


== 7-limit ==
Badness (Sintel): 1.25
Comma list: 64/63, 686/675


[[POTE generator]]: ~49/40 = 355.904
=== Ringo ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 1 5 4 }}, {{val| 0 2 -9 -4 }}]
Comma list: 56/55, 64/63, 540/539


Wedgie: {{wedgie| 2 -9 -4 -19 -12 16 }}
Mapping: {{mapping| 1 1 5 4 2 | 0 2 -9 -4 5 }}


{{Val list|legend=1| 10, 17c, 27, 64b, 91bcd, 118bcd }}
Optimal tunings:
* WE: ~2 = 1195.4102{{c}}, ~11/9 = 354.0597{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5207{{c}}


Badness: 0.0459
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}


Music: [http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/beatles-improv.mp3 Beatles Improv] by Herman Miller
Badness (Sintel): 1.09


== 11-limit ==
==== 13-limit ====
Comma list: 64/63, 100/99, 686/675
Subgroup: 2.3.5.7.11.13


POTE generator: ~49/40 = 356.140
Comma list: 56/55, 64/63, 78/77, 91/90


Mapping: [{{val| 1 1 5 4 10 }}, {{val| 0 2 -9 -4 -22 }}]
Mapping: {{mapping| 1 1 5 4 2 4 | 0 2 -9 -4 5 -1 }}


{{Val list|legend=1| 27e, 37, 64be, 91bcde }}
Optimal tunings:
* WE: ~2 = 1195.9943{{c}}, ~11/9 = 354.2695{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5398{{c}}


Badness: 0.0456
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}


=== 13-limit ===
Badness (Sintel): 0.935
Comma list: 64/63, 91/90, 100/99, 169/168


POTE generator: ~16/13 = 356.229
=== Beetle ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 1 5 4 10 4 }}, {{val| 0 2 -9 -4 -22 -1 }}]
Comma list: 55/54, 64/63, 686/675


{{Val list|legend=1| 27e, 37, 64be }}
Mapping: {{mapping| 1 1 5 4 -1 | 0 2 -9 -4 15 }}


Badness: 0.0302
Optimal tunings:  
* WE: ~2 = 1197.9660{{c}}, ~49/40 = 356.1056{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.7075{{c}}


== Ringo ==
{{Optimal ET sequence|legend=0| 10, 27, 37 }}
Comma list: 56/55, 64/63, 540/539


POTE generator: ~11/9 = 355.419
Badness (Sintel): 1.92


Mapping: [{{val| 1 1 5 4 2 }}, {{val| 0 2 -9 -4 5 }}]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Val list|legend=1| 10, 17c, 27e }}
Comma list: 55/54, 64/63, 91/90, 169/168


Badness: 0.0329
Mapping: {{mapping| 1 1 5 4 -1 4 | 0 2 -9 -4 15 -1 }}


=== 13-limit ===
Optimal tunings:
Comma list: 56/55, 64/63, 78/77, 91/90
* WE: ~2 = 1198.1741{{c}}, ~16/13 = 356.1582{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.7008{{c}}


POTE generator: ~11/9 = 355.456
{{Optimal ET sequence|legend=0| 10, 27, 37 }}


Mapping: [{{val| 1 1 5 4 2 4 }}, {{val| 0 2 -9 -4 5 -1 }}]
Badness (Sintel): 1.40


{{Val list|legend=1| 10, 17c, 27e }}
== Progress ==
{{Distinguish| Progression }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].''


Badness: 0.0226
Progress tempers out 392/375 and may be described as {{nowrap| 15 & 17c }}. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.  


= Schism =
[[Subgroup]]: 2.3.5.7
{{see also|Schismatic family #Schism}}


Comma list: 64/63, 360/343
[[Comma list]]: 64/63, 392/375


[[POTE generator]]: ~3/2 = 701.556
{{Mapping|legend=1| 1 0 5 6 | 0 3 -5 -6 }}


Mapping: [{{val| 1 0 15 6 }}, {{val| 0 1 -8 -2 }}]
: mapping generators: ~2, ~10/7


Wedgie: {{wedgie| 1 -8 -2 -15 -6 18 }}
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1195.1377{{c}}, ~10/7 = 635.2932{{c}}
: [[error map]]: {{val| -4.862 +3.925 +12.908 -9.759 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 638.0791{{c}}
: error map: {{val| 0.000 +12.282 +23.291 +2.700 }}


