|
|
(53 intermediate revisions by 16 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = sephiroid |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2012-06-07 12:15:53 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>343566428</tt>.<br>
| | | nLargeSteps = 3 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 7 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 3 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=3L+7s "Fair Mosh" (Modi Sephirotorum)=
| | | Pattern = LssLssLsss |
| = = | | }} |
| Fair Mosh is found in [[Magic|magic]] (chains of the 5th harmonic). It occupies the spectrum from 10edo (L=s) to 3edo (s=0).
| | {{MOS intro}} |
| | == Name == |
| | [[TAMNAMS]] suggests the temperament-agnostic name '''sephiroid''' for this scale, in reference to Kosmorsky's ''Tracatum de Modi Sephiratorum.'' |
|
| |
|
| This MOS can represent tempered-flat chains of the 13th harmonic, which approximates phi (~833 cents). In the region of the spectrum around 23 edo (L=3 s=2) , the 17th and 21st harmonics are tempered toward most accurately, which together are a stable harmony. This is the major chord of the modi sephirotorum. Temperament using phi directly approximates the higher Fibonacci harmonics best.
| | == Scale properties == |
| | {{TAMNAMS use}} |
|
| |
|
| If L=s, ie. multiples of 10edo, the 13th harmonic becomes nearly perfect. 121 edo seems to be the first to 'accurately' represent the comma (which might as well be represented accurately as it's quite small). Towards the other end, where the large and small steps are more contrasted, the comma 65/64 is liable to be tempered out, equating 5/4 and 13/8. In this category fall [[13edo]], [[16edo]], [[19edo]], [[22edo]], [[29edo]], and so on. This ends at s=0 which gives multiples of [[3edo]].
| | === Intervals === |
| | {{MOS intervals}} |
|
| |
|
| Harmonically, the arrangement forming a chord (degrees 0, 1, 4, 7, 10) is symmetrical - not ascending but rather descending, and so reminiscent of ancient Greek practice. These scales, and their truncated heptatonic forms referenced below, are strikingly linear in several ways and so seem suited to a similar outlook as traditional western music (modality, baroque tonality, classical tonality, etc. progressing to today) but with higher harmonics. For more details [[http://ia600706.us.archive.org/23/items/TractatumDeModiSephiratorum/ModiSephiratorum.pdf]]
| | === Generator chain === |
| (I know it should be "tractatus", changing it is just a bother)
| | {{MOS genchain}} |
|
| |
|
| There are MODMOS as well, but I haven't explored them yet. There's enough undiscovered harmonic resource already in these to last me a while! Taking this approach to the 13th harmonic also yields heptatonic MOS with similar properties: [[3L 4s|4s+3L "mish"]] in the form of modes of ssLsLsL "led".
| | === Modes === |
| | {{MOS mode degrees}} |
|
| |
|
| (ascending) | | === Proposed Names === |
| s s s L s s L s s L - Mode Keter
| | Mode names are described by Kosmorsky, which use names from the [[wikipedia:Sefirot|Sefirot]] (or sephiroth). Kosmorsky describes the mode Keter to be akin to the lydian mode of 5L 2s, and the mode Malkuth like the locrian mode. |
| s s L s s L s s L s - Chesed
| | {{MOS modes |
| s L s s L s s L s s - Netzach
| | | Mode Names= |
| L s s L s s L s s s - Malkuth
| | Malkuth $ |
| s s L s s L s s s L - Binah
| | Yesod $ |
| s L s s L s s s L s - Tiferet
| | Hod $ |
| L s s L s s s L s s - Yesod
| | Netzach $ |
| s s L s s s L s s L - Chokmah
| | Tiferet $ |
| s L s s s L s s L s - Gevurah
| | Gevurah $ |
| L s s s L s s L s s - Hod
| | Chesed $ |
| | Binah $ |
| | Chokmah $ |
| | Keter $ |
| | }} |
|
| |
|
| --
| | == Theory == |
| || 3/10 || || || || || || 360 || 120 || 120 || ||
| | === The ''modi sephiratorum'' === |
| || || || || || || 19/63 || 361.905 || 133.333 || 114.286 || ||
| | This MOS can represent tempered-flat chains of the 13th harmonic, which approximates phi (~833 cents). |
