Porwell temperaments: Difference between revisions
Wikispaces>FREEZE No edit summary |
m Text replacement - "Category:Temperament collections" to "Category:Temperament collections Category:Pages with mostly numerical content" |
||
(68 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
This is a collection of [[regular temperament|temperaments]] that [[tempering out|tempers out]] the porwell comma, {{monzo| 11 1 -3 -2 }} ([[6144/6125]]), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth. | |||
This | |||
Discussed elsewhere are: | |||
* ''[[Armodue]]'' (+36/35) → [[Pelogic family #Armodue|Pelogic family]] | |||
* [[Porcupine]] (+64/63) → [[Porcupine family #Porcupine|Porcupine family]] | |||
* [[Mohajira]] (+81/80) → [[Meantone family #Mohajira|Meantone family]] | |||
* [[Valentine]] (+126/125) → [[Starling temperaments #Valentine|Starling temperaments]] | |||
* [[Orwell]] (+225/224) → [[Semicomma family #Orwell|Semicomma family]] | |||
* [[Shrutar]] (+245/243) → [[Diaschismic family #Shrutar|Diaschismic family]] | |||
* ''[[Quinkee]]'' (+1029/1000) → [[Cloudy clan #Quinkee|Cloudy clan]] | |||
* ''[[Hemiwürschmidt]]'' (+2401/2400 or 3136/3125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]] | |||
* ''[[Hemikleismic]]'' (+4000/3969) → [[Kleismic family #Hemikleismic|Kleismic family]] | |||
* [[Amity]] (+4375/4374 or 5120/5103) → [[Amity family #Septimal amity|Amity family]] | |||
* ''[[Freivald]]'' (+6272/6075) → [[Passion family #Freivald|Passion family]] | |||
* ''[[Grendel]]'' (+16875/16807) → [[Mirkwai clan #Grendel|Mirkwai clan]] | |||
* ''[[Hemischis]]'' (+19683/19600) → [[Schismatic family #Hemischis|Schismatic family]] | |||
* ''[[Bison]]'' (+78732/78125) → [[Sensipent family #Bison|Sensipent family]] | |||
* ''[[Hemimabila]]'' (+117649/116640) → [[Mabila family #Hemimabila|Mabila family]] | |||
* ''[[Septisuperfourth]]'' (+118098/117649) → [[Escapade family #Septisuperfourth|Escapade family]] | |||
* ''[[Alphatrident]]'' (+14348907/14336000) → [[Alphatricot family #Alphatrident|Alphatricot family]] | |||
* ''[[Hemimaquila]]'' (+{{monzo| -5 10 5 -8 }}) → [[Maquila family #Hemimaquila|Maquila family]] | |||
* ''[[Decimaleap]]'' (+{{monzo| 15 -18 1 4 }}) → [[Quintaleap family #Decimaleap|Quintaleap family]] | |||
* ''[[Twilight]]'' (+{{monzo| 19 -22 2 4 }}) → [[Undim family #Twilight|Undim family]] | |||
== Hendecatonic == | |||
{{see also|11th-octave temperaments}} | |||
The hendecatonic temperament has a period of 1/11 octave, which represents [[16/15]] and four times of which represent [[9/7]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 10976/10935 | |||
{{Mapping|legend=1| 11 0 43 -4 | 0 1 -1 2 }} | |||
: Mapping generators: ~16/15, ~3 | |||
[[ | [[Optimal tuning]] ([[POTE]]): ~16/15 = 1\11, ~3/2 = 703.054 | ||
{{Optimal ET sequence|legend=1| 22, 55, 77, 99 }} | |||
[[Badness]]: 0.041081 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 10976/10935 | |||
{{Mapping|legend=1| 11 0 43 -4 38 | 0 1 -1 2 0 }} | |||
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636 | |||
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e, 275e }} | |||
Badness: 0. | Badness: 0.046088 | ||
= | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 176/175, 351/350, 4459/4455 | |||
{{Mapping|legend=1| 11 0 43 -4 38 93 | 0 1 -1 2 0 -3 }} | |||
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291 | |||
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e }} | |||
Badness: 0. | Badness: 0.040099 | ||
== | ==== 17-limit ==== | ||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023 | |||
{{Mapping|legend=1| 11 0 43 -4 38 93 45 | 0 1 -1 2 0 -3 0 }} | |||
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301 | |||
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176eg }} | |||
Badness: 0.029054 | |||
=== Cohendecatonic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 896/891, 4375/4356 | |||
{{Mapping|legend=1| 11 0 43 -4 73 | 0 1 -1 2 -2 }} | |||
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686 | |||
= | {{Optimal ET sequence|legend=0| 22, 77e, 99e, 121, 220e }} | ||
Badness: 0.038042 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 364/363, 540/539, 625/624 | |||
{{Mapping|legend=1| 11 0 43 -4 73 128 | 0 1 -1 2 -2 -5 }} | |||
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888 | |||
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 341bdeeff }} | |||
Badness: 0.036112 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 256/255, 352/351, 364/363, 375/374, 540/539 | |||
{{Mapping|legend=1| 11 0 43 -4 73 128 45 | 0 1 -1 2 -2 -5 0 }} | |||
= | Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877 | ||
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg }} | |||
