3/2: Difference between revisions
Added the links to the EDOs in the approximation table. |
No edit summary |
||
Line 74: | Line 74: | ||
<references/> | <references/> | ||
{| class="wikitable" | {| class="wikitable sortable" | ||
|+Comparison of 3/2 approximations and "fifth classes", with 3/2 = 701.955 cents. | |+Comparison of 3/2 approximations and "fifth classes", with 3/2 = 701.955 cents. | ||
(from 5-EDO to 31-EDO, no subsets of 12-EDO.) | (from 5-EDO to 31-EDO, no subsets of 12-EDO.) | ||
Line 87: | Line 87: | ||
|720 | |720 | ||
|pentatonic EDO | |pentatonic EDO | ||
| +18. | | +18.045 ¢ | ||
|- | |- | ||
|[[7edo]] | |[[7edo]] | ||
Line 93: | Line 93: | ||
|685.714 | |685.714 | ||
|perfect EDO | |perfect EDO | ||
| -16. | | -16.241 ¢ | ||
|- | |- | ||
|[[8edo]] | |[[8edo]] | ||
Line 99: | Line 99: | ||
|750 | |750 | ||
|supersharp EDO | |supersharp EDO | ||
| +48. | | +48.045 ¢ | ||
|- | |- | ||
|[[9edo]] | |[[9edo]] | ||
Line 105: | Line 105: | ||
|666.667 | |666.667 | ||
|superflat EDO | |superflat EDO | ||
| -35. | | -35.288 ¢ | ||
|- | |- | ||
|[[10edo]] | |[[10edo]] | ||
Line 111: | Line 111: | ||
|720 | |720 | ||
|pentatonic EDO | |pentatonic EDO | ||
| +18. | | +18.045 ¢ | ||
|- | |- | ||
|[[11edo]] | |[[11edo]] | ||
Line 117: | Line 117: | ||
|654.545 | |654.545 | ||
|superflat EDO | |superflat EDO | ||
| -47. | | -47.41 ¢ | ||
|- | |- | ||
|[[12edo]] | |[[12edo]] | ||
Line 123: | Line 123: | ||
|700 | |700 | ||
|diatonic EDO | |diatonic EDO | ||
| -1. | | -1.955 ¢ | ||
|- | |- | ||
|[[13edo]] | |[[13edo]] | ||
Line 129: | Line 129: | ||
|738.462 | |738.462 | ||
|supersharp EDO | |supersharp EDO | ||
| +36. | | +36.507 ¢ | ||
|- | |- | ||
|[[14edo]] | |[[14edo]] | ||
Line 135: | Line 135: | ||
|685.714 | |685.714 | ||
|perfect EDO | |perfect EDO | ||
| -16. | | -16.241 ¢ | ||
|- | |- | ||
|[[15edo]] | |[[15edo]] | ||
Line 141: | Line 141: | ||
|720 | |720 | ||
|pentatonic EDO | |pentatonic EDO | ||
| +18. | | +18.045 ¢ | ||
|- | |- | ||
|[[16edo]] | |[[16edo]] | ||
Line 147: | Line 147: | ||
|675 | |675 | ||
|superflat EDO | |superflat EDO | ||
| -26. | | -26.955 ¢ | ||
|- | |- | ||
|[[17edo]] | |[[17edo]] | ||
Line 153: | Line 153: | ||
|705.882 | |705.882 | ||
|diatonic EDO | |diatonic EDO | ||
| +3. | | +3.92 7¢ | ||
|- | |- | ||
|[[18edo]] | |[[18edo]] | ||
Line 159: | Line 159: | ||
|733.333 | |733.333 | ||
|supersharp EDO | |supersharp EDO | ||
| +31. | | +31.378 ¢ | ||
|- | |- | ||
|[[19edo]] | |[[19edo]] | ||
Line 165: | Line 165: | ||
|694.737 | |694.737 | ||
|diatonic EDO | |diatonic EDO | ||
| -7. | | -7.218 ¢ | ||
|- | |- | ||
|[[20edo]] | |[[20edo]] | ||
Line 171: | Line 171: | ||
|720 | |720 | ||
|pentatonic EDO | |pentatonic EDO | ||
| +18. | | +18.045 ¢ | ||
|- | |- | ||
|[[21edo]] | |[[21edo]] | ||
Line 177: | Line 177: | ||
|685.714 | |685.714 | ||
|perfect EDO | |perfect EDO | ||
| -16. | | -16.241 ¢ | ||
|- | |- | ||
|[[22edo]] | |[[22edo]] | ||
Line 183: | Line 183: | ||
|709.091 | |709.091 | ||
|diatonic EDO | |diatonic EDO | ||
| +7. | | +7.136 ¢ | ||
|- | |- | ||