{{Val list|legend=1| 12, 41d, 53d }}
{{Optimal ET sequence|legend=1| 2, 13, 15, 32c }}


Badness: 0.0566
[[Badness]] (Sintel): 1.68


== 11-limit ==
=== 11-limit ===
Comma list: 45/44, 64/63, 99/98
Subgroup: 2.3.5.7.11


POTE generator ~3/2 = 702.136
Comma list: 56/55, 64/63, 77/75


Mapping: [{{val| 1 0 15 6 13 }}, {{val| 0 1 -8 -2 -6 }}]
Mapping: {{mapping| 1 0 5 6 4 | 0 3 -5 -6 -1 }}


{{Val list|legend=1| 12, 29de, 41de }}
Optimal tunings:
* WE: ~2 = 1195.4920{{c}}, ~10/7 = 635.5183{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 638.0884{{c}}


Badness: 0.0375
{{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }}


= Passion =
Badness (Sintel): 1.03
== 5-limit ==
Comma list: 262144/253125


POTE generator: ~16/15 = 98.670
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 1 2 2 }}, {{val| 0 -5 4 }}]
Comma list: 56/55, 64/63, 66/65, 77/75


{{Val list|legend=1| 11, 12, 49, 61, 73 }}
Mapping: {{mapping| 1 0 5 6 4 0 | 0 3 -5 -6 -1 7 }}


Badness: 0.1686
Optimal tunings:  
* WE: ~2 = 1195.0786{{c}}, ~10/7 = 635.0197{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 637.6691{{c}}


== 7-limit ==
{{Optimal ET sequence|legend=0| 15, 17c, 32cf }}
Comma list: 64/63, 3125/3087


[[POTE generator]]: ~16/15 = 98.153
Badness (Sintel): 1.08


Mapping: [{{val| 1 2 2 2 }}, {{val| 0 -5 4 10 }}]
==== Progressive ====
Subgroup: 2.3.5.7.11.13


Mapping generators: 2, 16/15
Comma list: 26/25, 56/55, 64/63, 77/75


Wedgie: {{wedgie| 5 -4 -10 -18 -30 -12 }}
Mapping: {{mapping| 1 0 5 6 4 9 | 0 3 -5 -6 -1 -10 }}


{{Val list|legend=1| 12, 37, 49, 110bcd }}
Optimal tunings:
* WE: ~2 = 1196.0245{{c}}, ~10/7 = 634.6516{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 636.9528{{c}}


Badness: 0.0623
{{Optimal ET sequence|legend=0| 2f, 15f, 17c }}


== 11-limit ==
Badness (Sintel): 1.35
Comma list: 64/63, 100/99, 1375/1372


POTE generator: ~16/15 = 98.019
== Fervor ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].''


Mapping: [{{val| 1 2 2 2 2 }}, {{val| 0 -5 4 10 18 }}]
Fervor tempers out 9704/9375 and may be described as {{nowrap| 25 & 27 }}. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.


{{Val list|legend=1| 12, 37, 49 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.0408
[[Comma list]]: 64/63, 9604/9375


== 13-limit ==
{{Mapping|legend=1| 1 -1 7 8 | 0 5 -9 -10 }}
Comma list: 64/63, 100/99, 196/195, 275/273


POTE generator: ~16/15 = 97.910
: mapping generators: ~2, ~10/7


Mapping: [{{val| 1 2 2 2 2 2 }}, {{val| 0 -5 4 10 18 21 }}]
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.2742{{c}}, ~10/7 = 620.2918{{c}}
: [[error map]]: {{val| -3.726 +3.230 +4.980 -1.550 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 622.3179{{c}}
: error map: {{val| 0.000 +9.634 +12.826 +7.996 }}


{{Val list|legend=1| 12f, 37, 49f }}
{{Optimal ET sequence|legend=1| 2, 25, 27 }}


Badness: 0.0309
[[Badness]] (Sintel): 2.74


= Fervor =
=== 11-limit ===
== 5-limit ==
Subgroup: 2.3.5.7.11
Comma list: 67108864/61509375