| || || || || || 16/53 || || 362.264 || 135.849 || 113.208 || ||
| |
| || || || || 13/43 || || || 362.791 || 139.535 || 111.63 || ||
| |
| || || || 10/33 || || || || 363.636 || 145.455 || 109.091 || ||
| |
| || || || || 17/56 || || || 364.286 || 150 || 107.143 || ||
| |
| || || || || || 24/79 || || 364.557 || 151.899 || 106.329 || ||
| |
| || || || || || || 31/102 || 364.706 || 152.941 || 105.882 || ||
| |
| || || 7/23 || || || || || 365.217 || 156.522 || 104.348 || ||
| |
| || || || || || || 32/105 || || || || ||
| |
| || || || || || 25/82 || || || || || ||
| |
| || || || || 18/59 || || || || || || ||
| |
| || || || 11/36 || || || || 366.667 || 166.667 || 100 || ||
| |
| || || || || 15/49 || || || 367.347 || 171.429 || 97.959 || ||
| |
| || || || || || 19/62 || || 367.742 || 174.192 || 96.774 || ||
| |
| || || || || || || 23/75 || 368 || 176 || 96 || ||
| |
| || 4/13 || || || || || || 369.231 || 184.615 || 92.308 || Boundary of propriety
| |
| (smaller generators are proper) || | |
| || || || || || || 21/68 || 370.588 || 194.118 || 88.235 || ||
| |
| || || || || || 17/55 || || 370.909 || 196.364 || 87.273 || ||
| |
| || || || || 13/42 || || || 371.429 || 200 || 85.714 || ||
| |
| || || || 9/29 || || || || 372.414 || 206.897 || 82.759 || ||
| |
| || || || || 14/45 || || || 373.333 || 213.333 || 80 || ||
| |
| || || || || || 19/61 || || [[tel:373.7705|373.7705]] || 216.393 || 78.6885 || ||
| |
| || || || || || || 24/77 || 374.026 || 218.182 || 77.922 || ||
| |
| || || 5/16 || || || || || 375 || 225 || 75 || ||
| |
| || || || || || || 21/67 || || || || ||
| |
| || || || || || 16/51 || || 376.471 || 235.294 || || ||
| |
| || || || || 11/35 || || || 377.143 || 240 || 68.571 || ||
| |
| || || || || || 17/54 || || 377.778 || 244.444 || 66.667 || ||
| |
| || || || || || || 23/73 || 378.082 || 246.575 || 65.753 || ||
| |
| || || || 6/19 || || || || 378.947 || 252.632 || 63.158 || ||
| |
| || || || || || || 19/60 || 380 || 260 || 60 || Magic is in here ||
| |
| || || || || || 13/41 || || 380.488 || 263.415 || 58.537 || ||
| |
| || || || || || || 20/63 || 380.952 || 266.667 || 57.143 || ||
| |
| || || || || 7/22 || || || 381.818 || 272.727 || 54.545 || ||
| |
| || || || || || || 15/47 || 382.979 || 331.915 || 51.064 || ||
| |
| || || || || || 8/25 || || 384 || 336 || 48 || ||
| |
| || || || || || || 9/28 || 385.714 || 342.857 || 42.857 || ||
| |
| || 1/3 || || || || || || 400 || 400 || 0 || ||
| |
|
| |
|
| L=1 s=1 [[10edo]] | | With sephiroid scales with a soft-of-basic step ratio (around {nowrap|L:s {{=}} 3:2}}, or 23edo), the 17th and 21st harmonics are tempered toward most accurately, which together are a stable harmony. This is the major chord of the modi sephiratorum. |
| L=2 s=1 [[13edo]]
| |
|
| |
|
| (L=3 s=1 [[16edo]]) | | Scales approaching an equalized step ratio ({{nowrap|L:s {{=}} 1:1}}, or [[10edo]]) contain a 13th harmonic that's nearly perfect. [[121edo]] seems to be the first to 'accurately' represent the comma{{Clarify}}. Scales approaching a collapsed step ratio ({{nowrap|L:s {{=}} 1:0}}, or [[3edo]]) have the comma [[65/64]] liable to be tempered out, thus equating [[8/5]] and [[13/8]]. Edos include [[13edo]], [[16edo]], [[19edo]], [[22edo]], [[29edo]], and others. |
| L=3 s=2 [[23edo]] | |
|
| |
|
| (L=4 s=1 [[19edo]]) | | Harmonically, the arrangement forming a chord (degrees 0, 1, 4, 7, 10){{Clarify}} is symmetrical – not ascending but rather descending, and so reminiscent of ancient Greek practice. These scales, and their truncated heptatonic forms referenced below, are strikingly linear in several ways and so seem suited to a similar outlook as traditional western music (modality, baroque tonality, classical tonality, etc. progressing to today) but with higher harmonics. |
| L=4 s=3 [[33edo]]
| |
|
| |
|
| (L=5 s=1 [[22edo]])
