Porwell temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 230636270 - Original comment: **
 
(77 intermediate revisions by 14 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is a collection of [[regular temperament|temperaments]] that [[tempering out|tempers out]] the porwell comma, {{monzo| 11 1 -3 -2 }} ([[6144/6125]]), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.  
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-22 00:22:50 UTC</tt>.<br>
: The original revision id was <tt>230636270</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----
This family of temperaments tempers out the //porwell comma//, 6144/6125, and includes hemiwuerschmidt, orwell, amity, valentine, porcupine, hendecatonic, shrutar, hexadecimal, grendel, hemikleismic, mohajira and twothirdtonic.


=Hendecatonic=
Discussed elsewhere are:
Commas: 6144/6125, 10976/10935
* ''[[Armodue]]'' (+36/35) → [[Pelogic family #Armodue|Pelogic family]]
* [[Porcupine]] (+64/63) → [[Porcupine family #Porcupine|Porcupine family]]
* [[Mohajira]] (+81/80) → [[Meantone family #Mohajira|Meantone family]]
* [[Valentine]] (+126/125) → [[Starling temperaments #Valentine|Starling temperaments]]
* [[Orwell]] (+225/224) → [[Semicomma family #Orwell|Semicomma family]]
* [[Shrutar]] (+245/243) → [[Diaschismic family #Shrutar|Diaschismic family]]
* ''[[Quinkee]]'' (+1029/1000) → [[Cloudy clan #Quinkee|Cloudy clan]]
* ''[[Hemiwürschmidt]]'' (+2401/2400 or 3136/3125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]
* ''[[Hemikleismic]]'' (+4000/3969) → [[Kleismic family #Hemikleismic|Kleismic family]]
* [[Amity]] (+4375/4374 or 5120/5103) → [[Amity family #Septimal amity|Amity family]]
* ''[[Freivald]]'' (+6272/6075) → [[Passion family #Freivald|Passion family]]
* ''[[Grendel]]'' (+16875/16807) → [[Mirkwai clan #Grendel|Mirkwai clan]]
* ''[[Hemischis]]'' (+19683/19600) → [[Schismatic family #Hemischis|Schismatic family]]
* ''[[Bison]]'' (+78732/78125) → [[Sensipent family #Bison|Sensipent family]]
* ''[[Hemimabila]]'' (+117649/116640) → [[Mabila family #Hemimabila|Mabila family]]
* ''[[Septisuperfourth]]'' (+118098/117649) → [[Escapade family #Septisuperfourth|Escapade family]]
* ''[[Alphatrident]]'' (+14348907/14336000) → [[Alphatricot family #Alphatrident|Alphatricot family]]
* ''[[Hemimaquila]]'' (+{{monzo| -5 10 5 -8 }}) → [[Maquila family #Hemimaquila|Maquila family]]
* ''[[Decimaleap]]'' (+{{monzo| 15 -18 1 4 }}) → [[Quintaleap family #Decimaleap|Quintaleap family]]
* ''[[Twilight]]'' (+{{monzo| 19 -22 2 4 }}) → [[Undim family #Twilight|Undim family]]


[[POTE tuning|POTE generator]]: 703.054
== Hendecatonic ==
{{see also|11th-octave temperaments}}


Map: [&lt;11 0 43 -4], &lt;0 1 -1 2|]
The hendecatonic temperament has a period of 1/11 octave, which represents [[16/15]] and four times of which represent [[9/7]].
Wedgie: &lt;&lt;11 -11 22 -43 4 82||
EDOs: 22, 55, 77, [[99edo|99]]
Badness: 0.0411


==Icosidillic==
[[Subgroup]]: 2.3.5.7
Commas: 3388/3375, 6144/6125, 9801/9800


[[POTE tuning|POTE generator]]: 702.914
[[Comma list]]: 6144/6125, 10976/10935


Map: [&lt;22 0 86 -8 111|, &lt;0 1 -1 2 -1|]
{{Mapping|legend=1| 11 0 43 -4 | 0 1 -1 2 }}
EDOs: 22, 154, 176, 198, 968, 1166
Badness: 0.0577


=Hemischis=
: Mapping generators: ~16/15, ~3
Commas: 6144/6125, 19683/19600


POTE generator: ~81/70 = 249.203
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\11, ~3/2 = 703.054


Map: [&lt;1 0 15 -17|, &lt;0 2 -16 25|]
{{Optimal ET sequence|legend=1| 22, 55, 77, 99 }}
Wedgie: &lt;&lt;2 -16 25 -30 34 103||
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 313
Badness: 0.0458


==11-limit==
[[Badness]]: 0.041081
Commas: 540/539, 8019/8000, 5632/5625


POTE generator: ~81/70 = 249.199
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;1 0 15 -17 51|, &lt;0 2 -16 25 -60|]
Comma list: 121/120, 176/175, 10976/10935
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 313
Badness: 0.0363


==13-limit==
{{Mapping|legend=1| 11 0 43 -4 38 | 0 1 -1 2 0 }}
Commas: 351/350, 540/539, 676/675, 4096/4095


POTE generator: ~15/13 = 249.199
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636


Map: [&lt;1 0 15 -17 51 14|, &lt;0 2 -16 25 -60 -13|]
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e, 275e }}
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 313
Badness: 0.0208


==17-limit==
Badness: 0.046088
Commas: 351/350, 442/441, 561/560, 676/675, 4096/4095


POTE generator: ~15/13 = 249.190
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 0 15 -17 51 14|, &lt;0 2 -16 25 -60 -13|]
Comma list: 121/120, 176/175, 351/350, 4459/4455
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 679
Badness: 0.0211


