Magic family
The magic family of temperaments tempers out 3125/3072, the small diesis or magic comma. The septimal version of magic is locally optimal, for some searches, in the 9-odd-limit. Magic has a slightly higher complexity than meantone but it is closer to just intonation. It is the simplest rank-2 temperament that tunes every 9-odd-limit interval better than is possible in 12edo. The most prominent deficiency is that it lacks proper or nearly-proper mos scales in the 5- to 10-note region. Properties may depend on tuning and extension.
Magic
The generator of magic is a major third, and to get to the interval class of fifths requires five of these. In fact, (5/4)5 = 3 × 3125/3072. 13\41 is a highly recommendable generator, though 19\60, the optimal patent val generator, also makes a lot of sense, and using 19edo or 22edo is always possible.
Subgroup: 2.3.5
Comma list: 3125/3072
Mapping: [⟨1 0 2], ⟨0 5 1]]
- mapping generators: ~2, ~5/4
- CTE: ~2 = 1200.000, ~5/4 = 380.499
- error map: ⟨0.000 +0.542 -5.814]
- POTE: ~2 = 1200.000, ~5/4 = 380.058
- error map: ⟨0.000 -1.663 -6.255]
- 5-odd-limit: ~5/4 = [0 1/5 0⟩
- 5-odd-limit diamond monotone: ~5/4 = [360.000, 400.000] (3\10 to 1\3)
- 5-odd-limit diamond tradeoff: ~5/4 = [378.910, 386.314] (1/4-comma to untempered)
Algebraic generator: Terzbirat, the positive root of 9x2 - 8x - 4 = (4 + 2√13)/9; approximately 380.3175 cents.
Optimal ET sequence: 3, 13b, 16, 19, 41, 60, 221cc, 281cc
Badness (Smith): 0.039163
Overview to extensions
Apart from magic, we also consider other extensions. The second comma of the normal comma list defines which 7-limit family member we are looking at. 875/864, the keemic comma, gives septimal magic, and 525/512, Avicenna's enharmonic diesis, gives his annoying brother muggles. Both use the major third as a generator, as well as low-accuracy extensions including darkstone and brightstone.
Weak extensions considered below are hocum, trismegistus, quadrimage, quinmage and warlock. Discussed elsewhere are
Septimal magic
Septimal magic tempers out not only 3125/3072 and 875/864, but also 225/224, 245/243, and 10976/10935. 41edo is a good magic tuning, and 19- or 22-note mosses are possible scales. Five major thirds approximate 3/1. Twelve major thirds, less an octave, approximate 7/1.
This temperament, with its accurate fifths, works well with 9-odd-limit harmony. It is more accurate than meantone and simpler than garibaldi. It is a little tricky to work with because its fifths are a relatively complex interval and it does not naturally work with scales of around seven notes to the octave.
225/224 is the marvel comma. Because the augmented triad is the simplest triad in magic temperaments, it is especially significant in magic temperament. 245/243, the sensamagic comma, leads to another essentially tempered 9-odd-limit triad with two thirds approximating 9/7 and the other 6/5. It also divides the approximate 3/2 into two steps of 7/6 and one of 10/9.
By adding 100/99 to the list of commas, magic can be extended to an 11-limit version, ⟨⟨ 5 1 12 -8 … ]]. For this, 104edo provides an excellent tuning, as it does also for the rank-3 temperaments tempering out 100/99 with 225/224, 245/243 or 875/864. Septimage (see below) is also an excellent 11-limit magic tuning.