| | There are MODMOS as well, but Kosmorsky has not explored them yet, as "there's enough undiscovered harmonic resources already in these to last me a while!" Taking this approach to the 13th harmonic also yields heptatonic MOS with similar properties: [[3L 4s|4s+3L "mish"]] in the form of modes of ssLsLsL "led". |
| (L=5 s=2 [[29edo]])
| |
| L=5 s=3 [[36edo]]
| |
| L=5 s=4 [[43edo]]
| |
|
| |
|
| (L=6 s=1 [[25edo|25edo)]] | | == Scale tree == |
| L=6 s=5 [[53edo]]
| | {{MOS tuning spectrum |
| | | 6/5 = [[Submajor (temperament)|Submajor]] |
| | | 13/8 = Unnamed golden tuning |
| | | 5/2 = [[Sephiroth]] |
| | | 13/5 = Golden sephiroth |
| | | 11/3 = [[Muggles]] |
| | | 4/1 = [[Magic]] / horcrux |
| | | 9/2 = Magic / witchcraft / necromancy |
| | | 5/1 = Magic / telepathy |
| | | 6/1 = [[Würschmidt]] ↓ |
| | }} |
|
| |
|
| L=7 s=6 [[63edo]]
| | == External links == |
| L=7 s=5 [[56edo]]
| | * [https://ia800703.us.archive.org/12/items/TractatumDeModiSephiratorum/ModiSephiratorum.pdf Tractatum de Modi Sephiratorum] by Kosmorsky |
| L=7 s=4 [[49edo]]
| |
| etc.</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>3L 7s</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x3L+7s &quot;Fair Mosh&quot; (Modi Sephirotorum)"></a><!-- ws:end:WikiTextHeadingRule:0 -->3L+7s &quot;Fair Mosh&quot; (Modi Sephirotorum)</h1>
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><!-- ws:end:WikiTextHeadingRule:2 --> </h1>
| |
| Fair Mosh is found in <a class="wiki_link" href="/Magic">magic</a> (chains of the 5th harmonic). It occupies the spectrum from 10edo (L=s) to 3edo (s=0).<br />
| |
| <br />
| |
| This MOS can represent tempered-flat chains of the 13th harmonic, which approximates phi (~833 cents). In the region of the spectrum around 23 edo (L=3 s=2) , the 17th and 21st harmonics are tempered toward most accurately, which together are a stable harmony. This is the major chord of the modi sephirotorum. Temperament using phi directly approximates the higher Fibonacci harmonics best.<br />
| |
| <br />
| |
| If L=s, ie. multiples of 10edo, the 13th harmonic becomes nearly perfect. 121 edo seems to be the first to 'accurately' represent the comma (which might as well be represented accurately as it's quite small). Towards the other end, where the large and small steps are more contrasted, the comma 65/64 is liable to be tempered out, equating 5/4 and 13/8. In this category fall <a class="wiki_link" href="/13edo">13edo</a>, <a class="wiki_link" href="/16edo">16edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/29edo">29edo</a>, and so on. This ends at s=0 which gives multiples of <a class="wiki_link" href="/3edo">3edo</a>.<br />
| |
| <br />
| |
| Harmonically, the arrangement forming a chord (degrees 0, 1, 4, 7, 10) is symmetrical - not ascending but rather descending, and so reminiscent of ancient Greek practice. These scales, and their truncated heptatonic forms referenced below, are strikingly linear in several ways and so seem suited to a similar outlook as traditional western music (modality, baroque tonality, classical tonality, etc. progressing to today) but with higher harmonics. For more details <a class="wiki_link_ext" href="http://ia600706.us.archive.org/23/items/TractatumDeModiSephiratorum/ModiSephiratorum.pdf" rel="nofollow">http://ia600706.us.archive.org/23/items/TractatumDeModiSephiratorum/ModiSephiratorum.pdf</a><br />
| |
| (I know it should be &quot;tractatus&quot;, changing it is just a bother)<br />
| |
| <br />
| |
| There are MODMOS as well, but I haven't explored them yet. There's enough undiscovered harmonic resource already in these to last me a while! Taking this approach to the 13th harmonic also yields heptatonic MOS with similar properties: <a class="wiki_link" href="/3L%204s">4s+3L &quot;mish&quot;</a> in the form of modes of ssLsLsL &quot;led&quot;.<br />
| |
| <br />
| |
| (ascending)<br />
| |
| s s s L s s L s s L - Mode Keter<br />
| |
| s s L s s L s s L s - Chesed<br />
| |
| s L s s L s s L s s - Netzach<br />
| |
