Hemifamity family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Cleanup; recategory
 
(31 intermediate revisions by 7 users not shown)
Line 1: Line 1:
The '''hemifamity family''' of temperaments are rank-3 temperaments tempering out [[5120/5103]].  
{{Technical data page}}
The '''hemifamity family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[5120/5103]] ({{monzo|legend=1| 10 -6 1 -1 }}), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, [[36/35]] into two equal steps, each representing [[81/80]]~[[64/63]], the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same [[chain of fifths]] inflected by the same comma to the opposite sides. In addition we may identify [[10/7]] by the augmented fourth (C–F#) and [[50/49]] by the [[Pythagorean comma]]. Hemifamity can be compared to [[garibaldi]], with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.  


= Hemifamity =
It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have [[5/4]] at the down major third (C–vE) and [[7/4]] at the down minor seventh (C–vBb).
[[Comma]] c = 5120/5103


7-limit minimax: 3 and 7 1/7c sharp, 5 just
== Hemifamity ==
[[Subgroup]]: 2.3.5.7


[|1 0 0 0>, |10/7 1/7 1/7 -1/7>,
[[Comma list]]: [[5120/5103]]
|0 0 1 0>, |10/7 -6/7 1/7 6/7>]


[[Eigenmonzo]]s: 2, 5/4, 7/6
{{Mapping|legend=1| 1 0 0 10 | 0 1 0 -6 | 0 0 1 1 }}


9-limit minimax: 3 1/8c sharp, 5 just, 7 1/4c sharp
: mapping generators: ~2, ~3, ~5


[|1 0 0 0>, |5/4 1/4 1/8 -1/8>,  
[[Mapping to lattice]]: [{{val| 0 1 2 -4 }}, {{val| 0 0 1 1 }}]
|0 0 1 0>, |5/2 -3/2 1/4 3/4>]


[[Eigenmonzo]]s: 2, 5/4, 9/7
Lattice basis:  
: 3/2 length = 0.5670, 10/9 length = 1.8063
: Angle (3/2, 10/9) = 82.112 degrees


Lattice basis: 3/2 length 0.5670, 10/9 length 1.8063
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144


Angle(3/2, 10/9) = 82.112 degrees
[[Minimax tuning]]: c = 5120/5103
* [[7-odd-limit]]: 3 and 7 1/7c sharp, 5 just
: {{monzo list| 1 0 0 0 | 10/7 1/7 1/7 -1/7 | 0 0 1 0 | 10/7 -6/7 1/7 6/7 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.7/3
* [[9-odd-limit]]: 3 1/8c sharp, 5 just, 7 1/4c sharp
: {{monzo list| 1 0 0 0 | 5/4 1/4 1/8 -1/8 | 0 0 1 0 | 5/2 -3/2 1/4 3/4 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.9/7


Map to lattice: [<0 1 2 -4|, <0 0 1 1|]
{{Optimal ET sequence|legend=1| 41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd }}


Map: [<1 0 0 10|, <0 1 0 -6|, <0 0 1 1|]
[[Badness]] (Smith): 0.153 × 10<sup>-3</sup>


Generators: 2, 3, 5
[[Projection pair]]s: 7 5120/729
 
; Music
* [http://www.archive.org/details/Choraled ''Choraled''] [http://www.archive.org/download/Choraled/Genewardsmith-Choraled.mp3 play] by [[Gene Ward Smith]]
* [http://clones.soonlabel.com/public/micro/hemifamity27/hemifamity27-IF-20100917.mp3 ''Hemifamity27''] by [[Chris Vaisvil]]
 
=== Overview to extensions ===
==== 11- and 13-limit extensions ====
Strong extensions of hemifamity are [[#Pele|pele]], [[#Laka|laka]], [[#Akea|akea]], and [[#Lono|lono]]. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the [[11/8]] at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v<sup>3</sup>F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the [[13/11]] at the minor third (C–Eb), tempering out [[352/351]], [[847/845]], and [[2080/2079]].
 