Subgroup: 2.3.5.7
Comma list: 225/224, 245/243
Mapping: [⟨1 0 2 -1], ⟨0 5 1 12]]
- mapping generators: ~2, ~5/4
Wedgie: ⟨⟨ 5 1 12 -10 5 25 ]]
- CTE: ~2 = 1200.000, ~5/4 = 380.651
- error map: ⟨0.000 +1.301 -5.662 -1.011]
- POTE: ~2 = 1200.000, ~5/4 = 380.352
- error map: ⟨0.000 -0.195 -5.962 -4.602]
- 7- and 9-odd-limit: ~5/4 = [0 1/5 0 0⟩
- 7- and 9-odd-limit diamond monotone: ~5/4 = [378.947, 381.818] (6\19 to 7\22)
- 7- and 9-odd-limit diamond tradeoff: ~5/4 = [378.910, 386.314] (1/4-comma to untempered)
Algebraic generator: Tirzbirat or Septimage, the real root of 5x5 + 4x - 20, 380.7604 cents.
Optimal ET sequence: 19, 41, 142cd, 183cd, 224ccd
Badness (Smith): 0.018918
11-limit
Tempering out 100/99 allows for a tritone substitution where the extended 5-limit tuning of a dominant seventh with a 9/5 above the root shares its tritone with an 8:10:11:12:16 chord rooted on the seventh of the original chord. (The tritone of the dominant seventh is (9/5)/(5/4) = 36/25. (16/11)/(36/25) = 100/99.)
Subgroup: 2.3.5.7.11
Comma list: 100/99, 225/224, 245/243
Mapping: [⟨1 0 2 -1 6], ⟨0 5 1 12 -8]]
Wedgie: ⟨⟨ 5 1 12 -8 -10 5 -30 25 -22 -64 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.720
- POTE: ~2 = 1200.000, ~5/4 = 380.696
Minimax tuning:
- 11-odd-limit: ~5/4 = [1/3 1/9 0 0 -1/18⟩
- eigenmonzo (unchanged-interval) basis: 2.11/9
Tuning ranges:
- 11-odd-limit diamond monotone: ~5/4 = [378.947, 381.818] (6\19 to 7\22)
- 11-odd-limit diamond tradeoff: ~5/4 = [378.910, 386.314] (1/4-comma to untempered)
Optimal ET sequence: 19, 22, 41, 104
Badness (Smith): 0.020352
13-limit
A notable patent val tuning beyond the optimal patent val of 41edo is 19 + 41 = 60edo.
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 105/104, 144/143, 196/195
Mapping: [⟨1 0 2 -1 6 -2], ⟨0 5 1 12 -8 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.435
- POTE: ~2 = 1200.000, ~5/4 = 380.427
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~5/4 = [378.947, 381.818] (6\19 to 7\22)
- 13- and 15-odd-limit diamond tradeoff: ~5/4 = [378.617, 386.314]
Optimal ET sequence: 19, 22f, 41
Badness (Smith): 0.021509
Magical
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 105/104, 120/119, 144/143, 154/153
Mapping: [⟨1 0 2 -1 6 -2 6], ⟨0 5 1 12 -8 18 -6]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.510
- POTE: ~2 = 1200.000, ~5/4 = 380.604
Optimal ET sequence: 19, 22f, 41
Badness (Smith): 0.020633
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 105/104, 120/119, 133/132, 144/143, 154/153
Mapping: [⟨1 0 2 -1 6 -2 6 9], ⟨0 5 1 12 -8 18 -6 -15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.451
Badness (Smith): 0.020881
Magica
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 105/104, 120/119, 144/143, 154/153, 171/169
Mapping: [⟨1 0 2 -1 6 -2 6 -4], ⟨0 5 1 12 -8 18 -6 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.573
Badness (Smith): 0.019945
Magia
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 105/104, 144/143, 170/169, 196/195
Mapping: [⟨1 0 2 -1 6 -2 -7], ⟨0 5 1 12 -8 18 35]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.271
Optimal ET sequence: 19g, 41, 60
Badness (Smith): 0.026232
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 105/104, 144/143, 170/169, 171/169, 196/195
Mapping: [⟨1 0 2 -1 6 -2 -7 -4], ⟨0 5 1 12 -8 18 35 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.360
Badness (Smith): 0.023709
Evening
Evening is a remarkable subgroup temperament of 19 & 41 with prime harmonics of 29 and 31.
