118edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 117edo 118edo 119edo →
Prime factorization 2 × 59
Step size 10.1695 ¢ 
Fifth 69\118 (701.695 ¢)
Semitones (A1:m2) 11:9 (111.9 ¢ : 91.53 ¢)
Consistency limit 11
Distinct consistency limit 11

The 118 equal divisions of the octave (118edo), or the 118(-tone) equal temperament (118tet, 118et) when viewed from a regular temperament perspective, is the equal division of the octave into 118 parts of about 10.2 cents each.

Theory

118edo represents the intersection of the 5-limit schismatic and parakleismic temperaments, tempering out both the schisma, [-15 8 1 and the parakleisma, [8 14 -13, as well as the vishnuzma, [23 6 -14, the hemithirds comma, [38 -2 -15, and the kwazy, [-53 10 16. It is the first 5-limit equal division which clearly gives microtempering, with errors well under half a cent. In addition, 118edo excellently approximates the 22 Shruti scale.

In the 7-limit, it is particularly notable for tempering out the gamelisma, 1029/1024, and is an excellent tuning for the rank three gamelan temperament, and for guiron, the rank two temperament also tempering out the schisma, 32805/32768. It also tempers out 3136/3125, the hemimean comma, but 99edo does better with that.

In the 11-limit, it tempers out 385/384 and 441/440, and is an excellent tuning for portent, the temperament tempering out both, and for the 11-limit version of guiron, which does also.

It has two reasonable mappings for 13. The patent val tempers out 196/195, 352/351, 625/624, 729/728, 1001/1000, 1575/1573 and 4096/4095. The 118f val tempers out 169/168, 325/324, 351/350, 364/363, 1573/1568, 1716/1715 and 2080/2079. It is, however, better viewed as a no-13 19-limit temperament, on which subgroup it is consistent through the 21-odd-limit.

Since the Pythagorean comma maps to 2 steps of 118edo, it can be interpreted as a series of ten segments of twelve Pythagorean fifths minus the said comma. In addition, one step of 118edo is close to the 2097152/2083725 (the bronzisma), 169/168, and 170/169.

118edo is the 17th zeta peak edo.

Prime harmonics

Script error: No such module "primes_in_edo".