=Twothirdtonic=
{{Mapping|legend=1| 11 0 43 -4 38 93 | 0 1 -1 2 0 -3 }}
Commas: 686/675, 6144/6125


POTE generator: ~15/14 = 130.401
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291


Map: [&lt;1 3 2 4|, &lt;0 -13 3 -11|]
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176e }}
Wedgie: &lt;&lt;13 -3 11 -35 -19 34||
EDOs: 9, 10, 19, 28, 37, 46
Badness: 0.0996


==11-limit==
Badness: 0.040099
Commas: 121/120, 176/175, 686/675


POTE generator: ~15/14 = 130.430
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


Map: [&lt;1 3 2 4 4|, &lt;0 -13 3 -11 -5|]
Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023
EDOs: 9, 10, 19, 28, 37, 46
Badness: 0.0408


==13-limit==
{{Mapping|legend=1| 11 0 43 -4 38 93 45 | 0 1 -1 2 0 -3 0 }}
Commas: 91/90, 121/120, 169/168, 176/175


POTE generator: ~15/14 = 130.409
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301


Map: [&lt;1 3 2 4 4 5|, &lt;0 -13 3 -11 -5 -12|]
{{Optimal ET sequence|legend=0| 22, 55, 77, 99, 176eg }}
EDOs: 9, 10, 19, 28, 37, 46
 
Badness: 0.0259</pre></div>
Badness: 0.029054
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Porwell temperaments&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:18:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;a href="#Hendecatonic"&gt;Hendecatonic&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#Hemischis"&gt;Hemischis&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt; | &lt;a href="#Twothirdtonic"&gt;Twothirdtonic&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;
=== Cohendecatonic ===
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;hr /&gt;
Subgroup: 2.3.5.7.11
This family of temperaments tempers out the &lt;em&gt;porwell comma&lt;/em&gt;, 6144/6125, and includes hemiwuerschmidt, orwell, amity, valentine, porcupine, hendecatonic, shrutar, hexadecimal, grendel, hemikleismic, mohajira and twothirdtonic.&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 540/539, 896/891, 4375/4356
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Hendecatonic"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Hendecatonic&lt;/h1&gt;
 
Commas: 6144/6125, 10976/10935&lt;br /&gt;
{{Mapping|legend=1| 11 0 43 -4 73 | 0 1 -1 2 -2 }}
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 703.054&lt;br /&gt;
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686
&lt;br /&gt;
 
Map: [&amp;lt;11 0 43 -4], &amp;lt;0 1 -1 2|]&lt;br /&gt;
{{Optimal ET sequence|legend=0| 22, 77e, 99e, 121, 220e }}
Wedgie: &amp;lt;&amp;lt;11 -11 22 -43 4 82||&lt;br /&gt;
 
EDOs: 22, 55, 77, &lt;a class="wiki_link" href="/99edo"&gt;99&lt;/a&gt;&lt;br /&gt;
Badness: 0.038042
Badness: 0.0411&lt;br /&gt;
 
&lt;br /&gt;
==== 13-limit ====
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Hendecatonic-Icosidillic"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Icosidillic&lt;/h2&gt;
Subgroup: 2.3.5.7.11.13
Commas: 3388/3375, 6144/6125, 9801/9800&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 352/351, 364/363, 540/539, 625/624
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 702.914&lt;br /&gt;
 
&lt;br /&gt;
{{Mapping|legend=1| 11 0 43 -4 73 128 | 0 1 -1 2 -2 -5 }}
Map: [&amp;lt;22 0 86 -8 111|, &amp;lt;0 1 -1 2 -1|]&lt;br /&gt;
 
EDOs: 22, 154, 176, 198, 968, 1166&lt;br /&gt;
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888
Badness: 0.0577&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 341bdeeff }}
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Hemischis"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Hemischis&lt;/h1&gt;
 
Commas: 6144/6125, 19683/19600&lt;br /&gt;
Badness: 0.036112
&lt;br /&gt;
 
POTE generator: ~81/70 = 249.203&lt;br /&gt;
==== 17-limit ====
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13.17
Map: [&amp;lt;1 0 15 -17|, &amp;lt;0 2 -16 25|]&lt;br /&gt;
 
Wedgie: &amp;lt;&amp;lt;2 -16 25 -30 34 103||&lt;br /&gt;
Comma list: 256/255, 352/351, 364/363, 375/374, 540/539
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 313&lt;br /&gt;
 
Badness: 0.0458&lt;br /&gt;
{{Mapping|legend=1| 11 0 43 -4 73 128 45 | 0 1 -1 2 -2 -5 0 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Hemischis-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877
Commas: 540/539, 8019/8000, 5632/5625&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg }}
POTE generator: ~81/70 = 249.199&lt;br /&gt;
 
&lt;br /&gt;
Badness: 0.022590
Map: [&amp;lt;1 0 15 -17 51|, &amp;lt;0 2 -16 25 -60|]&lt;br /&gt;
 
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 313&lt;br /&gt;
=== Icosidillic ===
Badness: 0.0363&lt;br /&gt;
Subgroup: 2.3.5.7.11
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Hemischis-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
Comma list: 3388/3375, 6144/6125, 9801/9800
Commas: 351/350, 540/539, 676/675, 4096/4095&lt;br /&gt;
 
&lt;br /&gt;
{{Mapping|legend=1| 22 0 86 -8 111 | 0 1 -1 2 -1 }}
POTE generator: ~15/13 = 249.199&lt;br /&gt;
 
&lt;br /&gt;
: Mapping generators: ~33/32, ~3
Map: [&amp;lt;1 0 15 -17 51 14|, &amp;lt;0 2 -16 25 -60 -13|]&lt;br /&gt;
 