| L s s L s s L s s s - Malkuth<br />
| |
| s s L s s L s s s L - Binah<br />
| |
| s L s s L s s s L s - Tiferet<br />
| |
| L s s L s s s L s s - Yesod<br />
| |
| s s L s s s L s s L - Chokmah<br />
| |
| s L s s s L s s L s - Gevurah<br />
| |
| L s s s L s s L s s - Hod<br />
| |
| <br />
| |
| --<br />
| |
|
| |
|
| | | [[Category:10-tone scales]] |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>3/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>360<br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/63<br />
| |
| </td>
| |
| <td>361.905<br />
| |
| </td>
| |
| <td>133.333<br />
| |
| </td>
| |
| <td>114.286<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16/53<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>362.264<br />
| |
| </td>
| |
| <td>135.849<br />
| |
| </td>
| |
| <td>113.208<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/43<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>362.791<br />
| |
| </td>
| |
| <td>139.535<br />
| |
| </td>
| |
| <td>111.63<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10/33<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>363.636<br />
| |
| </td>
| |
| <td>145.455<br />
| |
| </td>
| |
| <td>109.091<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/56<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>364.286<br />
| |
| </td>
| |
| <td>150<br />
| |
| </td>
| |
| <td>107.143<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>24/79<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>364.557<br />
| |
| </td>
| |
| <td>151.899<br />
| |
| </td>
| |
| <td>106.329<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>31/102<br />
| |
| </td>
| |
| <td>364.706<br />
| |
| </td>
| |
| <td>152.941<br />
| |
| </td>
| |
| <td>105.882<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>7/23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>365.217<br />
| |
| </td>
| |
| <td>156.522<br />
| |
| </td>
| |
| <td>104.348<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>32/105<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>25/82<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/59<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/36<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>366.667<br />
| |
| </td>
| |
| <td>166.667<br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15/49<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>367.347<br />
| |
| </td>
| |
| <td>171.429<br />
| |
| </td>
| |
| <td>97.959<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>367.742<br />
| |
| </td>
| |
| <td>174.192<br />
| |
| </td>
| |
| <td>96.774<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23/75<br />
| |
| </td>
| |
| <td>368<br />
| |
| </td>
| |
| <td>176<br />
| |
| </td>
| |
| <td>96<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>369.231<br />
| |
| </td>
| |
| <td>184.615<br />
| |
| </td>
| |
| <td>92.308<br />
| |
| </td>
| |
| <td>Boundary of propriety<br />
| |
| (smaller generators are proper)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21/68<br />
| |
| </td>
| |
| <td>370.588<br />
| |
| </td>
| |
| <td>194.118<br />
| |
| </td>
| |
| <td>88.235<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/55<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>370.909<br />
| |
| </td>
| |
| <td>196.364<br />
| |
| </td>
| |
| <td>87.273<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/42<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>371.429<br />
| |
| </td>
| |
| <td>200<br />
| |
| </td>
| |
| <td>85.714<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/29<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>372.414<br />
| |
| </td>
| |
| <td>206.897<br />
| |
| </td>
| |
| <td>82.759<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>14/45<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>373.333<br />
| |
| </td>
| |
| <td>213.333<br />
| |
| </td>
| |