==== Subgroup extensions ====
A notable 2.3.5.7.19 subgroup extension, counterpyth, is given right below.
 
=== Counterpyth ===
{{Main| Counterpyth }}
 
Developed analogous to [[parapyth]], counterpyth is an extension of hemifamity with an even milder fifth, as it finds [[19/15]] at the major third (C–E) and [[19/10]] at the major seventh (C–B). Notice the factorization {{nowrap| 5120/5103 {{=}} ([[400/399]])⋅([[1216/1215]]) }}. Other important ratios are [[21/19]] at the diminished third (C–Ebb) and [[19/14]] at the augmented third (C–E#).
 
It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.
 
Subgroup: 2.3.5.7.19
 
Comma list: 400/399, 1216/1215
 
Mapping: {{mapping| 1 0 0 10 -6 | 0 1 0 -6 5 | 0 0 1 1 1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452
 
{{Optimal ET sequence|legend=0| 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh }}
 
Badness (Smith): 0.212 × 10<sup>-3</sup>
 
== Pele ==
{{Main| Pele }}
{{See also| Pentacircle clan }}
 
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 441/440, 896/891


[[EDO|EDOs]]: [[99edo|99]], [[140edo|140]], [[239edo|239]], [[292edo|292]], [[391edo|391]], [[490edo|490]], [[881edo|881bd]]
{{Mapping|legend=1| 1 0 0 10 17 | 0 1 0 -6 -10 | 0 0 1 1 1 }}


Badness: 0.000153
[[Mapping to lattice]]: [{{val| 0 1 4 -2 -6 }}, {{val| 0 0 -1 -1 -1 }}]


[[Projection pair]]s: 7 5120/729
Lattice basis:
: 3/2 length = 0.3812, 56/55 length = 1.5893
: Angle(3/2, 56/55) = 90.4578 degrees
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647


== Music ==
[[Minimax tuning]]:
By Gene Ward Smith
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 17/10 0 1/10 0 -1/10 }}, {{monzo| 17/5 -2 6/5 0 -1/5 }}, {{monzo| 16/5 -2 3/5 0 2/5 }}, {{monzo| 17/5 -2 1/5 0 4/5 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.11/9


* [http://www.archive.org/details/Choraled Choraled] [http://www.archive.org/download/Choraled/Genewardsmith-Choraled.mp3 play]
{{Optimal ET sequence|legend=1| 29, 41, 58, 87, 99e, 145, 186e }}


By Chris Vaisvil
[[Badness]] (Smith): 0.648 × 10<sup>-3</sup>


* [http://clones.soonlabel.com/public/micro/hemifamity27/hemifamity27-IF-20100917.mp3 Hemifamity27]
[[Projection pair]]s: 7 5120/729 11 655360/59049


= Pele =
=== 13-limit ===
[[Comma]]s: 441/440, 896/891
Subgroup: 2.3.5.7.11.13


[[Minimax tuning]]
Comma list: 196/195, 352/351, 364/363


[|1 0 0 0 0&gt;, |17/10 0 1/10 0 -1/10&gt;,
Mapping: {{mapping| 1 0 0 10 17 22 | 0 1 0 -6 -10 -13 | 0 0 1 1 1 1 }}
|17/5 -2 6/5 0 -1/5&gt;,
|16/5 -2 3/5 0 2/5&gt;, |17/5 -2 1/5 0 4/5&gt;]


[[Eigenmonzo]]s: 2, 10/9, 11/9
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933


Lattice basis: 3/2 length 0.3812 56/55 length 1.5893
Minimax tuning:
* 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
* 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9


Angle(3/2, 56/55) = 90.4578 degrees
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 145, 232 }}


Map to lattice: [&lt;0 1 4 -2 -6|, &lt;0 0 -1 -1 -1|]
Badness (Smith): 0.703 × 10<sup>-3</sup>