|[[23edo]] | |[[23edo]] | ||
Line 189: | Line 189: | ||
|678.261 | |678.261 | ||
|superflat EDO | |superflat EDO | ||
| -23. | | -23.694 ¢ | ||
|- | |- | ||
|[[24edo]] | |[[24edo]] | ||
Line 195: | Line 195: | ||
|700 | |700 | ||
|diatonic EDO | |diatonic EDO | ||
| -1. | | -1.955 ¢ | ||
|- | |- | ||
|[[25edo]] | |[[25edo]] | ||
Line 201: | Line 201: | ||
|720 | |720 | ||
|pentatonic EDO | |pentatonic EDO | ||
| +18. | | +18.045 ¢ | ||
|- | |- | ||
|[[26edo]] | |[[26edo]] | ||
Line 207: | Line 207: | ||
|692.308 | |692.308 | ||
|diatonic EDO | |diatonic EDO | ||
| -9. | | -9.647 ¢ | ||
|- | |- | ||
|[[27edo]] | |[[27edo]] | ||
Line 213: | Line 213: | ||
|711.111 | |711.111 | ||
|diatonic EDO | |diatonic EDO | ||
| +9. | | +9.156 ¢ | ||
|- | |- | ||
|[[28edo]] | |[[28edo]] | ||
Line 219: | Line 219: | ||
|685.714 | |685.714 | ||
|perfect EDO | |perfect EDO | ||
| -16. | | -16.241 ¢ | ||
|- | |- | ||
|[[29edo]] | |[[29edo]] | ||
Line 225: | Line 225: | ||
|703.448 | |703.448 | ||
|diatonic EDO | |diatonic EDO | ||
| +1. | | +1.493 ¢ | ||
|- | |- | ||
|[[30edo]] | |[[30edo]] | ||
Line 231: | Line 231: | ||
|720 | |720 | ||
|pentatonic EDO | |pentatonic EDO | ||
| +18. | | +18.045 ¢ | ||
|- | |- | ||
|[[31edo]] | |[[31edo]] | ||
Line 237: | Line 237: | ||
|696.774 | |696.774 | ||
|diatonic EDO | |diatonic EDO | ||
| -5. | | -5.181 ¢ | ||
|} | |} | ||
Revision as of 17:45, 22 June 2021
Interval information |
reduced,
reduced harmonic
[sound info]
3/2, the just perfect fifth, is the largest superparticular interval, spanning the distance between the 2nd and 3rd harmonics. It is an interval with low harmonic entropy, and therefore high consonance.
Variations of the fifth (whether just or not) appear in most music of the world. On a harmonic instrument, the third harmonic is usually the loudest one that is not an octave double of the fundamental. Treatment of the perfect fifth as consonant historically precedes treatment of the major third (see 5:4) as consonant. 3:2 is the simple JI interval best approximated by 12edo, after the octave.
Producing a chain of just perfect fifths yields Pythagorean tuning. Such a chain does not close at a circle, but continues infinitely. 12edo is a system which flattens the perfect fifth by about 2 cents so that the circle close at 12 tones. Meanwhile, meantone temperaments are systems which flatten the perfect fifth such that the major third generated by four fifths upward be closer to 5:4 – or, in the case of quarter-comma meantone (see 31edo), identical.
In composition, the presence of perfect fifths can provide a "ground" upon which unusual intervals may be placed while still sounding structurally coherent. Systems excluding perfect fifths can thus sound more "xenharmonic".
Some better (compared to 12edo) approximations of the perfect fifth are 29edo, 41edo, and 53edo.
Approximations by EDOs
The following EDOs (up to 200) contain good approximations[1] of the interval 3/2. Errors are given by magnitude, the arrows in the table show if the EDO representation is sharp (↑) or flat (↓).