| <td>80<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/61<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://tel.wikispaces.com/373.7705">373.7705</a><br />
| |
| </td>
| |
| <td>216.393<br />
| |
| </td>
| |
| <td>78.6885<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>24/77<br />
| |
| </td>
| |
| <td>374.026<br />
| |
| </td>
| |
| <td>218.182<br />
| |
| </td>
| |
| <td>77.922<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>5/16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>375<br />
| |
| </td>
| |
| <td>225<br />
| |
| </td>
| |
| <td>75<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21/67<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16/51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>376.471<br />
| |
| </td>
| |
| <td>235.294<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>377.143<br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| <td>68.571<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>377.778<br />
| |
| </td>
| |
| <td>244.444<br />
| |
| </td>
| |
| <td>66.667<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23/73<br />
| |
| </td>
| |
| <td>378.082<br />
| |
| </td>
| |
| <td>246.575<br />
| |
| </td>
| |
| <td>65.753<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6/19<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>378.947<br />
| |
| </td>
| |
| <td>252.632<br />
| |
| </td>
| |
| <td>63.158<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/60<br />
| |
| </td>
| |
| <td>380<br />
| |
| </td>
| |
| <td>260<br />
| |
| </td>
| |
| <td>60<br />
| |
| </td>
| |
| <td>Magic is in here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>380.488<br />
| |
| </td>
| |
| <td>263.415<br />
| |
| </td>
| |
| <td>58.537<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>20/63<br />
| |
| </td>
| |
| <td>380.952<br />
| |
| </td>
| |
| <td>266.667<br />
| |
| </td>
| |
| <td>57.143<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>381.818<br />
| |
| </td>
| |
| <td>272.727<br />
| |
| </td>
| |
| <td>54.545<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15/47<br />
| |
| </td>
| |
| <td>382.979<br />
| |
| </td>
| |
| <td>331.915<br />
| |
| </td>
| |
| <td>51.064<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>384<br />
| |
| </td>
| |
| <td>336<br />
| |
| </td>
| |
| <td>48<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/28<br />
| |
| </td>
| |
| <td>385.714<br />
| |
| </td>
| |
| <td>342.857<br />
| |
| </td>
| |
| <td>42.857<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1/3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>400<br />
| |
| </td>
| |
| <td>400<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <br />
| |
| L=1 s=1 <a class="wiki_link" href="/10edo">10edo</a><br />
| |
| L=2 s=1 <a class="wiki_link" href="/13edo">13edo</a><br />
| |
| <br />
| |
| (L=3 s=1 <a class="wiki_link" href="/16edo">16edo</a>)<br />
| |
| L=3 s=2 <a class="wiki_link" href="/23edo">23edo</a><br />
| |
| <br />
| |
| (L=4 s=1 <a class="wiki_link" href="/19edo">19edo</a>)<br />
| |
| L=4 s=3 <a class="wiki_link" href="/33edo">33edo</a><br />
| |
| <br />
| |
| (L=5 s=1 <a class="wiki_link" href="/22edo">22edo</a>)<br />
| |
| (L=5 s=2 <a class="wiki_link" href="/29edo">29edo</a>)<br />
| |
| L=5 s=3 <a class="wiki_link" href="/36edo">36edo</a><br />
| |
| L=5 s=4 <a class="wiki_link" href="/43edo">43edo</a><br />
| |
| <br />
| |
| (L=6 s=1 <a class="wiki_link" href="/25edo">25edo)</a><br />
| |
| L=6 s=5 <a class="wiki_link" href="/53edo">53edo</a><br />
| |
| <br />
| |
| L=7 s=6 <a class="wiki_link" href="/63edo">63edo</a><br />
| |
| L=7 s=5 <a class="wiki_link" href="/56edo">56edo</a><br />
| |
| L=7 s=4 <a class="wiki_link" href="/49edo">49edo</a><br />
| |
| etc.</body></html></pre></div>
| |
3L 7s, named sephiroid in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 7 small steps, repeating every octave. Generators that produce this scale range from 360 ¢ to 400 ¢, or from 800 ¢ to 840 ¢.