Subgroup: 2.3.5.7.11.13.29.31
Comma list: 100/99, 105/104, 144/143, 145/144, 155/154, 196/195
Sval mapping: [⟨1 0 2 -1 6 -2 2 4], ⟨0 5 1 12 -8 18 9 3]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.478
- POTE: ~2 = 1200.000, ~5/4 = 380.416
Optimal ET sequence: 19, 22f, 41
Sorcery
Subgroup: 2.3.5.7.11.13
Comma list: 65/64, 78/77, 91/90, 100/99
Mapping: [⟨1 0 2 -1 6 4], ⟨0 5 1 12 -8 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.674
- POTE: ~2 = 1200.000, ~5/4 = 380.477
Optimal ET sequence: 19, 22, 41f
Badness (Smith): 0.025829
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 52/51, 65/64, 78/77, 91/90, 100/99
Mapping: [⟨1 0 2 -1 6 4 6], ⟨0 5 1 12 -8 -1 -6]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.784
- POTE: ~2 = 1200.000, ~5/4 = 380.729
Badness (Smith): 0.023768
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 52/51, 65/64, 78/77, 91/90, 100/99, 133/132
Mapping: [⟨1 0 2 -1 6 4 6 9], ⟨0 5 1 12 -8 -1 -6 -15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.625
- CWE: ~2 = 1200.000, ~5/4 = 380.621
Badness (Smith): 0.023232
Necromancy
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 225/224, 245/243, 275/273
Mapping: [⟨1 0 2 -1 6 11], ⟨0 5 1 12 -8 -23]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.788
- POTE: ~2 = 1200.000, ~5/4 = 380.787
Optimal ET sequence: 19f, 22, 41, 63, 104
Badness (Smith): 0.025275
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 120/119, 154/153, 225/224, 273/272
Mapping: [⟨1 0 2 -1 6 11 6], ⟨0 5 1 12 -8 -23 -6]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.837
- POTE: ~2 = 1200.000, ~5/4 = 380.827
Optimal ET sequence: 19f, 22, 41, 63
Badness (Smith): 0.022032
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 120/119, 133/132, 154/153, 209/208, 225/224
Mapping: [⟨1 0 2 -1 6 11 6 9], ⟨0 5 1 12 -8 -23 -6 -15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.741
- CWE: ~2 = 1200.000, ~5/4 = 380.735
Optimal ET sequence: 19f, 22, 41
Badness (Smith): 0.021101
Soothsaying
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 225/224, 245/243, 1352/1331
Mapping: [⟨2 0 4 -2 12 15], ⟨0 5 1 12 -8 -12]]
Optimal tunings:
- CTE: ~55/39 = 600.000, ~5/4 = 380.539
- POTE: ~55/39 = 600.000, ~5/4 = 380.508
Optimal ET sequence: 22, 60, 82
Badness (Smith): 0.055443
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 221/220, 225/224, 245/243, 273/272
Mapping: [⟨2 0 4 -2 12 15 5], ⟨0 5 1 12 -8 -12 5]]
Optimal tunings:
- CTE: ~17/12 = 600.000, ~5/4 = 380.553
- POTE: ~17/12 = 600.000, ~5/4 = 380.508
Optimal ET sequence: 22, 60, 82
Badness (Smith): 0.035654
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 133/132, 221/220, 225/224, 245/243, 273/272
Mapping: [⟨2 0 4 -2 12 15 5 18], ⟨0 5 1 12 -8 -12 5 -15]]
Optimal tunings:
- CTE: ~17/12 = 600.000, ~5/4 = 380.470
- CWE: ~17/12 = 600.000, ~5/4 = 380.470
Optimal ET sequence: 22, 60, 82
Badness (Smith): 0.031291
Telepathy
Subgroup: 2.3.5.7.11
Comma list: 55/54, 99/98, 176/175
Mapping: [⟨1 0 2 -1 -1], ⟨0 5 1 12 14]]
Wedgie: ⟨⟨ 5 1 12 14 -10 5 5 25 29 -2 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.231
- POTE: ~2 = 1200.000, ~5/4 = 381.019
Optimal ET sequence: 19e, 22, 41e, 63e
Badness (Smith): 0.027109
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 99/98
Mapping: [⟨1 0 2 -1 -1 4], ⟨0 5 1 12 14 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.196