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 313&lt;br /&gt;
Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914
Badness: 0.0208&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 22, 154, 176, 198 }}
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Hemischis-17-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;17-limit&lt;/h2&gt;
 
Commas: 351/350, 442/441, 561/560, 676/675, 4096/4095&lt;br /&gt;
Badness: 0.057725
&lt;br /&gt;
 
POTE generator: ~15/13 = 249.190&lt;br /&gt;
== Twothirdtonic ==
&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
Map: [&amp;lt;1 0 15 -17 51 14|, &amp;lt;0 2 -16 25 -60 -13|]&lt;br /&gt;
 
EDOs: 5, 9, 14, 19, 24, 29, 53, 130, 183, 679&lt;br /&gt;
[[Comma list]]: 686/675, 6144/6125
Badness: 0.0211&lt;br /&gt;
 
&lt;br /&gt;
{{Mapping|legend=1| 1 3 2 4 | 0 -13 3 -11 }}
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Twothirdtonic"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Twothirdtonic&lt;/h1&gt;
 
Commas: 686/675, 6144/6125&lt;br /&gt;
: Mapping generators: ~2, ~15/14
&lt;br /&gt;
 
POTE generator: ~15/14 = 130.401&lt;br /&gt;
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 130.401
&lt;br /&gt;
 
Map: [&amp;lt;1 3 2 4|, &amp;lt;0 -13 3 -11|]&lt;br /&gt;
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }}
Wedgie: &amp;lt;&amp;lt;13 -3 11 -35 -19 34||&lt;br /&gt;
 
EDOs: 9, 10, 19, 28, 37, 46&lt;br /&gt;
[[Badness]]: 0.099601
Badness: 0.0996&lt;br /&gt;
 
&lt;br /&gt;
=== 11-limit ===
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Twothirdtonic-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;11-limit&lt;/h2&gt;
Subgroup: 2.3.5.7.11
Commas: 121/120, 176/175, 686/675&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 121/120, 176/175, 686/675
POTE generator: ~15/14 = 130.430&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 3 2 4 4 | 0 -13 3 -11 -5 }}
Map: [&amp;lt;1 3 2 4 4|, &amp;lt;0 -13 3 -11 -5|]&lt;br /&gt;
 
EDOs: 9, 10, 19, 28, 37, 46&lt;br /&gt;
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430
Badness: 0.0408&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }}
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Twothirdtonic-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;13-limit&lt;/h2&gt;
 
Commas: 91/90, 121/120, 169/168, 176/175&lt;br /&gt;
Badness: 0.040768
&lt;br /&gt;
 
POTE generator: ~15/14 = 130.409&lt;br /&gt;
=== 13-limit ===
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
Map: [&amp;lt;1 3 2 4 4 5|, &amp;lt;0 -13 3 -11 -5 -12|]&lt;br /&gt;
 
EDOs: 9, 10, 19, 28, 37, 46&lt;br /&gt;
Comma list: 91/90, 121/120, 169/168, 176/175
Badness: 0.0259&lt;/body&gt;&lt;/html&gt;</pre></div>
 
Mapping: {{mapping| 1 3 2 4 4 5 | 0 -13 3 -11 -5 -12 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409
 
{{Optimal ET sequence|legend=1| 9, 28b, 37, 46 }}
 
Badness: 0.025941
 
== Semaja ==
Cryptically named by [[Petr Pařízek]] in 2011, semaja adds the [[gariboh comma]] to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10<ref name="petr's long post">[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 3125/3087, 6144/6125
 
{{Mapping|legend=1| 1 -2 1 3 | 0 19 7 -1 }}
 
: Mapping generators: ~2, ~8/7
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 226.4834
 
{{Optimal ET sequence|legend=1| 16, 37, 53, 196d }}
 
[[Badness]]: 0.107023
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 176/175, 3125/3087
 
Mapping: {{mapping| 1 -2 1 3 1 | 0 19 7 -1 13 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856
 
{{Optimal ET sequence|legend=1| 16, 37, 53 }}
 
Badness: 0.059838
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 169/168, 176/175, 275/273
 
Mapping: {{mapping| 1 -2 1 3 1 2 | 0 19 7 -1 13 9 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794
 
{{Optimal ET sequence|legend=1| 16, 37, 53 }}
 
Badness: 0.032564
 
== Nessafof ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments#Nessafof]].''
 
Cryptically named by [[Petr Pařízek]] in 2011<ref name="petr's short post">[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101089.html Yahoo! Tuning Group | ''Some more unclassified temperaments'']</ref>, nessafof adds the [[landscape comma]] and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1<ref name="petr's long post"/>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 250047/250000
 
{{Mapping|legend=1| 3 2 5 10 | 0 7 5 -4 }}
 
: Mapping generators: ~63/50, ~35/32
 
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~35/32 = 157.480
 
{{Optimal ET sequence|legend=1| 15, 54b, 69, 84, 99, 282, 381 }}
 
[[Badness]]: 0.045048
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 176/175, 250047/250000
 
Mapping: {{mapping| 3 2 5 10 8 | 0 7 5 -4 6 }}
 
Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520
 
{{Optimal ET sequence|legend=1| 15, 54be, 69e, 84e, 99 }}
 
Badness: 0.068427
 
=== Nessa ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 1344/1331, 4375/4356
 
Mapping: {{mapping| 3 2 5 10 10 | 0 7 5 -4 1 }}
 
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539
 
{{Optimal ET sequence|legend=1| 15, 54b, 69, 84, 99e }}
 
Badness: 0.048836
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 144/143, 364/363, 441/440, 625/624
 
Mapping: {{mapping| 3 2 5 10 10 6 | 0 7 5 -4 1 13 }}
 
Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429
 
{{Optimal ET sequence|legend=1| 15, 54bf, 69, 84, 99ef, 183ef, 282eeff }}
 
Badness: 0.037409
 
== Aufo ==
:''For the 5-limit version, see [[High badness temperaments #Untriton]].''
 