EDO | deg\edo | Absolute error (¢) |
Relative error (r¢) |
↕ | Equally acceptable multiples [2] |
---|---|---|---|---|---|
12 | 7\12 | 1.9550 | 1.9550 | ↓ | 14\24, 21\36 |
17 | 10\17 | 3.9274 | 5.5637 | ↑ | |
29 | 17\29 | 1.4933 | 3.6087 | ↑ | |
41 | 24\41 | 0.4840 | 1.6537 | ↑ | 48\82, 72\123, 96\164 |
53 | 31\53 | 0.0682 | 0.3013 | ↓ | 62\106, 93\159 |
65 | 38\65 | 0.4165 | 2.2563 | ↓ | 76\130, 114\195 |
70 | 41\70 | 0.9021 | 5.2625 | ↑ | |
77 | 45\77 | 0.6563 | 4.2113 | ↓ | |
89 | 52\89 | 0.8314 | 6.1663 | ↓ | |
94 | 55\94 | 0.1727 | 1.3525 | ↑ | 110\188 |
111 | 65\111 | 0.7477 | 6.9162 | ↑ | |
118 | 69\118 | 0.2601 | 2.5575 | ↓ | |
135 | 79\135 | 0.2672 | 3.0062 | ↑ | |
142 | 83\142 | 0.5466 | 6.4675 | ↓ | |
147 | 86\147 | 0.0858 | 1.0512 | ↑ | |
171 | 100\171 | 0.2006 | 2.8588 | ↓ | |
176 | 103\176 | 0.3177 | 4.6600 | ↑ | |
183 | 107\183 | 0.3157 | 4.8138 | ↓ | |
200 | 117\200 | 0.0450 | 0.7500 | ↑ |
EDO | degree | cents | fifth category | error |
---|---|---|---|---|
5edo | 3/5 | 720 | pentatonic EDO | +18.045 ¢ |
7edo | 4/7 | 685.714 | perfect EDO | -16.241 ¢ |
8edo | 5/8 | 750 | supersharp EDO | +48.045 ¢ |
9edo | 5/9 | 666.667 | superflat EDO | -35.288 ¢ |
10edo | 6/10 | 720 | pentatonic EDO | +18.045 ¢ |
11edo | 6/11 | 654.545 | superflat EDO | -47.41 ¢ |
12edo | 7/12 | 700 | diatonic EDO | -1.955 ¢ |
13edo | 8/13 | 738.462 | supersharp EDO | +36.507 ¢ |
14edo | 8/14 | 685.714 | perfect EDO | -16.241 ¢ |
15edo | 9/15 | 720 | pentatonic EDO | +18.045 ¢ |
16edo | 9/16 | 675 | superflat EDO | -26.955 ¢ |
17edo | 10/17 | 705.882 | diatonic EDO | +3.92 7¢ |
18edo | 11/18 | 733.333 | supersharp EDO | +31.378 ¢ |
19edo | 11/19 | 694.737 | diatonic EDO | -7.218 ¢ |
20edo | 12/20 | 720 | pentatonic EDO | +18.045 ¢ |
21edo | 12/21 | 685.714 | perfect EDO | -16.241 ¢ |
22edo | 13/22 | 709.091 | diatonic EDO | +7.136 ¢ |
23edo | 13/23 | 678.261 | superflat EDO | -23.694 ¢ |
24edo | 14/24 | 700 | diatonic EDO | -1.955 ¢ |
25edo | 15/25 | 720 | pentatonic EDO | +18.045 ¢ |
26edo | 15/26 | 692.308 | diatonic EDO | -9.647 ¢ |
27edo | 16/27 | 711.111 | diatonic EDO | +9.156 ¢ |
28edo | 16/28 | 685.714 | perfect EDO | -16.241 ¢ |
29edo | 17/29 | 703.448 | diatonic EDO | +1.493 ¢ |
30edo | 17/30 | 720 | pentatonic EDO | +18.045 ¢ |
31edo | 18/31 | 696.774 | diatonic EDO | -5.181 ¢ |
- The many and various 3/2 approximations in different EDOs can be classified as (after Kite Giedraitis):
- superflat EDO - fifth is narrower than 686 cents.
- perfect EDO - fifth is 686 cents wide (and 4/7 steps).
- diatonic EDO - fifth is between 686.1 - 719.9 cents wide.
- pentatonic EDO - fifth is exactly 720 cents wide.
- supersharp EDO - fifth is wider than 720 cents.
See also
- 4/3 – its octave complement
- Fifth complement
- Gallery of just intervals
- Wikipedia: Perfect fifth
- OEIS: A060528 – a list of EDOs with increasingly better approximations of 3:2 (and by extension 4:3)
- OEIS: A005664 – denominators of the convergents to log2(3)