- POTE: ~2 = 1200.000, ~5/4 = 380.520
Optimal ET sequence: 19e, 22, 41ef
Badness (Smith): 0.025522
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 55/54, 65/64, 85/84, 91/90, 99/98
Mapping: [⟨1 0 2 -1 -1 4 -1], ⟨0 5 1 12 14 -1 16]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.288
- POTE: ~2 = 1200.000, ~5/4 = 380.619
Optimal ET sequence: 19eg, 22, 41efg
Badness (Smith): 0.020201
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 55/54, 57/56, 65/64, 76/75, 85/84, 99/98
Mapping: [⟨1 0 2 -1 -1 4 -1 2], ⟨0 5 1 12 14 -1 16 7]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.464
- CWE: ~2 = 1200.000, ~5/4 = 380.735
Optimal ET sequence: 19egh, 22, 41efghh
Badness (Smith): 0.019004
Intuition
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 66/65, 99/98, 105/104
Mapping: [⟨1 0 2 -1 -1 -2], ⟨0 5 1 12 14 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.816
- POTE: ~2 = 1200.000, ~5/4 = 380.483
Badness (Smith): 0.026089
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 55/54, 66/65, 85/84, 99/98, 105/104
Mapping: [⟨1 0 2 -1 -1 -2 -1], ⟨0 5 1 12 14 18 16]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.952
- POTE: ~2 = 1200.000, ~5/4 = 380.604
Optimal ET sequence: 19eg, 22f
Badness (Smith): 0.020274
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 55/54, 66/65, 77/76, 85/84, 99/98, 105/104
Mapping: [⟨1 0 2 -1 -1 -2 -1 -4], ⟨0 5 1 12 14 18 16 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.866
- CWE: ~2 = 1200.000, ~5/4 = 380.628
Optimal ET sequence: 19egh, 22fh
Badness (Smith): 0.019518
Horcrux
Subgroup: 2.3.5.7.11
Comma list: 45/44, 56/55, 245/243
Mapping: [⟨1 0 2 -1 0], ⟨0 5 1 12 11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.796
- POTE: ~2 = 1200.000, ~5/4 = 379.642
Optimal ET sequence: 3de, 16d, 19
Badness (Smith): 0.039282
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 56/55, 78/77, 245/243
Mapping: [⟨1 0 2 -1 0 -2], ⟨0 5 1 12 11 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.885
- POTE: ~2 = 1200.000, ~5/4 = 379.791
Optimal ET sequence: 3def, 16dff, 19
Badness (Smith): 0.031938
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 45/44, 56/55, 78/77, 85/84, 245/243
Mapping: [⟨1 0 2 -1 0 -2 0], ⟨0 5 1 12 11 18 16]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.216
- CWE: ~2 = 1200.000, ~5/4 = 380.148
Optimal ET sequence: 3defg, 16dffgg, 19g
Badness (Smith): 0.028074
Horcruxic
Subgroup: 2.3.5.7.11.13.17
Comma list: 35/34, 45/44, 52/51, 56/55, 245/243
Mapping: [⟨1 0 2 -1 0 -2 0], ⟨0 5 1 12 11 18 13]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.524
- CWE: ~2 = 1200.000, ~5/4 = 379.571
Optimal ET sequence: 3defg, 16dff, 19
Badness (Smith): 0.029556
Glamour
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 56/55, 65/64, 245/243
Mapping: [⟨1 0 2 -1 0 4], ⟨0 5 1 12 11 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.757
- POTE: ~2 = 1200.000, ~5/4 = 379.116
Optimal ET sequence: 3de, 16d, 19
Badness (Smith): 0.033317
Witchcraft
Subgroup: 2.3.5.7.11
Comma list: 225/224, 245/243, 441/440
Mapping: [⟨1 0 2 -1 -7], ⟨0 5 1 12 33]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.416
- POTE: ~2 = 1200.000, ~5/4 = 380.232
Optimal ET sequence: 19e, 41, 60e, 101cd, 243ccdde
Badness (Smith): 0.030706
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 196/195, 245/243, 275/273