Also named by [[Petr Pařízek]] in 2011, ''aufo'' refers to the augmented fourth, which is a generator of this temperament<ref name="petr's long post"/>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 177147/175616
 
{{Mapping|legend=1| 1 6 -7 19 | 0 -9 19 -33 }}
 
: Mapping generators: ~2, ~45/32
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~45/32 = 588.782
 
{{Optimal ET sequence|legend=1| 53, 161, 214 }}
 
[[Badness]]: 0.121428
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 176/175, 177147/175616
 
Mapping: {{mapping| 1 6 -7 19 1 | 0 -9 19 -33 5 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811
 
{{Optimal ET sequence|legend=1| 53, 108e, 161e }}
 
Badness: 0.088631
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 176/175, 351/350, 58806/57967
 
Mapping: {{mapping| 1 6 -7 19 1 -12 | 0 -9 19 -33 5 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788
 
{{Optimal ET sequence|legend=1| 53, 108e, 161e, 214ee }}
 
Badness: 0.058507
 
=== Aufic ===
Subgroup: 2.3.5.7.11
 
Comma list: 540/539, 5632/5625, 72171/71680
 
Mapping: {{mapping| 1 6 -7 19 -25 | 0 -9 19 -33 58 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800
 
{{Optimal ET sequence|legend=1| 53, 108, 161, 214, 375 }}
 
Badness: 0.075149
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 351/350, 540/539, 847/845, 4096/4095
 
Mapping: {{mapping| 1 6 -7 19 -25 -12 | 0 -9 19 -33 58 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796
 
{{Optimal ET sequence|legend=1| 53, 108, 161, 214, 375, 589be }}
 
Badness: 0.039050
 
== Whoops ==
:''For the 5-limit version, see [[Very high accuracy temperaments #Whoosh]].''
 
Also named by [[Petr Pařízek]] in 2011, ''whoops'' is a relatively simple extension to the otherwise very accurate microtemperament known as ''whoosh''<ref name="petr's long post"/>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 244140625/243045684
 
{{Mapping|legend=1| 1 17 14 -7 | 0 -33 -25 21 }}
 
: Mapping generators: ~2, ~441/320
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~441/320 = 560.519
 
{{Optimal ET sequence|legend=1| 15, 122d, 137, 152, 608d, 623bd, 775bcd }}
 
[[Badness]]: 0.175840
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4000/3993, 6144/6125
 
Mapping: {{mapping| 1 17 14 -7 10 | 0 -33 -25 21 -14 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519
 
{{Optimal ET sequence|legend=1| 15, 122d, 137, 152, 608de, 623bde, 775bcde }}
 
Badness: 0.043743
 
== Polypyth ==
:''For the 5-limit version, see [[High badness temperaments #Leapday]].''
 
Polypyth (46 &amp; 121) tempers out the same 5-limit comma as the [[Hemifamity temperaments #Leapday|leapday temperament]] (29 &amp; 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 179200/177147
 
{{Mapping|legend=1| 1 0 -31 52 | 0 1 21 -31 }}
 
: Mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.174
 
{{Optimal ET sequence|legend=1| 46, 121, 167, 288b, 455bcd, 743bcd }}
 
[[Badness]]: 0.137995
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 896/891, 2200/2187, 6144/6125
 
Mapping: {{mapping| 1 0 -31 52 59 | 0 1 21 -31 -35 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177
 
{{Optimal ET sequence|legend=1| 46, 121, 167, 288be, 455bcde }}
 
Badness: 0.051131
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 325/324, 352/351, 364/363, 1716/1715
 
Mapping: {{mapping| 1 0 -31 52 59 64 | 0 1 21 -31 -35 -38 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168
 
{{Optimal ET sequence|legend=1| 46, 121, 167, 288be }}
 
Badness: 0.030292
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715
 
Mapping: {{mapping| 1 0 -31 52 59 64 39 | 0 1 21 -31 -35 -38 -22 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168
 
{{Optimal ET sequence|legend=1| 46, 121, 167, 288beg }}
 
Badness: 0.019051
 
== Icositritonic ==
{{ See also | 23rd-octave temperaments }}
The icositritonic temperament (46 &amp; 161) has a period of 1/23 octave, so six period represents [[6/5]] and nine period represents [[21/16]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 9920232/9765625
 
{{Mapping|legend=1| 23 0 17 101 | 0 1 1 -1 }}
 
: Mapping generators: ~1323/1280, ~3
 
[[Optimal tuning]] ([[POTE]]): ~1323/1280 = 1\23, ~64/63 = 29.3586
 
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}
 
[[Badness]]: 0.196622
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 6144/6125, 35937/35840
 
Mapping: {{mapping| 23 0 17 101 116 | 0 1 1 -1 -1 }}
 
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980
 
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}
 
Badness: 0.064613
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 351/350, 441/440, 847/845, 3584/3575
 