POTE generator: ~64/45 = 577.705
Comma list: 56/55, 64/63, 1350/1331


Mapping: [{{val| 1 4 -2 }}, {{val| 0 -5 9 }}]
Mapping: {{mapping| 1 -1 7 8 4 | 0 5 -9 -10 -1 }}


{{Val list|legend=1| 25, 27 }}
Optimal tunings:
* WE: ~2 = 1195.4148{{c}}, ~10/7 = 619.7729{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.2525{{c}}


Badness: 0.8526
{{Optimal ET sequence|legend=0| 2, 25e, 27e }}


== 7-limit ==
Badness (Sintel): 1.72
Comma list: 64/63, 9604/9375


POTE generator: ~7/5 = 577.777
=== 13-limit ===
 
Subgroup: 2.3.5.7.11.13
Mapping: [{{val| 1 4 -2 -2 }}, {{val| 0 -5 9 10 }}]
 
Wedgie: {{wedgie| 5 -9 -10 -26 -30 2 }}


{{Val list|legend=1| 25, 27 }}
Badness: 0.1085
== 11-limit ==
Comma list: 56/55, 64/63, 1350/1331
POTE generator: ~7/5 = 577.850
Mapping: [{{val| 1 4 -2 -2 3 }}, {{val| 0 -5 9 10 1 }}]
{{Val list|legend=1| 25e, 27e }}
Badness: 0.0521
== 13-limit ==
Comma list: 56/55, 64/63, 78/77, 507/500
Comma list: 56/55, 64/63, 78/77, 507/500


POTE generator: ~7/5 = 578.060
Mapping: {{mapping| 1 -1 7 8 4 12 | 0 5 -9 -10 -1 -16 }}


Mapping: [{{val| 1 4 -2 -2 3 -4 }}, {{val| 0 -5 9 10 1 16 }}]
Optimal tunings:  
* WE: ~2 = 1195.6284{{c}}, ~10/7 = 619.6738{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.0631{{c}}


{{Val list|legend=1| 27e }}
{{Optimal ET sequence|legend=0| 2f, 27e }}


Badness: 0.0397
Badness (Sintel): 1.64


= Progress =
== Sixix ==
== 5-limit ==
: ''For the 5-limit version, see [[Syntonic–chromatic equivalence continuum #Sixix (5-limit)]].''
Comma list: 32768/30375
{{See also| Dual-fifth temperaments #Dual-3 Sixix }}


POTE generator: ~64/45 = 561.264
Sixix tempers out 3125/2916 and may be described as {{nowrap| 25 & 32 }}. It is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.  


Mapping: [{{val| 1 0 5 }}, {{val| 0 3 -5 }}]
[[Subgroup]]: 2.3.5.7


{{Val list|legend=1| 4, 13, 15, 32c, 47bc, 62bc }}
[[Comma list]]: 64/63, 3125/2916


Badness: 0.2461
{{Mapping|legend=1| 1 3 4 0 | 0 -5 -6 10 }}


== 7-limit ==
[[Optimal tuning]]s:
Comma list: 64/63, 392/375
* [[WE]]: ~2 = 1198.9028{{c}}, ~6/5 = 337.1334{{c}}
: [[error map]]: {{val| -1.097 +9.086 -13.503 +2.508 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~6/5 = 337.4588{{c}}
: error map: {{val| 0.000 +10.751 -11.066 +5.762 }}


POTE generator: ~7/5 = 562.122
{{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }}


Mapping: [{{val| 1 0 5 6 }}, {{val| 0 3 -5 -6 }}]
[[Badness]] (Sintel): 4.02


Wedgie: {{wedgie| 3 -5 -6 -15 -18 0 }}
=== 11-limit ===
 
Subgroup: 2.3.5.7.11
{{Val list|legend=1| 13, 15, 32c, 79bcc, 111bcc }}
 
Badness: 0.0664


== 11-limit ==
Comma list: 55/54, 64/63, 125/121
Comma list: 56/55, 64/63, 77/75


POTE generator: ~7/5 = 562.085
Mapping: {{mapping| 1 3 4 0 6 | 0 -5 -6 10 -9 }}


Mapping: [{{val| 1 0 5 6 4 }}, {{val| 0 3 -5 -6 -1 }}]
Optimal tunings:  
* WE: ~2 = 1198.5480{{c}}, ~6/5 = 337.1557{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.6000{{c}}