Name
TAMNAMS suggests the temperament-agnostic name sephiroid for this scale, in reference to Kosmorsky's Tracatum de Modi Sephiratorum.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 3L 7s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-sephstep
|
Perfect 0-sephstep
|
P0sps
|
0
|
0.0 ¢
|
1-sephstep
|
Minor 1-sephstep
|
m1sps
|
s
|
0.0 ¢ to 120.0 ¢
|
Major 1-sephstep
|
M1sps
|
L
|
120.0 ¢ to 400.0 ¢
|
2-sephstep
|
Minor 2-sephstep
|
m2sps
|
2s
|
0.0 ¢ to 240.0 ¢
|
Major 2-sephstep
|
M2sps
|
L + s
|
240.0 ¢ to 400.0 ¢
|
3-sephstep
|
Diminished 3-sephstep
|
d3sps
|
3s
|
0.0 ¢ to 360.0 ¢
|
Perfect 3-sephstep
|
P3sps
|
L + 2s
|
360.0 ¢ to 400.0 ¢
|
4-sephstep
|
Minor 4-sephstep
|
m4sps
|
L + 3s
|
400.0 ¢ to 480.0 ¢
|
Major 4-sephstep
|
M4sps
|
2L + 2s
|
480.0 ¢ to 800.0 ¢
|
5-sephstep
|
Minor 5-sephstep
|
m5sps
|
L + 4s
|
400.0 ¢ to 600.0 ¢
|
Major 5-sephstep
|
M5sps
|
2L + 3s
|
600.0 ¢ to 800.0 ¢
|
6-sephstep
|
Minor 6-sephstep
|
m6sps
|
L + 5s
|
400.0 ¢ to 720.0 ¢
|
Major 6-sephstep
|
M6sps
|
2L + 4s
|
720.0 ¢ to 800.0 ¢
|
7-sephstep
|
Perfect 7-sephstep
|
P7sps
|
2L + 5s
|
800.0 ¢ to 840.0 ¢
|
Augmented 7-sephstep
|
A7sps
|
3L + 4s
|
840.0 ¢ to 1200.0 ¢
|
8-sephstep
|
Minor 8-sephstep
|
m8sps
|
2L + 6s
|
800.0 ¢ to 960.0 ¢
|
Major 8-sephstep
|
M8sps
|
3L + 5s
|
960.0 ¢ to 1200.0 ¢
|
9-sephstep
|
Minor 9-sephstep
|
m9sps
|
2L + 7s
|
800.0 ¢ to 1080.0 ¢
|
Major 9-sephstep
|
M9sps
|
3L + 6s
|
1080.0 ¢ to 1200.0 ¢
|
10-sephstep
|
Perfect 10-sephstep
|
P10sps
|
3L + 7s
|
1200.0 ¢
|
Generator chain
Generator chain of 3L 7s
Bright gens |
Scale degree |
Abbrev.