Badness: 0.022590 | |||
=== Icosidillic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3388/3375, 6144/6125, 9801/9800 | |||
= | {{Mapping|legend=1| 22 0 86 -8 111 | 0 1 -1 2 -1 }} | ||
: Mapping generators: ~33/32, ~3 | |||
Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914 | |||
{{Optimal ET sequence|legend=0| 22, 154, 176, 198 }} | |||
Badness: 0. | Badness: 0.057725 | ||
= | == Twothirdtonic == | ||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 686/675, 6144/6125 | |||
{{Mapping|legend=1| 1 3 2 4 | 0 -13 3 -11 }} | |||
: Mapping generators: ~2, ~15/14 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 130.401 | |||
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }} | |||
[[Badness]]: 0.099601 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 686/675 | |||
Mapping: {{mapping| 1 3 2 4 4 | 0 -13 3 -11 -5 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430 | |||
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }} | |||
Badness: 0.040768 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 91/90, 121/120, 169/168, 176/175 | |||
Mapping: {{mapping| 1 3 2 4 4 5 | 0 -13 3 -11 -5 -12 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409 | |||
= | {{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }} | ||
Badness: 0.025941 | |||
== Semaja == | |||
Cryptically named by [[Petr Pařízek]] in 2011, semaja adds the [[gariboh comma]] to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10<ref name="petr's long post">[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref>. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 3125/3087, 6144/6125 | |||
= | {{Mapping|legend=1| 1 -2 1 3 | 0 19 7 -1 }} | ||
: Mapping generators: ~2, ~8/7 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 226.4834 | |||
{{Optimal ET sequence|legend=1| 16, 37, 53, 196d }} | |||
Badness: 0. | [[Badness]]: 0.107023 | ||
= | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 3125/3087 | |||
Mapping: {{mapping| 1 -2 1 3 1 | 0 19 7 -1 13 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856 | |||
{{Optimal ET sequence|legend=1| 16, 37, 53 }} | |||
Badness: 0. | Badness: 0.059838 | ||
== | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 169/168, 176/175, 275/273 | |||
Mapping: {{mapping| 1 -2 1 3 1 2 | 0 19 7 -1 13 9 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794 | |||
{{Optimal ET sequence|legend=1| 16, 37, 53 }} | |||
Badness: 0.032564 | |||
== Nessafof == | |||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments#Nessafof]].'' | |||
Cryptically named by [[Petr Pařízek]] in 2011<ref name="petr's short post">[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101089.html Yahoo! Tuning Group | ''Some more unclassified temperaments'']</ref>, nessafof adds the [[landscape comma]] and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1<ref name="petr's long post"/>. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 250047/250000 | |||
= | {{Mapping|legend=1| 3 2 5 10 | 0 7 5 -4 }} | ||
: Mapping generators: ~63/50, ~35/32 | |||
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~35/32 = 157.480 | |||
{{Optimal ET sequence|legend=1| 15, 54b, 69, 84, 99, 282, 381 }} | |||
Badness: 0. | [[Badness]]: 0.045048 | ||
== | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 250047/250000 | |||
Mapping: {{mapping| 3 2 5 10 8 | 0 7 5 -4 6 }} | |||
Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520 | |||
{{Optimal ET sequence|legend=1| 15, 54be, 69e, 84e, 99 }} | |||
Badness: 0.068427 | |||
=== Nessa === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 1344/1331, 4375/4356 | |||
Mapping: {{mapping| 3 2 5 10 10 | 0 7 5 -4 1 }} | |||
Badness: 0. | Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539 | ||
[[Category: | |||
[[Category: | {{Optimal ET sequence|legend=1| 15, 54b, 69, 84, 99e }} | ||
[[Category: | |||
[[Category: | Badness: 0.048836 | ||
[[Category: | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 144/143, 364/363, 441/440, 625/624 | |||
Mapping: {{mapping| 3 2 5 10 10 6 | 0 7 5 -4 1 13 }} | |||
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429 | |||
{{Optimal ET sequence|legend=1| 15, 54bf, 69, 84, 99ef, 183ef, 282eeff }} | |||
Badness: 0.037409 | |||
== Aufo == | |||
:''For the 5-limit version, see [[High badness temperaments #Untriton]].'' | |||
Also named by [[Petr Pařízek]] in 2011, ''aufo'' refers to the augmented fourth, which is a generator of this temperament<ref name="petr's long post"/>. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 177147/175616 | |||
{{Mapping|legend=1| 1 6 -7 19 | 0 -9 19 -33 }} | |||
: Mapping generators: ~2, ~45/32 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~45/32 = 588.782 | |||