{{Val list|legend=1| 13, 15, 32c, 47bc, 79bcce }}
{{Optimal ET sequence|legend=0| 7, 25e, 32 }}


Badness: 0.0310
Badness (Sintel): 2.34


=== 13-limit ===
=== 13-limit ===
Comma list: 56/55, 64/63, 66/65, 77/75
Subgroup: 2.3.5.7.11.13
 
POTE generator: ~7/5 = 562.365
 
Mapping: [{{val| 1 0 5 6 4 0 }}, {{val| 0 3 -5 -6 -1 7 }}]
 
{{Val list|legend=1| 15, 17c, 32cf }}
 
Badness: 0.0262
 
=== Progressive ===
Comma list: 26/25, 56/55, 64/63, 77/75
 
POTE generator: ~7/5 = 563.239
 
Mapping: [{{val| 1 0 5 6 4 9 }}, {{val| 0 3 -5 -6 -1 -10 }}]


{{Val list|legend=1| 15f, 17c, 32c, 49c }}
Comma list: 40/39, 55/54, 64/63, 125/121


Badness: 0.0327
Mapping: {{mapping| 1 3 4 0 6 4 | 0 -5 -6 10 -9 -1 }}


= Sixix =
Optimal tunings:
== 5-limit ==
* WE: ~2 = 1197.7111{{c}}, ~6/5 = 336.8391{{c}}
Comma list: 3125/2916
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5336{{c}}


POTE generator: ~6/5 = 338.365
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}


Mapping: [{{val| 1 3 4 }}, {{val| 0 -5 -6 }}]
Badness (Sintel): 1.91


{{Val list|legend=1| 7, 25, 32 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Badness: 0.1531
Comma list: 40/39, 55/54, 64/63, 85/84, 125/121


== 7-limit ==
Mapping: {{mapping| 1 3 4 0 6 4 1 | 0 -5 -6 10 -9 -1 11 }}
Comma list: 3125/2916, 64/63


POTE generator: ~6/5 = 337.4419
Optimal tunings:  
* WE: ~2 = 1197.7807{{c}}, ~6/5 = 336.8884{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5279{{c}}


Mapping: [{{val| 1 3 4 0 }}, {{val| 0 -5 -6 10 }}]
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}


{{Val list|legend=1| 7, 25, 32 }}
Badness (Sintel): 2.00


[[Category:Theory]]
[[Category:Archytas clan| ]] <!-- main article -->
[[Category:Temperament clan]]
[[Category:Temperament clans]]
[[Category:Archytas]]
[[Category:Pages with mostly numerical content]]
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 12:52, 22 July 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The archytas clan (or archy family) tempers out the Archytas' comma, 64/63. This means a stack of two 3/2 fifths octave-reduced equals a whole tone of 8/7~9/8 tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a 9/7 major third. Note the similarity in function to 81/80 in meantone, where four stacked fifths octave-reduced equal a 5/4 major third. This leads to tunings with 3's and 7's quite sharp, such as those of 22edo, 27edo, or 49edo.

This article focuses on rank-2 temperaments. See Archytas family for the rank-3 temperament resulting from tempering out 64/63 alone in the full 7-limit.

Archy

Subgroup: 2.3.7

Comma list: 64/63

Sval mapping[1 0 6], 0 1 -2]]

sval mapping generators: ~2, ~3

Gencom mapping[1 0 0 6], 0 1 0 -2]]

gencom: [2 3; 64/63]

Optimal tunings:

  • WE: ~2 = 1196.9552 ¢, ~3/2 = 707.5215 ¢
error map: -3.045 +2.522 +3.952]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 709.3901 ¢
error map: 0.000 +7.435 +12.394]

Optimal ET sequence2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd

Badness (Sintel): 0.159

Scales: archy5, archy7, archy12

Overview to extensions

7-limit extensions

The second comma in the comma list defines which 7-limit family member we are looking at:

These all use the same generators as archy.

686/675 gives beatles, splitting the fifth in two. 8748/8575 gives immunized, splitting the twelfth in two. 50/49 gives pajara with a semioctave period. 392/375 gives progress, splitting the twelfth in three. 250/243 gives porcupine, splitting the fourth in three. 126/125 gives augene with a 1/3-octave period. 4375/4374 gives modus, splitting the fifth in four. 3125/3024 gives brightstone. 9604/9375 gives fervor. 3125/2916 gives sixix. 3125/3087 gives passion. Those split the generator in five in various ways. 28/27 gives blacksmith with a 1/5-octave period. Finally, 15625/15552 gives catalan, splitting the twelfth in six.