|
12 |
Augmented 6-sephdegree |
A6spd
|
11 |
Augmented 3-sephdegree |
A3spd
|
10 |
Augmented 0-sephdegree |
A0spd
|
9 |
Augmented 7-sephdegree |
A7spd
|
8 |
Major 4-sephdegree |
M4spd
|
7 |
Major 1-sephdegree |
M1spd
|
6 |
Major 8-sephdegree |
M8spd
|
5 |
Major 5-sephdegree |
M5spd
|
4 |
Major 2-sephdegree |
M2spd
|
3 |
Major 9-sephdegree |
M9spd
|
2 |
Major 6-sephdegree |
M6spd
|
1 |
Perfect 3-sephdegree |
P3spd
|
0 |
Perfect 0-sephdegree Perfect 10-sephdegree |
P0spd P10spd
|
−1 |
Perfect 7-sephdegree |
P7spd
|
−2 |
Minor 4-sephdegree |
m4spd
|
−3 |
Minor 1-sephdegree |
m1spd
|
−4 |
Minor 8-sephdegree |
m8spd
|
−5 |
Minor 5-sephdegree |
m5spd
|
−6 |
Minor 2-sephdegree |
m2spd
|
−7 |
Minor 9-sephdegree |
m9spd
|
−8 |
Minor 6-sephdegree |
m6spd
|
−9 |
Diminished 3-sephdegree |
d3spd
|
−10 |
Diminished 10-sephdegree |
d10spd
|
−11 |
Diminished 7-sephdegree |
d7spd
|
−12 |
Diminished 4-sephdegree |
d4spd
|
Modes
Scale degrees of the modes of 3L 7s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (sephdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
9|0
|
1
|
LssLssLsss
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Maj.
|
Maj.
|
Perf.
|
8|1
|
4
|
LssLsssLss
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
7|2
|
7
|
LsssLssLss
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
6|3
|
10
|
sLssLssLss
|
Perf.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Perf.
|
5|4
|
3
|
sLssLsssLs
|
Perf.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Perf.
|
4|5
|
6
|
sLsssLssLs
|
Perf.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Perf.
|
3|6
|
9
|
ssLssLssLs
|
Perf.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Perf.
|
2|7
|
2
|
ssLssLsssL
|
Perf.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Perf.
|
1|8
|
5
|
ssLsssLssL
|
Perf.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Perf.
|
0|9
|
8
|
sssLssLssL
|
Perf.
|
Min.
|
Min.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Perf.
|
Proposed Names
Mode names are described by Kosmorsky, which use names from the Sefirot (or sephiroth). Kosmorsky describes the mode Keter to be akin to the lydian mode of 5L 2s, and the mode Malkuth like the locrian mode.
Modes of 3L 7s
UDP |
Cyclic order |
Step pattern |
Mode names
|
9|0 |
1 |
LssLssLsss |
Malkuth
|
8|1 |
4 |
LssLsssLss |
Yesod
|
7|2 |
7 |
LsssLssLss |
Hod
|
6|3 |
10 |
sLssLssLss |
Netzach
|
5|4 |
3 |
sLssLsssLs |
Tiferet
|
4|5 |
6 |
sLsssLssLs |
Gevurah
|
3|6 |
9 |
ssLssLssLs |
Chesed
|
2|7 |
2 |
ssLssLsssL |
Binah
|
1|8 |
5 |
ssLsssLssL |
Chokmah
|
0|9 |
8 |
sssLssLssL |
Keter
|
Theory
The modi sephiratorum
This MOS can represent tempered-flat chains of the 13th harmonic, which approximates phi (~833 cents).
With sephiroid scales with a soft-of-basic step ratio (around {nowrap|L:s = 3:2}}, or 23edo), the 17th and 21st harmonics are tempered toward most accurately, which together are a stable harmony. This is the major chord of the modi sephiratorum.
Scales approaching an equalized step ratio (L:s = 1:1, or 10edo) contain a 13th harmonic that's nearly perfect. 121edo seems to be the first to 'accurately' represent the comma[clarification needed]. Scales approaching a collapsed step ratio (L:s = 1:0, or 3edo) have the comma 65/64 liable to be tempered out, thus equating 8/5 and 13/8. Edos include 13edo, 16edo, 19edo, 22edo, 29edo, and others.
Harmonically, the arrangement forming a chord (degrees 0, 1, 4, 7, 10)[clarification needed] is symmetrical – not ascending but rather descending, and so reminiscent of ancient Greek practice. These scales, and their truncated heptatonic forms referenced below, are strikingly linear in several ways and so seem suited to a similar outlook as traditional western music (modality, baroque tonality, classical tonality, etc. progressing to today) but with higher harmonics.
There are MODMOS as well, but Kosmorsky has not explored them yet, as "there's enough undiscovered harmonic resources already in these to last me a while!" Taking this approach to the 13th harmonic also yields heptatonic MOS with similar properties: 4s+3L "mish" in the form of modes of ssLsLsL "led".