Mapping: [⟨1 0 2 -1 -7 -2], ⟨0 5 1 12 33 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.352
- POTE: ~2 = 1200.000, ~5/4 = 380.189
Optimal ET sequence: 19e, 41, 60e, 101cd
Badness (Smith): 0.023547
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 154/153, 170/169, 196/195, 245/243
Mapping: [⟨1 0 2 -1 -7 -2 -7], ⟨0 5 1 12 33 18 35]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.281
- POTE: ~2 = 1200.000, ~5/4 = 380.114
Optimal ET sequence: 19eg, 41, 60e, 101cd
Badness (Smith): 0.020756
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 105/104, 133/132, 154/153, 170/169, 171/169, 196/195
Mapping: [⟨1 0 2 -1 -7 -2 -7 -4], ⟨0 5 1 12 33 18 35 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.339
- CWE: ~2 = 1200.000, ~5/4 = 380.205
Optimal ET sequence: 19egh, 41, 60eh
Badness (Smith): 0.018625
Divination
Subgroup: 2.3.5.7.11
Comma list: 121/120, 225/224, 245/243
Mapping: [⟨2 0 4 -2 5], ⟨0 5 1 12 3]]
Optimal tunings:
- CTE: ~99/70 = 600.000, ~5/4 = 380.732
- POTE: ~99/70 = 600.000, ~5/4 = 380.223
Optimal ET sequence: 22, 38d, 60e, 142cdee, 202ccddeee
Badness (Smith): 0.035864
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 121/120, 196/195, 245/243
Mapping: [⟨2 0 4 -2 5 -4], ⟨0 5 1 12 3 18]]
Optimal tunings:
- CTE: ~99/70 = 600.000, ~5/4 = 380.417
- POTE: ~99/70 = 600.000, ~5/4 = 379.920
Optimal ET sequence: 22f, 38df, 60e
Badness (Smith): 0.034551
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 121/120, 154/153, 196/195, 245/243
Mapping: [⟨2 0 4 -2 5 -4 5], ⟨0 5 1 12 3 18 5]]
Optimal tunings:
- CTE: ~17/12 = 600.000, ~5/4 = 380.433
- CWE: ~17/12 = 600.000, ~5/4 = 380.067
Optimal ET sequence: 22f, 38df, 60e
Badness (Smith): 0.023775
Hocus
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242, 245/242
Mapping: [⟨1 5 3 11 12], ⟨0 -10 -2 -24 -25]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.760
- POTE: ~2 = 1200.000, ~14/11 = 409.910
Optimal ET sequence: 38d, 41, 120cd
Badness (Smith): 0.038519
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 196/195, 243/242, 245/242
Mapping: [⟨1 5 3 11 12 16], ⟨0 -10 -2 -24 -25 -36]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.842
- POTE: ~2 = 1200.000, ~14/11 = 410.004
Optimal ET sequence: 38df, 41, 79d, 120cd
Badness (Smith): 0.030280
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 154/153, 196/195, 243/242, 245/242
Mapping: [⟨1 5 3 11 12 16 14], ⟨0 -10 -2 -24 -25 -36 -29]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.896
- CWE: ~2 = 1200.000, ~14/11 = 409.994
Optimal ET sequence: 38df, 41, 79d
Badness (Smith): 0.025491
19-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 154/153, 196/195, 243/242, 245/242
Mapping: [⟨1 5 3 11 12 16 14 8], ⟨0 -10 -2 -24 -25 -36 -29 -11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.884
- CWE: ~2 = 1200.000, ~14/11 = 410.012
Optimal ET sequence: 38df, 41, 79dh
Badness (Smith): 0.020277
Muggles
Aside from 3125/3072 and 525/512 muggles also tempers out 126/125 and 1323/1280. A good muggles tuning is 19edo, in which tuning it is the same thing as magic. Muggles works better for small scales than magic in the sense that 7- or 10-note mosses are reasonable choices, as while the flatter generator compromises the accuracy of the 5-limit intervals, it grants simpler access to some higher-limit ones, and makes the small steps larger and more melodically effective.