Temperaments discussed elsewhere are:

Considered below are superpyth, quasisuper, ultrapyth, quasiultra, schism, beatles, progress, fervor, and sixix.

Subgroup extensions

Omitting prime 5, archy can be extended to the 2.3.7.11 subgroup by identifying 11/8 as a diminished fourth (C–Gb). This is called supra, given right below. Discussed elsewhere is suhajira of the neutral clan.

Supra

Subgroup: 2.3.7.11

Comma list: 64/63, 99/98

Sval mapping: [1 0 6 13], 0 1 -2 -6]]

Gencom mapping: [1 0 0 6 13], 0 1 0 -2 -6]]

gencom: [2 3; 64/63 99/98]

Optimal tunings:

  • WE: ~2 = 1197.2650 ¢, ~3/2 = 705.5803 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 707.4981 ¢

Optimal ET sequence: 5, 12, 17, 39d, 56d

Badness (Sintel): 0.352

Scales: supra7, supra12

Supraphon

Subgroup: 2.3.7.11.13

Comma list: 64/63, 78/77, 99/98

Sval mapping: [1 0 6 13 18], 0 1 -2 -6 -9]]

Gencom mapping: [1 0 0 6 13 18], 0 1 0 -2 -6 -9]]

gencom: [2 3; 64/63 78/77 99/98]

Optimal tunings:

  • WE: ~2 = 1197.1909 ¢, ~3/2 = 704.4836 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 706.4289 ¢

Optimal ET sequence: 12f, 17

Badness (Sintel): 0.498

Scales: supra7, supra12

Superpyth

For the 5-limit version, see Syntonic–diatonic equivalence continuum #Superpyth (5-limit).

Superpyth, virtually the canonical extension, adds 245/243 and 1728/1715 to the comma list and can be described as 22 & 27. ~5/4 is found at +9 generator steps, as an augmented second (C–D#). 49edo remains an obvious tuning choice.

Subgroup: 2.3.5.7

Comma list: 64/63, 245/243

Mapping[1 0 -12 6], 0 1 9 -2]]

Optimal tunings:

  • WE: ~2 = 1197.0549 ¢, ~3/2 = 708.5478 ¢
error map: -2.945 +3.648 -0.548 +2.298]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.1193 ¢
error map: 0.000 +8.164 +4.760 +10.935]

Optimal ET sequence5, 17, 22, 27, 49, 174bbcddd

Badness (Sintel): 0.818

11-limit

The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double-augmented second (C–Dx) and finds the ~13/8 at +13 generator steps, as a double-augmented fourth (C–Fx).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 245/243

Mapping: [1 0 -12 6 -22], 0 1 9 -2 16]]

Optimal tunings:

  • WE: ~2 = 1197.0673 ¢, ~3/2 = 708.4391 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.0129 ¢

Optimal ET sequence: 22, 27e, 49

Badness (Sintel): 0.826

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 100/99

Mapping: [1 0 -12 6 -22 -17], 0 1 9 -2 16 13]]

Optimal tunings:

  • WE: ~2 = 1197.3011 ¢, ~3/2 = 708.8813 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 710.3219 ¢

Optimal ET sequence: 22, 27e, 49, 76bcde

Badness (Sintel): 1.02

Thomas

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 100/99, 169/168, 245/243

Mapping: [1 1 -3 4 -6 4], 0 2 18 -4 32 -1]]

Optimal tunings:

  • WE: ~2 = 1197.4942 ¢, ~16/13 = 354.2950 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/13 = 354.9824 ¢

Optimal ET sequence: 27e, 44, 71d, 98bde

Badness (Sintel): 2.03

Suprapyth

Suprapyth finds the ~11/8 at the diminished fifth (C–Gb), and finds the ~13/8 at the diminished seventh (C–Bbb).