Mapping: {{mapping| 23 0 17 101 116 158 | 0 1 1 -1 -1 -2 }}
 
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830
 
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}
 
Badness: 0.040484
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088
 
Mapping: {{mapping| 23 0 17 101 116 158 94 | 0 1 1 -1 -1 -2 0 }}
 
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800
 
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}
 
Badness: 0.024676
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845
 
Mapping: {{mapping| 23 0 17 101 116 158 94 207 | 0 1 1 -1 -1 -2 0 -3 }}
 
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760
 
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368c }}
 
Badness: 0.021579
 
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845
 
Mapping: {{mapping| 23 0 17 101 116 158 94 207 104 | 0 1 1 -1 -1 -2 0 -3 0 }}
 
Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471
 
{{Optimal ET sequence|legend=1| 46, 115, 161, 207, 368ci }}
 
Badness: 0.017745
 
== Countermiracle ==
The ''countermiracle'' temperament (31 &amp; 145) tempers out the trimyna, 50421/50000 and the [[quince comma]], 823543/819200.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 50421/50000
 
{{Mapping|legend=1| 1 4 3 3 | 0 -25 -7 -2 }}
 
: Mapping generators: ~2, ~343/320
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/320 = 115.9169
 
{{Optimal ET sequence|legend=1| 31, 114, 145, 176, 559cc, 735cc }}
 
[[Badness]]: 0.102326
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 3388/3375, 6144/6125
 
Mapping: {{mapping| 1 4 3 3 8 | 0 -25 -7 -2 -47 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158
 
{{Optimal ET sequence|legend=1| 31, 114e, 145, 176 }}
 
Badness: 0.039162
 
==== Countermiraculous ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 352/351, 1001/1000, 6144/6125
 
Mapping: {{mapping| 1 4 3 3 8 1 | 0 -25 -7 -2 -47 28 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803
 
{{Optimal ET sequence|legend=1| 31, 83e, 114e, 145, 321ceff }}
 
Badness: 0.039271
 
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224
 
Mapping: {{mapping| 1 4 3 3 8 1 1 | 0 -25 -7 -2 -47 28 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756
 
{{Optimal ET sequence|legend=1| 31, 83e, 114e, 145 }}
 
Badness: 0.029496
 
==== Counterbenediction ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 351/350, 441/440, 3146/3125, 3584/3575
 
Mapping: {{mapping| 1 4 3 3 8 -2 | 0 -25 -7 -2 -47 59 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335
 
{{Optimal ET sequence|legend=1| 31, 114ef, 145f, 176, 207, 383c, 590cc }}
 
Badness: 0.045569
 
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125
 
Mapping: {{mapping| 1 4 3 3 8 -2 -2 | 0 -25 -7 -2 -47 59 63 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391
 
{{Optimal ET sequence|legend=1| 31, 114efg, 145fg, 176, 207 }}
 
Badness: 0.036289
 
==== Countermanna ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 441/440, 3388/3375, 6144/6125
 
Mapping: {{mapping| 1 4 3 3 8 15  0 -25 -7 -2 -47 -117 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898
 
{{Optimal ET sequence|legend=1| 145, 176, 321ce }}
 
Badness: 0.053409
 
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375
 
Mapping: {{mapping| 1 4 3 3 8 15 15 | 0 -25 -7 -2 -47 -117 -113 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832
 
{{Optimal ET sequence|legend=1| 145, 321ce }}
 
Badness: 0.040898
 
=== Counterrevelation ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 176/175, 50421/50000
 
Mapping: {{mapping| 1 4 3 3 5 | 0 -25 -7 -2 -16 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192
 
{{Optimal ET sequence|legend=1| 31, 114, 145e, 176e }}
 
Badness: 0.064070
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 176/175, 196/195, 13750/13689
 
Mapping: {{mapping| 1 4 3 3 5 1 | 0 -25 -7 -2 -16 28 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624
 
{{Optimal ET sequence|legend=1| 31, 83, 114, 145e }}
 
Badness: 0.057497
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625
 
Mapping: {{mapping| 1 4 3 3 5 1 1 | 0 -25 -7 -2 -16 28 32 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527
 
{{Optimal ET sequence|legend=1| 31, 83, 114, 145e }}
 
Badness: 0.044043
 
== Absurdity ==
: ''For the 5-limit version, see [[Syntonic–chromatic equivalence continuum #Absurdity]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 177147/175000
 
{{Mapping|legend=1| 7 0 -17 64 | 0 1 3 -4 }}
 
: Mapping generators: ~972/875, ~3
 
[[Optimal tuning]] ([[POTE]]): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)
 
{{Optimal ET sequence|legend=1| 77, 84, 161 }}
 
[[Badness]]: 0.133520
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 6144/6125, 72171/71680
 
{{Mapping|legend=1| 7 0 -17 64 124 | 0 1 3 -4 -9 }}
 
Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497)
 
{{Optimal ET sequence|legend=1| 77, 84, 161 }}
 
Badness: 0.081564
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 351/350, 441/440, 1188/1183, 3584/3575
 
{{Mapping|legend=1| 7 0 -17 64 124 37 | 0 1 3 -4 -9 -1 }}
 
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434)
 
{{Optimal ET sequence|legend=1| 77, 84, 161 }}
 
Badness: 0.041600
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 | 0 1 3 -4 -9 -1 7 }}
 
Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667)
 
{{Optimal ET sequence|legend=1| 77, 161 }}
 
Badness: 0.031783
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 | 0 1 3 -4 -9 -1 7 -3 }}
 
Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708)
 
{{Optimal ET sequence|legend=1| 77, 161 }}
 
Badness: 0.022291
 
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 | 0 1 3 -4 -9 -1 7 -3 -4 }}
 
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
 
{{Optimal ET sequence|legend=0| 77, 84, 161 }}
 
=== 29-limit ===
{{ See also | Fifth-chroma temperaments }}
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494
 
{{Mapping|legend=1| 7 0 -17 64 124 37 -49 63 76 34 | 0 1 3 -4 -9 -1 7 -3 -4 0 }}
 
Optimal tuning ([[CTE]]): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)
 
{{Optimal ET sequence|legend=0| 77, 84, 161 }}
 
== Dodifo ==
: ''For the 5-limit version, see [[High badness temperaments #Dodifo]].''
 