{{Optimal ET sequence|legend=1| 53, 161, 214 }} | |||
[[Badness]]: 0.121428 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 177147/175616 | |||
Mapping: {{mapping| 1 6 -7 19 1 | 0 -9 19 -33 5 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811 | |||
{{Optimal ET sequence|legend=1| 53, 108e, 161e }} | |||
Badness: 0.088631 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 176/175, 351/350, 58806/57967 | |||
Mapping: {{mapping| 1 6 -7 19 1 -12 | 0 -9 19 -33 5 32 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788 | |||
{{Optimal ET sequence|legend=1| 53, 108e, 161e, 214ee }} | |||
Badness: 0.058507 | |||
=== Aufic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 5632/5625, 72171/71680 | |||
Mapping: {{mapping| 1 6 -7 19 -25 | 0 -9 19 -33 58 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800 | |||
{{Optimal ET sequence|legend=1| 53, 108, 161, 214, 375 }} | |||
Badness: 0.075149 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 351/350, 540/539, 847/845, 4096/4095 | |||
Mapping: {{mapping| 1 6 -7 19 -25 -12 | 0 -9 19 -33 58 32 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796 | |||
{{Optimal ET sequence|legend=1| 53, 108, 161, 214, 375, 589be }} | |||
Badness: 0.039050 | |||
== Whoops == | |||
:''For the 5-limit version, see [[Very high accuracy temperaments #Whoosh]].'' | |||
Also named by [[Petr Pařízek]] in 2011, ''whoops'' is a relatively simple extension to the otherwise very accurate microtemperament known as ''whoosh''<ref name="petr's long post"/>. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 244140625/243045684 | |||
{{Mapping|legend=1| 1 17 14 -7 | 0 -33 -25 21 }} | |||
: Mapping generators: ~2, ~441/320 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~441/320 = 560.519 | |||
{{Optimal ET sequence|legend=1| 15, 122d, 137, 152, 608d, 623bd, 775bcd }} | |||
[[Badness]]: 0.175840 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4000/3993, 6144/6125 | |||
Mapping: {{mapping| 1 17 14 -7 10 | 0 -33 -25 21 -14 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519 | |||
{{Optimal ET sequence|legend=1| 15, 122d, 137, 152, 608de, 623bde, 775bcde }} | |||
Badness: 0.043743 | |||
== Polypyth == | |||
:''For the 5-limit version, see [[High badness temperaments #Leapday]].'' | |||
Polypyth (46 & 121) tempers out the same 5-limit comma as the [[Hemifamity temperaments #Leapday|leapday temperament]] (29 & 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 179200/177147 | |||
{{Mapping|legend=1| 1 0 -31 52 | 0 1 21 -31 }} | |||
: Mapping generators: ~2, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.174 | |||
{{Optimal ET sequence|legend=1| 46, 121, 167, 288b, 455bcd, 743bcd }} | |||
[[Badness]]: 0.137995 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 896/891, 2200/2187, 6144/6125 | |||
Mapping: {{mapping| 1 0 -31 52 59 | 0 1 21 -31 -35 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177 | |||
{{Optimal ET sequence|legend=1| 46, 121, 167, 288be, 455bcde }} | |||
Badness: 0.051131 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 325/324, 352/351, 364/363, 1716/1715 | |||
Mapping: {{mapping| 1 0 -31 52 59 64 | 0 1 21 -31 -35 -38 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168 | |||
{{Optimal ET sequence|legend=1| 46, 121, 167, 288be }} | |||
Badness: 0.030292 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715 | |||
Mapping: {{mapping| 1 0 -31 52 59 64 39 | 0 1 21 -31 -35 -38 -22 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168 | |||
{{Optimal ET sequence|legend=1| 46, 121, 167, 288beg }} | |||
Badness: 0.019051 | |||
== Icositritonic == | |||
{{ See also | 23rd-octave temperaments }} | |||
The icositritonic temperament (46 & 161) has a period of 1/23 octave, so six period represents [[6/5]] and nine period represents [[21/16]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 9920232/9765625 | |||
{{Mapping|legend=1| 23 0 17 101 | 0 1 1 -1 }} | |||
: Mapping generators: ~1323/1280, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~1323/1280 = 1\23, ~64/63 = 29.3586 | |||
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }} | |||
[[Badness]]: 0.196622 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 6144/6125, 35937/35840 | |||
Mapping: {{mapping| 23 0 17 101 116 | 0 1 1 -1 -1 }} | |||
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980 | |||
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }} | |||
Badness: 0.064613 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 351/350, 441/440, 847/845, 3584/3575 | |||
Mapping: {{mapping| 23 0 17 101 116 158 | 0 1 1 -1 -1 -2 }} | |||
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830 | |||