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 99/98

Mapping: [1 0 -12 6 13], 0 1 9 -2 -6]]

Optimal tunings:

  • WE: ~2 = 1198.6960 ¢, ~3/2 = 708.7235 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 709.4699 ¢

Optimal ET sequence: 5, 17, 22

Badness (Sintel): 1.08

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 99/98

Mapping: [1 0 -12 6 13 18], 0 1 9 -2 -6 -9]]

Optimal tunings:

  • WE: ~2 = 1199.9871 ¢, ~3/2 = 708.6952 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.7028 ¢

Optimal ET sequence: 5f, 17, 22

Badness (Sintel): 1.50

Quasisuper

Quasisuper can be described as 17c & 22, with the ~5/4 mapped to -13 generator steps, as a double-diminished fifth (C–Gbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 2430/2401

Mapping[1 0 23 6], 0 1 -13 -2]]

Optimal tunings:

  • WE: ~2 = 1196.9830 ¢, ~3/2 = 706.4578 ¢
error map: -3.017 +1.486 -0.435 +6.190]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.3716 ¢
error map: 0.000 +6.417 +4.855 +14.431]

Optimal ET sequence17c, 22, 61d

Badness (Sintel): 1.61

Quasisupra

Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 99/98, 121/120

Mapping: [1 0 23 6 13], 0 1 -13 -2 -6]]

Optimal tunings:

  • WE: ~2 = 1197.5675 ¢, ~3/2 = 706.7690 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.3200 ¢

Optimal ET sequence: 17c, 22, 39d, 61d

Badness (Sintel): 1.06

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 121/120

Mapping: [1 0 23 6 13 18], 0 1 -13 -2 -6 -9]]

Optimal tunings:

  • WE: ~2 = 1198.2543 ¢, ~3/2 = 706.9736 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.0936 ¢

Optimal ET sequence: 17c, 22, 39d

Badness (Sintel): 1.25

Quasisoup

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2430/2401

Mapping: [1 0 23 6 -22], 0 1 -13 -2 16]]

Optimal tunings:

  • WE: ~2 = 1198.8446 ¢, ~3/2 = 708.3388 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 708.0252 ¢

Optimal ET sequence: 22

Badness (Sintel): 2.76

Ultrapyth

Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).

Subgroup: 2.3.5.7

Comma list: 64/63, 6860/6561

Mapping[1 0 -20 6], 0 1 14 -2]]

Optimal tunings:

  • WE: ~2 = 1197.2673 ¢, ~3/2 = 712.0258 ¢
error map: -2.733 +7.338 -1.557 -3.808]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.5430 ¢
error map: 0.000 +11.588 +3.288 +4.088]

Optimal ET sequence5, 27c, 32, 37

Badness (Sintel): 2.74

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2401/2376

Mapping: [1 0 -20 6 21], 0 1 14 -2 -11]]

Optimal tunings:

  • WE: ~2 = 1198.0290 ¢, ~3/2 = 712.2235 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.3754 ¢

Optimal ET sequence: 5, 32, 37

Badness (Sintel): 2.26

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 1573/1568

Mapping: [1 0 -20 6 21 -25], 0 1 14 -2 -11 18]]

Optimal tunings:

  • WE: ~2 = 1198.1911 ¢, ~3/2 = 712.4243 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.4684 ¢

Optimal ET sequence: 5, 32, 37

Badness (Sintel): 2.03

Ultramarine

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 3773/3645

Mapping: [1 0 -20 6 -38], 0 1 14 -2 26]]

Optimal tunings:

  • WE: ~2 = 1197.2230 ¢, ~3/2 = 712.1393 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.6928 ¢

Optimal ET sequence: 5e, 32e, 37, 79bce

Badness (Sintel): 2.58

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 847/845

Mapping: [1 0 -20 6 -38 -25], 0 1 14 -2 26 18]]

Optimal tunings:

  • WE: ~2 = 1197.2739 ¢, ~3/2 = 712.1893 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 713.7079 ¢

Optimal ET sequence: 5e, 32e, 37, 79bcef

Badness (Sintel): 1.89

Quasiultra

Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the 27 & 32 temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C–Abbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 33614/32805

Mapping[1 0 31 6], 0 1 -18 -2]]

Optimal tunings:

  • WE: ~2 = 1196.9257 ¢, ~3/2 = 709.6211 ¢
error map: 0.000 +9.883 +0.608 +7.499]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 711.5429 ¢
error map: 0.000 +9.588 +5.914 +8.088]

Optimal ET sequence27, 86bd, 113bcd, 140bbcd

Badness (Sintel): 3.34

Schism

Schism tempers out the schisma, mapping the ~5/4 to -8 fifths as a diminished fourth (C–Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53dd val) can be used.