Also named by [[Petr Pařízek]] in 2011, ''dodifo'' refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament<ref name="petr's long post"/>. The extension here is a less accurate 7-limit intepretation.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 6144/6125, 2500000/2470629
 
{{Mapping|legend=1| 1 12 5 4 | 0 -35 -9 -4 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 357.070
 
{{Optimal ET sequence|legend=1| 37, 84, 121, 205 }}
 
[[Badness]]: 0.179692
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 1375/1372, 2560/2541, 4375/4356
 
Mapping: {{mapping| 1 12 5 4 -1 | 0 -35 -9 -4 15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048
 
{{Optimal ET sequence|legend=1| 37, 84, 121, 326dee }}
 
Badness: 0.081923
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 625/624, 640/637, 1375/1372
 
Mapping: {{mapping| 1 12 5 4 -1 4 | 0 -35 -9 -4 15 -1 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049
 
{{Optimal ET sequence|legend=1| 37, 84, 121, 326deef }}
 
Badness: 0.039533
 
== Notes ==
 
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Porwell temperaments| ]] <!-- main article -->
[[Category:Porwell| ]] <!-- key article -->
[[Category:Hendecatonic]]
[[Category:Rank 2]]

Latest revision as of 00:28, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

This is a collection of temperaments that tempers out the porwell comma, [11 1 -3 -2 (6144/6125), and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.

Discussed elsewhere are:

Hendecatonic

The hendecatonic temperament has a period of 1/11 octave, which represents 16/15 and four times of which represent 9/7.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 10976/10935

Mapping[11 0 43 -4], 0 1 -1 2]]

Mapping generators: ~16/15, ~3

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.054

Optimal ET sequence22, 55, 77, 99

Badness: 0.041081

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 10976/10935

Mapping[11 0 43 -4 38], 0 1 -1 2 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.636

Optimal ET sequence: 22, 55, 77, 99, 176e, 275e

Badness: 0.046088

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 4459/4455

Mapping[11 0 43 -4 38 93], 0 1 -1 2 0 -3]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.291

Optimal ET sequence: 22, 55, 77, 99, 176e

Badness: 0.040099

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 176/175, 273/272, 2025/2023

Mapping[11 0 43 -4 38 93 45], 0 1 -1 2 0 -3 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 702.301

Optimal ET sequence: 22, 55, 77, 99, 176eg

Badness: 0.029054

Cohendecatonic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 896/891, 4375/4356

Mapping[11 0 43 -4 73], 0 1 -1 2 -2]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.686

Optimal ET sequence: 22, 77e, 99e, 121, 220e

Badness: 0.038042

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363, 540/539, 625/624

Mapping[11 0 43 -4 73 128], 0 1 -1 2 -2 -5]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.888

Optimal ET sequence: 22, 77eff, 99ef, 121, 341bdeeff

Badness: 0.036112

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 352/351, 364/363, 375/374, 540/539

Mapping[11 0 43 -4 73 128 45], 0 1 -1 2 -2 -5 0]]

Optimal tuning (POTE): ~16/15 = 1\11, ~3/2 = 703.877

Optimal ET sequence: 22, 77eff, 99ef, 121, 220efg, 341bdeeffgg

Badness: 0.022590

Icosidillic

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 6144/6125, 9801/9800

Mapping[22 0 86 -8 111], 0 1 -1 2 -1]]

Mapping generators: ~33/32, ~3

Optimal tuning (POTE): ~33/32 = 1\22, ~3/2 = 702.914

Optimal ET sequence: 22, 154, 176, 198

Badness: 0.057725

Twothirdtonic

Subgroup: 2.3.5.7

Comma list: 686/675, 6144/6125

Mapping[1 3 2 4], 0 -13 3 -11]]

Mapping generators: ~2, ~15/14

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.401

Optimal ET sequence9, 28b, 37, 46

Badness: 0.099601

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 686/675

Mapping: [1 3 2 4 4], 0 -13 3 -11 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 130.430

Optimal ET sequence9, 28b, 37, 46

Badness: 0.040768

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 169/168, 176/175

Mapping: [1 3 2 4 4 5], 0 -13 3 -11 -5 -12]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 130.409

Optimal ET sequence9, 28b, 37, 46

Badness: 0.025941

Semaja

Cryptically named by Petr Pařízek in 2011, semaja adds the gariboh comma to the comma list. The name actually refers to the fact that two of its ~8/7 generator steps reach a 13/10[1].

Subgroup: 2.3.5.7

Comma list: 3125/3087, 6144/6125

Mapping[1 -2 1 3], 0 19 7 -1]]

Mapping generators: ~2, ~8/7

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4834

Optimal ET sequence16, 37, 53, 196d

Badness: 0.107023

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 3125/3087

Mapping: [1 -2 1 3 1], 0 19 7 -1 13]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4856

Optimal ET sequence16, 37, 53

Badness: 0.059838

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 275/273

Mapping: [1 -2 1 3 1 2], 0 19 7 -1 13 9]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 226.4794

Optimal ET sequence16, 37, 53

Badness: 0.032564

Nessafof

For the 5-limit version, see Miscellaneous 5-limit temperaments#Nessafof.