Subgroup: 2.3.5.7
Comma list: 126/125, 525/512
Mapping: [⟨1 0 2 5], ⟨0 5 1 -7]]
Wedgie: ⟨⟨ 5 1 -7 -10 -25 -19 ]]
- CTE: ~2 = 1200.000, ~5/4 = 378.744
- error map: ⟨0.000 -8.235 -7.570 -20.034]
- POTE: ~2 = 1200.000, ~5/4 = 378.479
- error map: ⟨0.000 -9.558 -7.834 -18.181]
- 7-odd-limit diamond monotone: ~5/4 = [375.000, 378.947] (5\16 to 6\19)
- 9-odd-limit diamond monotone: ~5/4 = 378.947 (6\19)
- 7- and 9-odd-limit diamond tradeoff: ~5/4 = [375.882, 386.314]
Optimal ET sequence: 16, 19, 73bcd, 92bcdd, 111bcddd
Badness (Smith): 0.056206
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 126/125, 385/384
Mapping: [⟨1 0 2 5 0], ⟨0 5 1 -7 11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 378.228
- POTE: ~2 = 1200.000, ~5/4 = 377.724
Tuning ranges:
- 11-odd-limit diamond monotone: ~5/4 = 378.947 (6\19)
- 11-odd-limit diamond tradeoff: ~5/4 = [347.408, 386.314]
Optimal ET sequence: 16, 19, 35, 54bd
Badness (Smith): 0.048038
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 65/64, 78/77, 126/125
Mapping: [⟨1 0 2 5 0 4], ⟨0 5 1 -7 11 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 378.176
- POTE: ~2 = 1200.000, ~5/4 = 377.653
Optimal ET sequence: 16, 19, 35f, 54bdf
Badness (Smith): 0.030386
Muggloid
Subgroup: 2.3.5.7.11
Comma list: 33/32, 126/125, 176/175
Mapping: [⟨1 0 2 5 5], ⟨0 5 1 -7 -5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 377.724
- POTE: ~2 = 1200.000, ~5/4 = 377.832
Optimal ET sequence: 3, 16, 19e, 35ee, 54bdeee
Badness (Smith): 0.046970
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 33/32, 65/64, 105/104, 126/125
Mapping: [⟨1 0 2 5 5 4], ⟨0 5 1 -7 -5 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 377.652
- POTE: ~2 = 1200.000, ~5/4 = 377.838
Optimal ET sequence: 3, 16, 19e, 35eef
Badness (Smith): 0.028732
Darkstone
Darkstone (16 & 19d) is a low-accuacy temperament which tempers out 36/35 and 1875/1792. It makes the major third and the fifth even flatter than those of muggles. In Encyclopedia of Microtonal Music Theory, Tonalsoft, this temperament is given a name witch.