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }} | |||
Badness: 0.040484 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088 | |||
Mapping: {{mapping| 23 0 17 101 116 158 94 | 0 1 1 -1 -1 -2 0 }} | |||
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800 | |||
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }} | |||
Badness: 0.024676 | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845 | |||
Mapping: {{mapping| 23 0 17 101 116 158 94 207 | 0 1 1 -1 -1 -2 0 -3 }} | |||
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760 | |||
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }} | |||
Badness: 0.021579 | |||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845 | |||
Mapping: {{mapping| 23 0 17 101 116 158 94 207 104 | 0 1 1 -1 -1 -2 0 -3 0 }} | |||
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471 | |||
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368ci }} | |||
Badness: 0.017745 | |||
== Countermiracle == | |||
The ''countermiracle'' temperament (31 & 145) tempers out the trimyna, 50421/50000 and the [[quince comma]], 823543/819200. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 50421/50000 | |||
{{Mapping|legend=1| 1 4 3 3 | 0 -25 -7 -2 }} | |||
: Mapping generators: ~2, ~343/320 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/320 = 115.9169 | |||
{{Optimal ET sequence|legend=1| 31, 114, 145, 176, 559cc, 735cc }} | |||
[[Badness]]: 0.102326 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 3388/3375, 6144/6125 | |||
Mapping: {{mapping| 1 4 3 3 8 | 0 -25 -7 -2 -47 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158 | |||
{{Optimal ET sequence|legend=1| 31, 114e, 145, 176 }} | |||
Badness: 0.039162 | |||
==== Countermiraculous ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 352/351, 1001/1000, 6144/6125 | |||
Mapping: {{mapping| 1 4 3 3 8 1 | 0 -25 -7 -2 -47 28 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803 | |||
{{Optimal ET sequence|legend=1| 31, 83e, 114e, 145, 321ceff }} | |||
Badness: 0.039271 | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224 | |||
Mapping: {{mapping| 1 4 3 3 8 1 1 | 0 -25 -7 -2 -47 28 32 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756 | |||
{{Optimal ET sequence|legend=1| 31, 83e, 114e, 145 }} | |||
Badness: 0.029496 | |||
==== Counterbenediction ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 351/350, 441/440, 3146/3125, 3584/3575 | |||
Mapping: {{mapping| 1 4 3 3 8 -2 | 0 -25 -7 -2 -47 59 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335 | |||
{{Optimal ET sequence|legend=1| 31, 114ef, 145f, 176, 207, 383c, 590cc }} | |||
Badness: 0.045569 | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125 | |||
Mapping: {{mapping| 1 4 3 3 8 -2 -2 | 0 -25 -7 -2 -47 59 63 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391 | |||
{{Optimal ET sequence|legend=1| 31, 114efg, 145fg, 176, 207 }} | |||
Badness: 0.036289 | |||
==== Countermanna ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 364/363, 441/440, 3388/3375, 6144/6125 | |||
Mapping: {{mapping| 1 4 3 3 8 15 0 -25 -7 -2 -47 -117 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898 | |||
{{Optimal ET sequence|legend=1| 145, 176, 321ce }} | |||
Badness: 0.053409 | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375 | |||
Mapping: {{mapping| 1 4 3 3 8 15 15 | 0 -25 -7 -2 -47 -117 -113 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832 | |||
{{Optimal ET sequence|legend=1| 145, 321ce }} | |||
Badness: 0.040898 | |||
=== Counterrevelation === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 50421/50000 | |||
Mapping: {{mapping| 1 4 3 3 5 | 0 -25 -7 -2 -16 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192 | |||
{{Optimal ET sequence|legend=1| 31, 114, 145e, 176e }} | |||
Badness: 0.064070 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 176/175, 196/195, 13750/13689 | |||
Mapping: {{mapping| 1 4 3 3 5 1 | 0 -25 -7 -2 -16 28 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624 | |||
{{Optimal ET sequence|legend=1| 31, 83, 114, 145e }} | |||
Badness: 0.057497 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625 | |||
Mapping: {{mapping| 1 4 3 3 5 1 1 | 0 -25 -7 -2 -16 28 32 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527 | |||
{{Optimal ET sequence|legend=1| 31, 83, 114, 145e }} | |||
Badness: 0.044043 | |||
== Absurdity == | |||
: ''For the 5-limit version, see [[Syntonic–chromatic equivalence continuum #Absurdity]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 177147/175000 | |||
{{Mapping|legend=1| 7 0 -17 64 | 0 1 3 -4 }} | |||
: Mapping generators: ~972/875, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997) | |||
{{Optimal ET sequence|legend=1| 77, 84, 161 }} | |||