Cryptically named by Petr Pařízek in 2011[2], nessafof adds the landscape comma and has a third-octave period. The name actually refers to the fact that it has a neutral-second generator, and that a semi-augmented fourth, stacked 5 times, makes 5/1[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 250047/250000

Mapping[3 2 5 10], 0 7 5 -4]]

Mapping generators: ~63/50, ~35/32

Optimal tuning (POTE): ~63/50 = 1\3, ~35/32 = 157.480

Optimal ET sequence15, 54b, 69, 84, 99, 282, 381

Badness: 0.045048

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 250047/250000

Mapping: [3 2 5 10 8], 0 7 5 -4 6]]

Optimal tuning (POTE): ~63/50 = 1\3, ~12/11 = 157.520

Optimal ET sequence15, 54be, 69e, 84e, 99

Badness: 0.068427

Nessa

Subgroup: 2.3.5.7.11

Comma list: 441/440, 1344/1331, 4375/4356

Mapping: [3 2 5 10 10], 0 7 5 -4 1]]

Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.539

Optimal ET sequence15, 54b, 69, 84, 99e

Badness: 0.048836

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 364/363, 441/440, 625/624

Mapping: [3 2 5 10 10 6], 0 7 5 -4 1 13]]

Optimal tuning (POTE): ~44/35 = 1\3, ~35/32 = 157.429

Optimal ET sequence15, 54bf, 69, 84, 99ef, 183ef, 282eeff

Badness: 0.037409

Aufo

For the 5-limit version, see High badness temperaments #Untriton.

Also named by Petr Pařízek in 2011, aufo refers to the augmented fourth, which is a generator of this temperament[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175616

Mapping[1 6 -7 19], 0 -9 19 -33]]

Mapping generators: ~2, ~45/32

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.782

Optimal ET sequence53, 161, 214

Badness: 0.121428

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 177147/175616

Mapping: [1 6 -7 19 1], 0 -9 19 -33 5]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.811

Optimal ET sequence53, 108e, 161e

Badness: 0.088631

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 58806/57967

Mapping: [1 6 -7 19 1 -12], 0 -9 19 -33 5 32]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.788

Optimal ET sequence53, 108e, 161e, 214ee

Badness: 0.058507

Aufic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5632/5625, 72171/71680

Mapping: [1 6 -7 19 -25], 0 -9 19 -33 58]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.800

Optimal ET sequence53, 108, 161, 214, 375

Badness: 0.075149

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 847/845, 4096/4095

Mapping: [1 6 -7 19 -25 -12], 0 -9 19 -33 58 32]]

Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 588.796

Optimal ET sequence53, 108, 161, 214, 375, 589be

Badness: 0.039050

Whoops

For the 5-limit version, see Very high accuracy temperaments #Whoosh.

Also named by Petr Pařízek in 2011, whoops is a relatively simple extension to the otherwise very accurate microtemperament known as whoosh[1].

Subgroup: 2.3.5.7

Comma list: 6144/6125, 244140625/243045684

Mapping[1 17 14 -7], 0 -33 -25 21]]

Mapping generators: ~2, ~441/320

Optimal tuning (POTE): ~2 = 1\1, ~441/320 = 560.519

Optimal ET sequence15, 122d, 137, 152, 608d, 623bd, 775bcd

Badness: 0.175840

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 6144/6125

Mapping: [1 17 14 -7 10], 0 -33 -25 21 -14]]

Optimal tuning (POTE): ~2 = 1\1, ~242/175 = 560.519

Optimal ET sequence15, 122d, 137, 152, 608de, 623bde, 775bcde

Badness: 0.043743

Polypyth

For the 5-limit version, see High badness temperaments #Leapday.

Polypyth (46 & 121) tempers out the same 5-limit comma as the leapday temperament (29 & 46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 179200/177147

Mapping[1 0 -31 52], 0 1 21 -31]]

Mapping generators: ~2, ~3

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.174

Optimal ET sequence46, 121, 167, 288b, 455bcd, 743bcd

Badness: 0.137995

11-limit

Subgroup: 2.3.5.7.11

Comma list: 896/891, 2200/2187, 6144/6125

Mapping: [1 0 -31 52 59], 0 1 21 -31 -35]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.177

Optimal ET sequence46, 121, 167, 288be, 455bcde

Badness: 0.051131

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64], 0 1 21 -31 -35 -38]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168

Optimal ET sequence46, 121, 167, 288be

Badness: 0.030292

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64 39], 0 1 21 -31 -35 -38 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.168

Optimal ET sequence46, 121, 167, 288beg

Badness: 0.019051

Icositritonic

The icositritonic temperament (46 & 161) has a period of 1/23 octave, so six period represents 6/5 and nine period represents 21/16.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 9920232/9765625

Mapping[23 0 17 101], 0 1 1 -1]]

Mapping generators: ~1323/1280, ~3

Optimal tuning (POTE): ~1323/1280 = 1\23, ~64/63 = 29.3586

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.196622

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 35937/35840

Mapping: [23 0 17 101 116], 0 1 1 -1 -1]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3980

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.064613

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 847/845, 3584/3575

Mapping: [23 0 17 101 116 158], 0 1 1 -1 -1 -2]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2830

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.040484

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088

Mapping: [23 0 17 101 116 158 94], 0 1 1 -1 -1 -2 0]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.2800

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.024676

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845

Mapping: [23 0 17 101 116 158 94 207], 0 1 1 -1 -1 -2 0 -3]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3760

Optimal ET sequence46, 115, 161, 207, 368c

Badness: 0.021579

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845

Mapping: [23 0 17 101 116 158 94 207 104], 0 1 1 -1 -1 -2 0 -3 0]]

Optimal tuning (POTE): ~33/32 = 1\23, ~64/63 = 29.3471

Optimal ET sequence46, 115, 161, 207, 368ci

Badness: 0.017745

Countermiracle

The countermiracle temperament (31 & 145) tempers out the trimyna, 50421/50000 and the quince comma, 823543/819200.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 50421/50000