Subgroup: 2.3.5.7
Comma list: 36/35, 1875/1792
Mapping: [⟨1 0 2 0], ⟨0 5 1 9]]
Wedgie: ⟨⟨ 5 1 9 -10 0 18 ]]
- CTE: ~2 = 1200.000, ~5/4 = 377.385
- error map: ⟨0.000 -15.028 -8.928 +27.643]
- CWE: ~2 = 1200.000, ~5/4 = 376.963
- error map: ⟨0.000 -18.198 -9.562 +21.937]
Optimal ET sequence: 3d, …, 13b, 16
Badness (Smith): 0.084213
11-limit
Subgroup: 2.3.5.7.11
Comma list: 36/35, 45/44, 363/343
Mapping: [⟨1 0 2 0 0], ⟨0 5 1 9 11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 377.388
- CWE: ~2 = 1200.000, ~5/4 = 376.973
Optimal ET sequence: 3de, 13be, 16
Badness (Smith): 0.046775
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 27/26, 36/35, 45/44, 363/343
Mapping: [⟨1 0 2 0 0 -1], ⟨0 5 1 9 11 15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 376.914
- CWE: ~2 = 1200.000, ~5/4 = 376.422
Optimal ET sequence: 3def, 13beff, 16
Badness (Smith): 0.038328
Brightstone
Subgroup: 2.3.5.7
Comma list: 64/63, 3125/3024
Mapping: [⟨1 0 2 6], ⟨0 5 1 -10]]
Wedgie: ⟨⟨ 5 1 -10 -10 -30 -26 ]]
- CTE: ~2 = 1200.000, ~5/4 = 381.955
- error map: ⟨0.000 +7.818 -4.359 +11.627]
- CWE: ~2 = 1200.000, ~5/4 = 381.956
- error map: ⟨0.000 +7.826 -4.358 +11.613]
Optimal ET sequence: 3, 19d, 22
Badness (Smith): 0.088072
11-limit
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 605/588
Mapping: [⟨1 0 2 6 6], ⟨0 5 1 -10 -8]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.790
- CWE: ~2 = 1200.000, ~5/4 = 381.712
Optimal ET sequence: 3, 19d, 22
Badness (Smith): 0.047379
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 65/63, 100/99, 169/165
Mapping: [⟨1 0 2 6 6 4], ⟨0 5 1 -10 -8 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.732
- CWE: ~2 = 1200.000, ~5/4 = 381.736
Badness (Smith): 0.039703
Hocum
Subgroup: 2.3.5.7
Comma list: 3125/3072, 4000/3969
Mapping: [⟨1 5 3 -3], ⟨0 -10 -2 17]]
- mapping generators: ~2, ~63/50
Wedgie: ⟨⟨ 10 2 -17 -20 -55 -45 ]]
- CTE: ~2 = 1200.000, ~63/50 = 409.836
- error map: ⟨0.000 -0.316 -5.986 -1.612]
- POTE: ~2 = 1200.000, ~63/50 = 410.108
- error map: ⟨0.000 -0.437 -6.010 -1.406]
Optimal ET sequence: 3, 38, 41, 161c
Badness (Smith): 0.107115
Trismegistus
Subgroup: 2.3.5.7
Comma list: 1029/1024, 3125/3072
Mapping: [⟨1 10 4 0], ⟨0 -15 -3 5]]
- mapping generators: ~2, ~147/100
Wedgie: ⟨⟨ 15 3 -5 -30 -50 -20 ]]
- CTE: ~2 = 1200.000, ~147/100 = 673.187
- error map: ⟨0.000 +0.240 -5.875 -2.891]
- POTE: ~2 = 1200.000, ~147/100 = 673.290
- error map: ⟨0.000 -0.932 -6.109 -2.500]
Optimal ET sequence: 16, 25, 41, 139c, 180c, 221cc, 262ccd
Badness (Smith): 0.098334
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 625/616
Mapping: [⟨1 10 4 0 13], ⟨0 -15 -3 5 -17]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~22/15 = 673.241
- POTE: ~2 = 1200.000, ~22/15 = 673.340