Intervals

Table of intervals in 118edo
Step Cents Marks Approximate Ratios * Eliora's Naming System
(+Shruti 22 correspondence)
Eliora's Chemical Notation
(if base note = 0)
0 0.00 P1 1/1 unison oganesson / neutronium
1 10.17 126/125, 225/224, 121/120, 243/242 semicomma hydrogen
2 20.34 81/80, 531441/524288 comma helium
3 30.51 64/63, 49/48 augmented comma lithium
4 40.68 50/49 beryllium
5 50.85 36/35 boron
6 61.02 28/27 carbon
7 71.19 25/24 nitrogen
8 81.36 21/20, 22/21 oxygen
9 91.53 m2 19/18, 20/19, 256/243 limma, dayavati fluorine
10 101.69 17/16, 18/17 dodecaic semitone neon
11 111.86 16/15, 2187/2048 apotome, ranjani sodium
12 122.03 15/14 magnesium
13 132.20 27/25 aluminium
14 142.37 88/81 silicon
15 152.54 12/11 phosphorus
16 162.71 11/10 sulphur
17 172.88 21/19 diminished tone chlorine
18 183.05 10/9 minor tone, ratika argon
19 193.22 28/25, 19/17 neutral tone, quasi-meantone potassium
20 203.39 M2 9/8 major tone, raudri calcium
21 213.56 17/15 augmented tone scandium
22 223.73 256/225 minor slendric second titanium
23 233.90 8/7 septimal second, slendric 2 vanadium
24 244.07 144/125, 121/105 major slendric second chromium
25 254.24 125/108, 81/70, 22/19 minor septimal third manganese
26 260.41 7/6 septimal third iron
27 274.58 75/64 major septimal third cobalt
28 284.75 33/28 nickel
29 294.92 m3 32/27, 19/16 Pythagorean minor 3rd, krodha copper
30 305.08 25/21 zinc
31 315.25 6/5 Classical minor 3rd, vajrika gallium
32 325.42 98/81 germanium
33 335.59 40/33, 17/14 Lesser tridecimal third arsenic
34 345.76 11/9 Minor-neutral third selenium
35 355.93 27/22, 16/13 I** Minor tridecimal neurtral third, "major-neutral" third bromine
36 366.10 99/80, 21/17, 16/13 II** Golden ratio 3rd, major-tridecimal neutral third krypton
37 376.27 56/45 rubidium
38 386.44 5/4 Classical major 3rd, prasarini strontium
39 396.61 63/50 yttrium
40 406.78 M3 24/19, 19/15 Pythagorean major 3rd zirconium
41 416.95 14/11 niobium
42 427.12 77/60 molybdenum
43 437.29 9/7 technetium
44 447.46 35/27, 22/17 ruthenium
45 457.63 98/75 Barbados 3rd rhodium
46 467.80 21/16 Slendric 3 palladium
47 477.97 320/243 silver
48 488.14 160/121, 85/64 cadmium
49 498.31 P4 4/3 perfect 4th indium
50 508.47 75/56, 51/38 tin
51 518.64 27/20 Kshiti antimony
52 528.81 49/36, 19/14 tellurium
53 538.98 15/11 iodine
54 549.15 48/35, 11/8 xenon
55 559.32 112/81 caesium
56 569.49 25/18 barium
57 579.66 7/5 lanthanum
58 589.83 d5 45/32 Rakta cerium
59 600.00 99/70, 140/99, 17/12, 24/17 symmetric tritone praseodymium
60 610.17 A4 64/45, 729/512 Literal tritone, sandipani neodymium
61 620.34 10/7 promethium
62 630.51 36/25 samarium
63 640.68 81/56 europium
64 650.85 35/24, 16/11 gadolinium
65 661.02 22/15 terbium
66 671.19 72/49, 28/19 dysprosiu
67 681.36 40/27 wolf 5th holmium
68 691.53 112/75, 76/51 wolf cub 5th erbium
69 701.69 P5 3/2 perfect 5th, slendric 4 thulium
70 711.86 121/80, 128/85 sheep 5th ytterbium
71 722.03 243/160 lamb 5th lutetium
72 732.20 32/21 hafnium
73 742.37 75/49 tantalum
74 752.54 54/35, 17/11 tungsten
75 762.71 14/9 rhenium
76 772.88 120/77 osmium
77 783.05 11/7 iridium
78 793.22 m6 19/12, 30/19 Pythagorean minor 6th platinum
79 803.39 100/63 gold
80 813.56 8/5 Classical minor 6th mercury
81 823.73 45/28 thallium
82 833.90 160/99, 34/21, 13/8 I** Golden ratio sixth, minor-neutral tridecimal sixth lead
83 844.07 44/27, 13/8 II** Major tridecimal neutral sixth, "minor-neutral" sixth bismuth
84 854.24 18/11 Major-neutral sixth polonium
85 864.41 28/17 astatine
86 874.58 81/49 radon
87 884.75 5/3 Classical major 6th francium
88 894.92 42/25 radium
89 905.08 M6 27/16, 32/19 Pythagorean major 6th actinium
90 915.25 56/33 thorium
91 925.42 128/75 protactinium
92 935.59 12/7 Septimal supermajor 6th, slendric 5 uranium
93 945.76 216/125, 140/81, 121/70, 19/11 neptunium
94 955.93 125/72 plutonium
95 966.10 7/4 Harmonic 7th americium
96 976.27 225/128 curium
97 986.44 30/17 berkelium
98 996.61 m7 16/9 Pythagorean minor 7th californium
99 1006.78 25/14 einsteinium
100 1016.95 9/5 Tivra fermium
101 1027.12 38/21 mendelevium
102 1037.29 20/11 nobelium
103 1047.46 11/6 lawrencium
104 1057.63 81/44 rutherfordium
105 1067.80 50/27 dubnium
106 1077.97 28/15 seaborgium
107 1088.14 15/8 bohrium
108 1098.31 32/17, 17/9 hassium
109 1108.47 M7 36/19, 19/10, 243/128 Pythagorean major 7th meitnerium
110 1118.64 40/21, 21/11 darmstadtium
111 1128.81 48/25 roentgenium
112 1138.98 27/14 copernicium
113 1149.15 35/18, 64/33 nihonium
114 1159.32 49/25 flerovium
115 1169.49 63/32, 96/49 moscovium
116 1179.66 160/81 Comma supermajor 7th livermorium
117 1189.83 125/63, 448/225, 240/121, 484/243 Semicomma supermajor 7th tenessine
118 1200.00 P8 2/1 perfect 8ve oganesson / neutronium