Mapping[1 4 3 3], 0 -25 -7 -2]]

Mapping generators: ~2, ~343/320

Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9169

Optimal ET sequence31, 114, 145, 176, 559cc, 735cc

Badness: 0.102326

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8], 0 -25 -7 -2 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9158

Optimal ET sequence31, 114e, 145, 176

Badness: 0.039162

Countermiraculous

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 1001/1000, 6144/6125

Mapping: [1 4 3 3 8 1], 0 -25 -7 -2 -47 28]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8803

Optimal ET sequence31, 83e, 114e, 145, 321ceff

Badness: 0.039271

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 1001/1000, 1225/1224

Mapping: [1 4 3 3 8 1 1], 0 -25 -7 -2 -47 28 32]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8756

Optimal ET sequence31, 83e, 114e, 145

Badness: 0.029496

Counterbenediction

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 3146/3125, 3584/3575

Mapping: [1 4 3 3 8 -2], 0 -25 -7 -2 -47 59]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9335

Optimal ET sequence31, 114ef, 145f, 176, 207, 383c, 590cc

Badness: 0.045569

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 1632/1625, 3146/3125

Mapping: [1 4 3 3 8 -2 -2], 0 -25 -7 -2 -47 59 63]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.9391

Optimal ET sequence31, 114efg, 145fg, 176, 207

Badness: 0.036289

Countermanna

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8 15 0 -25 -7 -2 -47 -117]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8898

Optimal ET sequence145, 176, 321ce

Badness: 0.053409

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 1632/1625, 3388/3375

Mapping: [1 4 3 3 8 15 15], 0 -25 -7 -2 -47 -117 -113]]

Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.8832

Optimal ET sequence145, 321ce

Badness: 0.040898

Counterrevelation

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 50421/50000

Mapping: [1 4 3 3 5], 0 -25 -7 -2 -16]]

Optimal tuning (POTE): ~2 = 1\1, ~343/320 = 115.9192

Optimal ET sequence31, 114, 145e, 176e

Badness: 0.064070

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 13750/13689

Mapping: [1 4 3 3 5 1], 0 -25 -7 -2 -16 28]]

Optimal tuning (POTE): ~2 = 1\1, ~273/256 = 115.8624

Optimal ET sequence31, 83, 114, 145e

Badness: 0.057497

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 176/175, 196/195, 10647/10625

Mapping: [1 4 3 3 5 1 1], 0 -25 -7 -2 -16 28 32]]

Optimal tuning (POTE): ~2 = 1\1, ~91/85 = 115.8527

Optimal ET sequence31, 83, 114, 145e

Badness: 0.044043

Absurdity

For the 5-limit version, see Syntonic–chromatic equivalence continuum #Absurdity.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175000

Mapping[7 0 -17 64], 0 1 3 -4]]

Mapping generators: ~972/875, ~3

Optimal tuning (POTE): ~972/875 = 1\7, ~3/2 = 700.5854 (or ~10/9 = 186.2997)

Optimal ET sequence77, 84, 161

Badness: 0.133520

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 72171/71680

Mapping[7 0 -17 64 124], 0 1 3 -4 -9]]

Optimal tuning (POTE): ~495/448 = 1\7, ~3/2 = 700.6354 (or ~10/9 = 186.3497)

Optimal ET sequence77, 84, 161

Badness: 0.081564

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 1188/1183, 3584/3575

Mapping[7 0 -17 64 124 37], 0 1 3 -4 -9 -1]]

Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6291 (or ~10/9 = 186.3434)

Optimal ET sequence77, 84, 161

Badness: 0.041600

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 1188/1183, 1632/1625

Mapping[7 0 -17 64 124 37 -49], 0 1 3 -4 -9 -1 7]]

Optimal tuning (POTE): ~72/65 = 1\7, ~3/2 = 700.6524 (or ~10/9 = 186.3667)

Optimal ET sequence77, 161

Badness: 0.031783

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63], 0 1 3 -4 -9 -1 7 -3]]

Optimal tuning (POTE): ~21/19 = 1\7, ~3/2 = 700.6565 (or ~10/9 = 186.3708)

Optimal ET sequence77, 161

Badness: 0.022291

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63 76], 0 1 3 -4 -9 -1 7 -3 -4]]

Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)

Optimal ET sequence: 77, 84, 161

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 261/260, 276/275, 324/323, 351/350, 441/440, 456/455, 476/475, 495/494

Mapping[7 0 -17 64 124 37 -49 63 76 34], 0 1 3 -4 -9 -1 7 -3 -4 0]]

Optimal tuning (CTE): ~21/19 = 1\7, ~3/2 = 700.629 (or ~10/9 = 186.343)

Optimal ET sequence: 77, 84, 161

Dodifo

For the 5-limit version, see High badness temperaments #Dodifo.

Also named by Petr Pařízek in 2011, dodifo refers to the (tetraptolemaic) double-diminished fourth, which is a generator of this temperament[1]. The extension here is a less accurate 7-limit intepretation.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 2500000/2470629

Mapping[1 12 5 4], 0 -35 -9 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.070

Optimal ET sequence37, 84, 121, 205

Badness: 0.179692

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 2560/2541, 4375/4356

Mapping: [1 12 5 4 -1], 0 -35 -9 -4 15]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 357.048

Optimal ET sequence37, 84, 121, 326dee

Badness: 0.081923

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 625/624, 640/637, 1375/1372

Mapping: [1 12 5 4 -1 4], 0 -35 -9 -4 15 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 357.049

Optimal ET sequence37, 84, 121, 326deef

Badness: 0.039533

Notes