Optimal ET sequence: 16, 25e, 41, 98c
Badness (Smith): 0.045623
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 275/273, 625/616
Mapping: [⟨1 10 4 0 13 11], ⟨0 -15 -3 5 -17 -13]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~22/15 = 673.294
- POTE: ~2 = 1200.000, ~22/15 = 673.359
Optimal ET sequence: 16, 25e, 41, 98c
Badness (Smith): 0.033081
Quadrimage
Subgroup: 2.3.5.7
Comma list: 2401/2400, 3125/3072
Mapping: [⟨1 5 3 4], ⟨0 -20 -4 -7]]
- mapping generators: ~2, ~28/25
Wedgie: ⟨⟨ 20 4 7 -40 -45 5 ]]
- CTE: ~2 = 1200.000, ~28/25 = 204.860
- error map: ⟨0.000 +0.853 -5.752 -2.843]
- POTE: ~2 = 1200.000, ~28/25 = 204.987
- error map: ⟨0.000 -1.691 -6.261 -3.733]
Optimal ET sequence: 6, 29b, 35, 41, 158cd, 199ccd, 240ccd, 281ccd
Badness (Smith): 0.127422
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/242, 385/384, 625/616
Mapping: [⟨1 5 3 4 5], ⟨0 -20 -4 -7 -9]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~28/25 = 204.881
- POTE: ~2 = 1200.000, ~28/25 = 204.956
Optimal ET sequence: 6, 35, 41
Badness (Smith): 0.061572
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 245/242, 625/616
Mapping: [⟨1 5 3 4 5 9], ⟨0 -20 -4 -7 -9 -31]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~28/25 = 204.956
- POTE: ~2 = 1200.000, ~28/25 = 205.028
Optimal ET sequence: 6f, 35f, 41, 117c
Badness (Smith): 0.044047
Quinmage
Subgroup: 2.3.5.7
Comma list: 3125/3072, 16875/16807
Mapping: [⟨1 -10 0 -6], ⟨0 25 5 19]]
- mapping generators: ~2, ~48/35
Wedgie: ⟨⟨ 25 5 19 -50 -40 30 ]]
- CTE: ~2 = 1200.000, ~48/35 = 556.123
- error map: ⟨0.000 +1.132 -5.696 -2.480]
- CWE: ~2 = 1200.000, ~48/35 = 556.050
- error map: ⟨0.000 -0.695 -6.062 -3.868]
Optimal ET sequence: 13b, 28b, 41, 177bcd, 218bccdd, 259bccdd, 300cccdd
Badness (Smith): 0.194548
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 625/616, 2401/2376
Mapping: [⟨1 -10 0 -6 3], ⟨0 25 5 19 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/8 = 556.122
- CWE: ~2 = 1200.000, ~11/8 = 556.095
Optimal ET sequence: 13b, 28b, 41
Badness (Smith): 0.101724
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 364/363, 385/384, 625/616
Mapping: [⟨1 -10 0 -6 3 0], ⟨0 25 5 19 1 8]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/8 = 556.106
- CWE: ~2 = 1200.000, ~11/8 = 556.117
Optimal ET sequence: 13b, 28b, 41
Badness (Smith): 0.067742
Warlock
Subgroup: 2.3.5.7
Comma list: 3125/3072, 16807/16384
Mapping: [⟨5 0 10 14], ⟨0 5 1 0]]
- mapping generators: ~8/7, ~5/4
- CTE: ~8/7 = 240.000, ~5/4 = 380.499 (~256/245 = 99.501)
- error map: ⟨0.000 +0.542 -5.814 -8.826]
- CWE: ~8/7 = 240.000, ~5/4 = 379.997 (~256/245 = 100.003)
- error map: ⟨0.000 -1.972 -6.317 -8.826]
Optimal ET sequence: 25, 35, 60
Badness (Smith): 0.287190