* treated as a 2.3.5.7.11.17.19 system

** based on a dual-interval interpretation for the 13th harmonic

Notation

Possible chemical notation

This notation was proposed by Eliora in November 2021.

118 is the number of chemical elements in the first 7 periods of the periodic table, and it is the number of elements which are ever expected to be most useful to humans. As a result, chemical element names can be used as note names in 118edo. Chemical notation's properties can be a disadvantage - it requires memorizing the names of the elements of the periodic table. However, the notation is succinct and some people prefer this kind of notation for edosteps, as unlike MOS or JI-based notations, it is entirely based on 118edo alone and does not imply a preference of one edo over another.

The following are the correspondences of the periodic table structure with 118edo:

  • 2\118 is the width of the s-block, and is also the size of the Pythagorean and syntonic commas in 118edo. I
  • 87\118 (francium, start of period 7) and 89\118 (actinium, start of the 7f-block), form 5/3 and 27/16 respectively.
  • Mercury, ending the 6d-block, corresponds to 8/5.
  • The minor tone 10/9 corresponds to 18 (argon), a noble gas, ending 3 periods, while 9/8 corresponds to 20 (calcium), the 2s metal.
  • 6\118, the width of the p-block, corresponds to one small step of the maximally even parakleismic scale, created by stacking 6/5.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-187 118 [118 187]] -0.119 0.082 0.81
2.3.5 32805/32768, [8 14 -13 [118 187 274]] +0.036 0.093 0.91
2.3.5.7 1029/1024, 3136/3125, 4375/4374 [118 187 274 331]] +0.270 0.412 4.05
2.3.5.7.11 385/384, 441/440, 3136/3125, 4375/4374 [118 187 274 331 408]] +0.341 0.370 3.89
2.3.5.7.11.13 196/195, 352/351, 384/384, 625/624, 729/728 [118 187 274 331 408 437]] (118) +0.125 0.604 5.93
2.3.5.7.11.13 169/168, 325/324, 364/363, 385/384, 3136/3125 [118 187 274 331 408 436]] (118f) +0.583 0.650 6.39
2.3.5.7.11.17 289/288, 385/384, 441/440, 561/560, 3136/3125 [118 187 274 331 408 482]] +0.417 0.399 3.92
2.3.5.7.11.17.19 289/288, 361/360, 385/384, 441/440, 476/475, 513/512, 969/968 [118 187 274 331 408 482 501]] +0.445 0.376 3.69
  • 118et is lower in relative error than any previous ETs in the 5-limit. Not until 171 do we find a better ET in terms of absolute error, and not until 441 do we find one in terms of relative error.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 11\118 111.86 16/15 Vavoom
1 19\118 193.22 28/25 Luna / hemithirds / lunatic
1 23\118 233.90 8/7 Slendric / guiron
1 31\118 315.25 6/5 Parakleismic / paralytic
1 39\118 396.61 44/35 Squarschmidt
1 49\118 498.31 4/3 Helmholtz / pontiac / helenoid / pontic
1 55\118 559.32 242/175 Tritriple
2 2\118 20.34 81/80 Commatic
2 5\118 50.85 33/32~36/35 Kleischismic
2 7\118 71.19 25/24 Vishnu / ananta (118) / acyuta (118f)
2 10\118 101.69 35/33 Bischismic / bipont (118) / counterbipont (118f)
2 16\118 162.71 11/10 Kwazy / bisupermajor
2 18\118 183.05 10/9 Unidec / ekadash (118) / hendec (118f)
2 19\118 193.22 121/108 Semiluna
2 31\118
(28\118)
315.25
(284.75)
6/5
(33/28)
Semiparakleismic

Music