[[Badness]]: 0.133520 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 6144/6125, 72171/71680 | |||
{{Mapping|legend=1| 7 0 -17 64 124 | 0 1 3 -4 -9 }} | |||
Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497) | |||
{{Optimal ET sequence|legend=1| 77, 84, 161 }} | |||
Badness: 0.081564 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 351/350, 441/440, 1188/1183, 3584/3575 | |||
{{Mapping|legend=1| 7 0 -17 64 124 37 | 0 1 3 -4 -9 -1 }} | |||
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434) | |||
{{Optimal ET sequence|legend=1| 77, 84, 161 }} | |||
Badness: 0.041600 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625 | |||
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 | 0 1 3 -4 -9 -1 7 }} | |||
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667) | |||
{{Optimal ET sequence|legend=1| 77, 161 }} | |||
Badness: 0.031783 | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494 | |||
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 | 0 1 3 -4 -9 -1 7 -3 }} | |||
Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708) | |||
{{Optimal ET sequence|legend=1| 77, 161 }} | |||
Badness: 0.022291 | |||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494 | |||
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 | 0 1 3 -4 -9 -1 7 -3 -4 }} | |||
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343) | |||
{{Optimal ET sequence|legend=0| 77, 84, 161 }} | |||
=== 29-limit === | |||
{{ See also | Fifth-chroma temperaments }} | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494 | |||
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 34 | 0 1 3 -4 -9 -1 7 -3 -4 0 }} | |||
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343) | |||
{{Optimal ET sequence|legend=0| 77, 84, 161 }} | |||
== Dodifo == | |||
: ''For the 5-limit version, see [[High badness temperaments #Dodifo]].'' | |||
Also named by [[Petr Pařízek]] in 2011, ''dodifo'' refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament<ref name="petr's long post"/>. The extension here is a less accurate 7-limit intepretation. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 6144/6125, 2500000/2470629 | |||
{{Mapping|legend=1| 1 12 5 4 | 0 -35 -9 -4 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 357.070 | |||
{{Optimal ET sequence|legend=1| 37, 84, 121, 205 }} | |||
[[Badness]]: 0.179692 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 1375/1372, 2560/2541, 4375/4356 | |||
Mapping: {{mapping| 1 12 5 4 -1 | 0 -35 -9 -4 15 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048 | |||
{{Optimal ET sequence|legend=1| 37, 84, 121, 326dee }} | |||
Badness: 0.081923 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 364/363, 625/624, 640/637, 1375/1372 | |||
Mapping: {{mapping| 1 12 5 4 -1 4 | 0 -35 -9 -4 15 -1 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049 | |||
{{Optimal ET sequence|legend=1| 37, 84, 121, 326deef }} | |||
Badness: 0.039533 | |||
== Notes == | |||
[[Category:Temperament collections]] | |||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Porwell temperaments| ]] <!-- main article --> | |||
[[Category:Porwell| ]] <!-- key article --> | |||
[[Category:Hendecatonic]] | |||
[[Category:Rank 2]] |
Latest revision as of 00:28, 24 June 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
This is a collection of temperaments that tempers out the porwell comma, [11 1 -3 -2⟩ (6144/6125), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.
Discussed elsewhere are:
- Armodue (+36/35) → Pelogic family
- Porcupine (+64/63) → Porcupine family
- Mohajira (+81/80) → Meantone family
- Valentine (+126/125) → Starling temperaments
- Orwell (+225/224) → Semicomma family
- Shrutar (+245/243) → Diaschismic family
- Quinkee (+1029/1000) → Cloudy clan
- Hemiwürschmidt (+2401/2400 or 3136/3125) → Hemimean clan
- Hemikleismic (+4000/3969) → Kleismic family
- Amity (+4375/4374 or 5120/5103) → Amity family
- Freivald (+6272/6075) → Passion family
- Grendel (+16875/16807) → Mirkwai clan
- Hemischis (+19683/19600) → Schismatic family
- Bison (+78732/78125) → Sensipent family
- Hemimabila (+117649/116640) → Mabila family
- Septisuperfourth (+118098/117649) → Escapade family
- Alphatrident (+14348907/14336000) → Alphatricot family
- Hemimaquila (+[-5 10 5 -8⟩) → Maquila family
- Decimaleap (+[15 -18 1 4⟩) → Quintaleap family
- Twilight (+[19 -22 2 4⟩) → Undim family
Hendecatonic
The hendecatonic temperament has a period of 1/11 octave, which represents 16/15 and four times of which represent 9/7.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 10976/10935
Mapping: [⟨11 0 43 -4], ⟨0 1 -1 2]]
- Mapping generators: ~16/15, ~3
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.054