Scale tree
Scale tree and tuning spectrum of 3L 7s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
3\10
|
|
|
|
|
|
360.000
|
840.000
|
1:1
|
1.000
|
Equalized 3L 7s
|
|
|
|
|
|
16\53
|
362.264
|
837.736
|
6:5
|
1.200
|
Submajor
|
|
|
|
|
13\43
|
|
362.791
|
837.209
|
5:4
|
1.250
|
|
|
|
|
|
|
23\76
|
363.158
|
836.842
|
9:7
|
1.286
|
|
|
|
|
10\33
|
|
|
363.636
|
836.364
|
4:3
|
1.333
|
Supersoft 3L 7s
|
|
|
|
|
|
27\89
|
364.045
|
835.955
|
11:8
|
1.375
|
|
|
|
|
|
17\56
|
|
364.286
|
835.714
|
7:5
|
1.400
|
|
|
|
|
|
|
24\79
|
364.557
|
835.443
|
10:7
|
1.429
|
|
|
|
7\23
|
|
|
|
365.217
|
834.783
|
3:2
|
1.500
|
Soft 3L 7s
|
|
|
|
|
|
25\82
|
365.854
|
834.146
|
11:7
|
1.571
|
|
|
|
|
|
18\59
|
|
366.102
|
833.898
|
8:5
|
1.600
|
|
|
|
|
|
|
29\95
|
366.316
|
833.684
|
13:8
|
1.625
|
Unnamed golden tuning
|
|
|
|
11\36
|
|
|
366.667
|
833.333
|
5:3
|
1.667
|
Semisoft 3L 7s
|
|
|
|
|
|
26\85
|
367.059
|
832.941
|
12:7
|
1.714
|
|
|
|
|
|
15\49
|
|
367.347
|
832.653
|
7:4
|
1.750
|
|
|
|
|
|
|
19\62
|
367.742
|
832.258
|
9:5
|
1.800
|
|
|
4\13
|
|
|
|
|
369.231
|
830.769
|
2:1
|
2.000
|
Basic 3L 7s Scales with tunings softer than this are proper
|
|
|
|
|
|
17\55
|
370.909
|
829.091
|
9:4
|
2.250
|
|
|
|
|
|
13\42
|
|
371.429
|
828.571
|
7:3
|
2.333
|
|
|
|
|
|
|
22\71
|
371.831
|
828.169
|
12:5
|
2.400
|
|
|
|
|
9\29
|
|
|
372.414
|
827.586
|
5:2
|
2.500
|
Semihard 3L 7s Sephiroth
|
|
|
|
|
|
23\74
|
372.973
|
827.027
|
13:5
|
2.600
|
Golden sephiroth
|
|
|
|
|
14\45
|
|
373.333
|
826.667
|
8:3
|
2.667
|
|
|
|
|
|
|
19\61
|
373.770
|
826.230
|
11:4
|
2.750
|
|
|
|
5\16
|
|
|
|
375.000
|
825.000
|
3:1
|
3.000
|
Hard 3L 7s
|
|
|
|
|
|
16\51
|
376.471
|
823.529
|
10:3
|
3.333
|
|
|
|
|
|
11\35
|
|
377.143
|
822.857
|
7:2
|
3.500
|
|
|
|
|
|
|
17\54
|
377.778
|
822.222
|
11:3
|
3.667
|
Muggles
|
|
|
|
6\19
|
|
|
378.947
|
821.053
|
4:1
|
4.000
|
Superhard 3L 7s Magic / horcrux
|
|
|
|
|
|
13\41
|
380.488
|
819.512
|
9:2
|
4.500
|
Magic / witchcraft / necromancy
|
|
|
|
|
7\22
|
|
381.818
|
818.182
|
5:1
|
5.000
|
Magic / telepathy
|
|
|
|
|
|
8\25
|
384.000
|
816.000
|
6:1
|
6.000
|
Würschmidt ↓
|
1\3
|
|
|
|
|
|
400.000
|
800.000
|
1:0
|
→ ∞
|
Collapsed 3L 7s
|
External links