Subgroup: 2.3.5.7

Comma list: 64/63, 360/343

Mapping[1 0 15 6], 0 1 -8 -2]]

Optimal tunings:

  • WE: ~2 = 1197.3598 ¢, ~3/2 = 700.0126 ¢
error map: -2.640 -4.583 -4.896 +20.588]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 701.7376 ¢
error map: 0.000 -0.217 -0.214 +27.699]

Optimal ET sequence5c, 7c, 12

Badness (Sintel): 1.43

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 64/63, 99/98

Mapping: [1 0 15 6 13], 0 1 -8 -2 -6]]

Optimal tunings:

  • WE: ~2 = 1196.1607 ¢, ~3/2 = 699.8897 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 702.4385 ¢

Optimal ET sequence: 5c, 7ce, 12, 29de

Badness (Sintel): 1.24

Beatles

For the 5-limit version, see Miscellaneous 5-limit temperaments #Beatles.

Beatles tempers out 686/675, which may also be characterized by saying it tempers out 2401/2400. It may be described as the 10 & 17c temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its ploidacot is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.

Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.

Subgroup: 2.3.5.7

Comma list: 64/63, 686/675

Mapping[1 1 5 4], 0 2 -9 -4]]

Optimal tunings:

  • WE: ~2 = 1196.6244 ¢, ~49/40 = 354.9029 ¢
error map: -3.376 +4.475 +2.682 -1.940]
  • CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.0819 ¢
error map: 0.000 +10.209 +8.949 +6.847]

Optimal ET sequence10, 17c, 27, 64b, 91bcd, 118bccd

Badness (Sintel): 1.16

Music

11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 686/675

Mapping: [1 1 5 4 10], 0 2 -9 -4 -22]]

Optimal tunings:

  • WE: ~2 = 1196.7001 ¢, ~49/40 = 355.1606 ¢
  • CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.2795 ¢

Optimal ET sequence: 10e, 17cee, 27e, 64be, 91bcdee

Badness (Sintel): 1.51

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 169/168

Mapping: [1 1 5 4 10 4], 0 2 -9 -4 -22 -1]]

Optimal tunings:

  • WE: ~2 = 1197.2504 ¢, ~16/13 = 355.4132 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/13 = 356.3273 ¢

Optimal ET sequence: 10e, 27e, 37, 64be

Badness (Sintel): 1.25

Ringo

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 540/539

Mapping: [1 1 5 4 2], 0 2 -9 -4 5]]

Optimal tunings:

  • WE: ~2 = 1195.4102 ¢, ~11/9 = 354.0597 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 355.5207 ¢

Optimal ET sequence: 10, 17c, 27e

Badness (Sintel): 1.09

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 91/90

Mapping: [1 1 5 4 2 4], 0 2 -9 -4 5 -1]]

Optimal tunings:

  • WE: ~2 = 1195.9943 ¢, ~11/9 = 354.2695 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 355.5398 ¢

Optimal ET sequence: 10, 17c, 27e

Badness (Sintel): 0.935

Beetle

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 686/675

Mapping: [1 1 5 4 -1], 0 2 -9 -4 15]]

Optimal tunings:

  • WE: ~2 = 1197.9660 ¢, ~49/40 = 356.1056 ¢
  • CWE: ~2 = 1200.0000 ¢, ~49/40 = 356.7075 ¢

Optimal ET sequence: 10, 27, 37

Badness (Sintel): 1.92

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 169/168

Mapping: [1 1 5 4 -1 4], 0 2 -9 -4 15 -1]]

Optimal tunings:

  • WE: ~2 = 1198.1741 ¢, ~16/13 = 356.1582 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/13 = 356.7008 ¢

Optimal ET sequence: 10, 27, 37

Badness (Sintel): 1.40

Progress

Not to be confused with Progression.
For the 5-limit version, see Miscellaneous 5-limit temperaments #Progress.