Optimal ET sequence: 22, 55, 77, 99
Badness: 0.041081
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 10976/10935
Mapping: [⟨11 0 43 -4 38], ⟨0 1 -1 2 0]]
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636
Optimal ET sequence: 22, 55, 77, 99, 176e, 275e
Badness: 0.046088
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 351/350, 4459/4455
Mapping: [⟨11 0 43 -4 38 93], ⟨0 1 -1 2 0 -3]]
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291
Optimal ET sequence: 22, 55, 77, 99, 176e
Badness: 0.040099
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023
Mapping: [⟨11 0 43 -4 38 93 45], ⟨0 1 -1 2 0 -3 0]]
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301
Optimal ET sequence: 22, 55, 77, 99, 176eg
Badness: 0.029054
Cohendecatonic
Subgroup: 2.3.5.7.11
Comma list: 540/539, 896/891, 4375/4356
Mapping: [⟨11 0 43 -4 73], ⟨0 1 -1 2 -2]]
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686
Optimal ET sequence: 22, 77e, 99e, 121, 220e
Badness: 0.038042
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 540/539, 625/624
Mapping: [⟨11 0 43 -4 73 128], ⟨0 1 -1 2 -2 -5]]
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888
Optimal ET sequence: 22, 77eff, 99ef, 121, 341bdeeff
Badness: 0.036112
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 352/351, 364/363, 375/374, 540/539
Mapping: [⟨11 0 43 -4 73 128 45], ⟨0 1 -1 2 -2 -5 0]]
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877
Optimal ET sequence: 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg
Badness: 0.022590
Icosidillic
Subgroup: 2.3.5.7.11
Comma list: 3388/3375, 6144/6125, 9801/9800
Mapping: [⟨22 0 86 -8 111], ⟨0 1 -1 2 -1]]
- Mapping generators: ~33/32, ~3
Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914
Optimal ET sequence: 22, 154, 176, 198
Badness: 0.057725
Twothirdtonic
Subgroup: 2.3.5.7
Comma list: 686/675, 6144/6125
Mapping: [⟨1 3 2 4], ⟨0 -13 3 -11]]
- Mapping generators: ~2, ~15/14
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.401
Optimal ET sequence: 9, 28b, 37, 46
Badness: 0.099601
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 686/675
Mapping: [⟨1 3 2 4 4], ⟨0 -13 3 -11 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430
Optimal ET sequence: 9, 28b, 37, 46
Badness: 0.040768
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 121/120, 169/168, 176/175
Mapping: [⟨1 3 2 4 4 5], ⟨0 -13 3 -11 -5 -12]]
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409
Optimal ET sequence: 9, 28b, 37, 46
Badness: 0.025941
Semaja
Cryptically named by Petr Pařízek in 2011, semaja adds the gariboh comma to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10[1].
Subgroup: 2.3.5.7
Comma list: 3125/3087, 6144/6125
Mapping: [⟨1 -2 1 3], ⟨0 19 7 -1]]
- Mapping generators: ~2, ~8/7
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4834
Optimal ET sequence: 16, 37, 53, 196d
Badness: 0.107023
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 3125/3087
Mapping: [⟨1 -2 1 3 1], ⟨0 19 7 -1 13]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856
Optimal ET sequence: 16, 37, 53
Badness: 0.059838
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 275/273
Mapping: [⟨1 -2 1 3 1 2], ⟨0 19 7 -1 13 9]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794
Optimal ET sequence: 16, 37, 53
Badness: 0.032564
Nessafof
- For the 5-limit version, see Miscellaneous 5-limit temperaments#Nessafof.
Cryptically named by Petr Pařízek in 2011[2], nessafof adds the landscape comma and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1[1].
Subgroup: 2.3.5.7
Comma list: 6144/6125, 250047/250000
Mapping: [⟨3 2 5 10], ⟨0 7 5 -4]]
- Mapping generators: ~63/50, ~35/32
Optimal tuning (POTE): ~63/50 = 1\3, ~35/32 = 157.480
Optimal ET sequence: 15, 54b, 69, 84, 99, 282, 381
Badness: 0.045048
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 250047/250000
Mapping: [⟨3 2 5 10 8], ⟨0 7 5 -4 6]]
Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520
Optimal ET sequence: 15, 54be, 69e, 84e, 99
Badness: 0.068427
Nessa
Subgroup: 2.3.5.7.11
Comma list: 441/440, 1344/1331, 4375/4356
Mapping: [⟨3 2 5 10 10], ⟨0 7 5 -4 1]]
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539
Optimal ET sequence: 15, 54b, 69, 84, 99e
Badness: 0.048836
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 364/363, 441/440, 625/624
Mapping: [⟨3 2 5 10 10 6], ⟨0 7 5 -4 1 13]]
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429
Optimal ET sequence: 15, 54bf, 69, 84, 99ef, 183ef, 282eeff
Badness: 0.037409
Aufo
- For the 5-limit version, see High badness temperaments #Untriton.
Also named by Petr Pařízek in 2011, aufo refers to the augmented fourth, which is a generator of this temperament[1].
Subgroup: 2.3.5.7
Comma list: 6144/6125, 177147/175616
Mapping: [⟨1 6 -7 19], ⟨0 -9 19 -33]]
- Mapping generators: ~2, ~45/32
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.782
Optimal ET sequence: 53, 161, 214
Badness: 0.121428
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 177147/175616
Mapping: [⟨1 6 -7 19 1], ⟨0 -9 19 -33 5]]
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811
Optimal ET sequence: 53, 108e, 161e
Badness: 0.088631
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 351/350, 58806/57967
Mapping: [⟨1 6 -7 19 1 -12], ⟨0 -9 19 -33 5 32]]
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788
Optimal ET sequence: 53, 108e, 161e, 214ee
Badness: 0.058507
Aufic
Subgroup: 2.3.5.7.11
Comma list: 540/539, 5632/5625, 72171/71680
Mapping: [⟨1 6 -7 19 -25], ⟨0 -9 19 -33 58]]
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800
Optimal ET sequence: 53, 108, 161, 214, 375
Badness: 0.075149
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 540/539, 847/845, 4096/4095
Mapping: [⟨1 6 -7 19 -25 -12], ⟨0 -9 19 -33 58 32]]
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796
Optimal ET sequence: 53, 108, 161, 214, 375, 589be
Badness: 0.039050
Whoops
- For the 5-limit version, see Very high accuracy temperaments #Whoosh.
Also named by Petr Pařízek in 2011, whoops is a relatively simple extension to the otherwise very accurate microtemperament known as whoosh[1].
Subgroup: 2.3.5.7
Comma list: 6144/6125, 244140625/243045684
Mapping: [⟨1 17 14 -7], ⟨0 -33 -25 21]]
- Mapping generators: ~2, ~441/320
Optimal tuning (POTE): ~2 = 1\1, ~441/320 = 560.519
Optimal ET sequence: 15, 122d, 137, 152, 608d, 623bd, 775bcd
Badness: 0.175840
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 6144/6125
Mapping: [⟨1 17 14 -7 10], ⟨0 -33 -25 21 -14]]
Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519
Optimal ET sequence: 15, 122d, 137, 152, 608de, 623bde, 775bcde
Badness: 0.043743
Polypyth
- For the 5-limit version, see High badness temperaments #Leapday.
Polypyth (46 & 121) tempers out the same 5-limit comma as the leapday temperament (29 & 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 179200/177147
Mapping: [⟨1 0 -31 52], ⟨0 1 21 -31]]
- Mapping generators: ~2, ~3
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.174
Optimal ET sequence: 46, 121, 167, 288b, 455bcd, 743bcd
Badness: 0.137995
11-limit
Subgroup: 2.3.5.7.11
Comma list: 896/891, 2200/2187, 6144/6125
Mapping: [⟨1 0 -31 52 59], ⟨0 1 21 -31 -35]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177
Optimal ET sequence: 46, 121, 167, 288be, 455bcde
Badness: 0.051131
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 364/363, 1716/1715
Mapping: [⟨1 0 -31 52 59 64], ⟨0 1 21 -31 -35 -38]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168
Optimal ET sequence: 46, 121, 167, 288be
Badness: 0.030292
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715
Mapping: [⟨1 0 -31 52 59 64 39], ⟨0 1 21 -31 -35 -38 -22]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168
Optimal ET sequence: 46, 121, 167, 288beg
Badness: 0.019051
Icositritonic
The icositritonic temperament (46 & 161) has a period of 1/23 octave, so six period represents 6/5 and nine period represents 21/16.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 9920232/9765625
Mapping: [⟨23 0 17 101], ⟨0 1 1 -1]]
- Mapping generators: ~1323/1280, ~3
Optimal tuning (POTE): ~1323/1280 = 1\23, ~64/63 = 29.3586
Optimal ET sequence: 46, 115, 161, 207, 368c
Badness: 0.196622
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 6144/6125, 35937/35840
Mapping: [⟨23 0 17 101 116], ⟨0 1 1 -1 -1]]
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980
Optimal ET sequence: 46, 115, 161, 207, 368c
Badness: 0.064613
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 441/440, 847/845, 3584/3575
Mapping: [⟨23 0 17 101 116 158], ⟨0 1 1 -1 -1 -2]]
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830
Optimal ET sequence: 46, 115, 161, 207, 368c
Badness: 0.040484
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088
Mapping: [⟨23 0 17 101 116 158 94], ⟨0 1 1 -1 -1 -2 0]]
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800
Optimal ET sequence: 46, 115, 161, 207, 368c
Badness: 0.024676
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845
Mapping: [⟨23 0 17 101 116 158 94 207], ⟨0 1 1 -1 -1 -2 0 -3]]
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760
Optimal ET sequence: 46, 115, 161, 207, 368c
Badness: 0.021579
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845
Mapping: [⟨23 0 17 101 116 158 94 207 104], ⟨0 1 1 -1 -1 -2 0 -3 0]]
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471
Optimal ET sequence: 46, 115, 161, 207, 368ci
Badness: 0.017745
Countermiracle
The countermiracle temperament (31 & 145) tempers out the trimyna, 50421/50000 and the quince comma, 823543/819200.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 50421/50000
Mapping: [⟨1 4 3 3], ⟨0 -25 -7 -2]]
- Mapping generators: ~2, ~343/320
Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9169