Progress tempers out 392/375 and may be described as 15 & 17c. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 64/63, 392/375

Mapping[1 0 5 6], 0 3 -5 -6]]

mapping generators: ~2, ~10/7

Optimal tunings:

  • WE: ~2 = 1195.1377 ¢, ~10/7 = 635.2932 ¢
error map: -4.862 +3.925 +12.908 -9.759]
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 638.0791 ¢
error map: 0.000 +12.282 +23.291 +2.700]

Optimal ET sequence2, 13, 15, 32c

Badness (Sintel): 1.68

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4], 0 3 -5 -6 -1]]

Optimal tunings:

  • WE: ~2 = 1195.4920 ¢, ~10/7 = 635.5183 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 638.0884 ¢

Optimal ET sequence: 2, 13, 15, 32c, 47bc

Badness (Sintel): 1.03

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 66/65, 77/75

Mapping: [1 0 5 6 4 0], 0 3 -5 -6 -1 7]]

Optimal tunings:

  • WE: ~2 = 1195.0786 ¢, ~10/7 = 635.0197 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 637.6691 ¢

Optimal ET sequence: 15, 17c, 32cf

Badness (Sintel): 1.08

Progressive

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4 9], 0 3 -5 -6 -1 -10]]

Optimal tunings:

  • WE: ~2 = 1196.0245 ¢, ~10/7 = 634.6516 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 636.9528 ¢

Optimal ET sequence: 2f, 15f, 17c

Badness (Sintel): 1.35

Fervor

For the 5-limit version, see Miscellaneous 5-limit temperaments #Fervor.

Fervor tempers out 9704/9375 and may be described as 25 & 27. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.

Subgroup: 2.3.5.7

Comma list: 64/63, 9604/9375

Mapping[1 -1 7 8], 0 5 -9 -10]]

mapping generators: ~2, ~10/7

Optimal tunings:

  • WE: ~2 = 1196.2742 ¢, ~10/7 = 620.2918 ¢
error map: -3.726 +3.230 +4.980 -1.550]
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.3179 ¢
error map: 0.000 +9.634 +12.826 +7.996]

Optimal ET sequence2, 25, 27

Badness (Sintel): 2.74

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 1350/1331

Mapping: [1 -1 7 8 4], 0 5 -9 -10 -1]]

Optimal tunings:

  • WE: ~2 = 1195.4148 ¢, ~10/7 = 619.7729 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.2525 ¢

Optimal ET sequence: 2, 25e, 27e

Badness (Sintel): 1.72

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 507/500

Mapping: [1 -1 7 8 4 12], 0 5 -9 -10 -1 -16]]

Optimal tunings:

  • WE: ~2 = 1195.6284 ¢, ~10/7 = 619.6738 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 622.0631 ¢

Optimal ET sequence: 2f, 27e

Badness (Sintel): 1.64

Sixix

For the 5-limit version, see Syntonic–chromatic equivalence continuum #Sixix (5-limit).

Sixix tempers out 3125/2916 and may be described as 25 & 32. It is related to the kleismic family in a way similar to the one between meantone and mavila. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.

Subgroup: 2.3.5.7

Comma list: 64/63, 3125/2916

Mapping[1 3 4 0], 0 -5 -6 10]]

Optimal tunings:

  • WE: ~2 = 1198.9028 ¢, ~6/5 = 337.1334 ¢
error map: -1.097 +9.086 -13.503 +2.508]
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.4588 ¢
error map: 0.000 +10.751 -11.066 +5.762]

Optimal ET sequence7, 18d, 25, 32

Badness (Sintel): 4.02

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6], 0 -5 -6 10 -9]]

Optimal tunings:

  • WE: ~2 = 1198.5480 ¢, ~6/5 = 337.1557 ¢
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.6000 ¢

Optimal ET sequence: 7, 25e, 32

Badness (Sintel): 2.34

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6 4], 0 -5 -6 10 -9 -1]]

Optimal tunings:

  • WE: ~2 = 1197.7111 ¢, ~6/5 = 336.8391 ¢
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.5336 ¢

Optimal ET sequence: 7, 25e, 32f

Badness (Sintel): 1.91

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 40/39, 55/54, 64/63, 85/84, 125/121

Mapping: [1 3 4 0 6 4 1], 0 -5 -6 10 -9 -1 11]]

Optimal tunings:

  • WE: ~2 = 1197.7807 ¢, ~6/5 = 336.8884 ¢
  • CWE: ~2 = 1200.0000 ¢, ~6/5 = 337.5279 ¢

Optimal ET sequence: 7, 25e, 32f

Badness (Sintel): 2.00