Optimal ET sequence: 31, 114, 145, 176, 559cc, 735cc
Badness: 0.102326
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 3388/3375, 6144/6125
Mapping: [⟨1 4 3 3 8], ⟨0 -25 -7 -2 -47]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158
Optimal ET sequence: 31, 114e, 145, 176
Badness: 0.039162
Countermiraculous
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 1001/1000, 6144/6125
Mapping: [⟨1 4 3 3 8 1], ⟨0 -25 -7 -2 -47 28]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803
Optimal ET sequence: 31, 83e, 114e, 145, 321ceff
Badness: 0.039271
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224
Mapping: [⟨1 4 3 3 8 1 1], ⟨0 -25 -7 -2 -47 28 32]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756
Optimal ET sequence: 31, 83e, 114e, 145
Badness: 0.029496
Counterbenediction
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 441/440, 3146/3125, 3584/3575
Mapping: [⟨1 4 3 3 8 -2], ⟨0 -25 -7 -2 -47 59]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335
Optimal ET sequence: 31, 114ef, 145f, 176, 207, 383c, 590cc
Badness: 0.045569
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125
Mapping: [⟨1 4 3 3 8 -2 -2], ⟨0 -25 -7 -2 -47 59 63]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391
Optimal ET sequence: 31, 114efg, 145fg, 176, 207
Badness: 0.036289
Countermanna
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 3388/3375, 6144/6125
Mapping: [⟨1 4 3 3 8 15 0 -25 -7 -2 -47 -117]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898
Optimal ET sequence: 145, 176, 321ce
Badness: 0.053409
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375
Mapping: [⟨1 4 3 3 8 15 15], ⟨0 -25 -7 -2 -47 -117 -113]]
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832
Optimal ET sequence: 145, 321ce
Badness: 0.040898
Counterrevelation
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 50421/50000
Mapping: [⟨1 4 3 3 5], ⟨0 -25 -7 -2 -16]]
Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192
Optimal ET sequence: 31, 114, 145e, 176e
Badness: 0.064070
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 196/195, 13750/13689
Mapping: [⟨1 4 3 3 5 1], ⟨0 -25 -7 -2 -16 28]]
Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624
Optimal ET sequence: 31, 83, 114, 145e
Badness: 0.057497
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625
Mapping: [⟨1 4 3 3 5 1 1], ⟨0 -25 -7 -2 -16 28 32]]
Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527
Optimal ET sequence: 31, 83, 114, 145e
Badness: 0.044043
Absurdity
- For the 5-limit version, see Syntonic–chromatic equivalence continuum #Absurdity.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 177147/175000
Mapping: [⟨7 0 -17 64], ⟨0 1 3 -4]]
- Mapping generators: ~972/875, ~3
Optimal tuning (POTE): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)
Optimal ET sequence: 77, 84, 161
Badness: 0.133520
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 6144/6125, 72171/71680
Mapping: [⟨7 0 -17 64 124], ⟨0 1 3 -4 -9]]
Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497)
Optimal ET sequence: 77, 84, 161
Badness: 0.081564
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 441/440, 1188/1183, 3584/3575
Mapping: [⟨7 0 -17 64 124 37], ⟨0 1 3 -4 -9 -1]]
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434)
Optimal ET sequence: 77, 84, 161
Badness: 0.041600
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625
Mapping: [⟨7 0 -17 64 124 37 -49], ⟨0 1 3 -4 -9 -1 7]]
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667)
Badness: 0.031783
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
Mapping: [⟨7 0 -17 64 124 37 -49 63], ⟨0 1 3 -4 -9 -1 7 -3]]
Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708)
Badness: 0.022291
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
Mapping: [⟨7 0 -17 64 124 37 -49 63 76], ⟨0 1 3 -4 -9 -1 7 -3 -4]]
Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
Optimal ET sequence: 77, 84, 161
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
Mapping: [⟨7 0 -17 64 124 37 -49 63 76 34], ⟨0 1 3 -4 -9 -1 7 -3 -4 0]]
Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
Optimal ET sequence: 77, 84, 161
Dodifo
- For the 5-limit version, see High badness temperaments #Dodifo.
Also named by Petr Pařízek in 2011, dodifo refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament[1]. The extension here is a less accurate 7-limit intepretation.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 2500000/2470629
Mapping: [⟨1 12 5 4], ⟨0 -35 -9 -4]]
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.070
Optimal ET sequence: 37, 84, 121, 205
Badness: 0.179692
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 2560/2541, 4375/4356
Mapping: [⟨1 12 5 4 -1], ⟨0 -35 -9 -4 15]]
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048
Optimal ET sequence: 37, 84, 121, 326dee
Badness: 0.081923
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 625/624, 640/637, 1375/1372
Mapping: [⟨1 12 5 4 -1 4], ⟨0 -35 -9 -4 15 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049
Optimal ET sequence: 37, 84, 121, 326deef
Badness: 0.039533