Map: [&lt;1 0 0 10 17|, &lt;0 1 0 -6 -10|, &lt;0 0 1 1 1|]
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


[[Generator]]s: 2, 3, 5
Comma list: 196/195, 256/255, 352/351, 364/363


[[EDO|Edos]]: [[41edo|41]], [[46edo|46]], [[77edo|77e]], [[87edo|87]], [[99edo|99e]], [[128edo|128]], [[145edo|145]], [[186edo|186e]], [[232edo|232]], [[285edo|285e]], [[331edo|331e]]
Mapping: {{mapping| 1 0 0 10 17 22 8 | 0 1 0 -6 -10 -13 -1 | 0 0 1 1 1 1 -1 }}


Badness: 0.000648
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654


Projection pairs: 7 5120/729 11 655360/59049
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 99ef, 145 }}


== 13-limit ==
Badness (Smith): 0.930 × 10<sup>-3</sup>
Commas: 196/195, 352/351, 364/363


13-limit minimax
== Laka ==
{{Main| Laka }}


Eigenmonzos: 2, 10/9, 13/10
Laka can be described as the {{nowrap| 41 & 53 & 58 }} temperament, tempering out [[540/539]]. [[Gene Ward Smith]] considered it to be a [[17-limit]] temperament, assigning †442/441 ({{nowrap| 41g & 53 & 58 }}) as the main extension. It should be noted that {{nowrap| 41 & 53g & 58 }} also makes for a possible extension.


15-limit minimax
<blockquote>
It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.
</blockquote>
—[[Graham Breed]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101682.html#101776 Yahoo! Tuning Group | ''Laka 17-limit minimax planar temperament'']</ref>


Eigenmonzos: 2, 15/13, 6/5
It makes most sense as a 2.3.5.7.11.13.19-[[subgroup]] temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.


Map: [&lt;1 0 0 10 17 22|, &lt;0 1 0 -6 -10 -13|, &lt;0 0 1 1 1 1|]
[[Subgroup]]: 2.3.5.7.11


EDOs: 29, 41, 46, 58, 87, 145, 232, 377cef
[[Comma list]]: 540/539, 5120/5103


Badness: 0.000703
{{Mapping|legend=1| 1 0 0 10 -18 | 0 1 0 -6 15 | 0 0 1 1 -1 }}


= Laka =
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563
[[Comma]]s: 5120/5103, 540/539


[[Minimax tuning]]
[[Minimax tuning]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 4/3 0 2/21 -1/21 1/21 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 2 0 3/7 2/7 -2/7 }}, {{monzo| 2 0 3/7 -5/7 5/7 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.11/7
{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee }}
[[Badness]] (Smith): 0.825 × 10<sup>-3</sup>
[[Projection pair]]s: 5120/729 11 14348907/1310720
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 729/728
Mapping: {{mapping| 1 0 0 10 -18 -13 | 0 1 0 -6 15 12 | 0 0 1 1 -1 -1 }}
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405
Minimax tuning:
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 13/8 -1/2 1/8 0 0 1/8 }}, {{monzo| 13/4 -3 5/4 0 0 1/4 }}, {{monzo| 7/2 0 1/2 0 0 -1/2 }}, {{monzo| 25/8 -9/2 5/8 0 0 13/8 }}, {{monzo| 13/4 -3 1/4 0 0 5/4 }}]
: unchanged-interval (eigenmonzo) basis: 2.11.13/7
{{Optimal ET sequence|legend=0| 41, 53, 58, 94, 111, 152f, 415dff }}*
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
Badness (Smith): 0.822 × 10<sup>-3</sup>
=== 2.3.5.7.11.13.19 subgroup ===
Subgroup: 2.3.5.7.11.13.19
Comma list: 352/351, 400/399, 456/455, 495/494
Mapping: {{mapping| 1 0 0 10 -18 -13 -6 | 0 1 0 -6 15 12 5 | 0 0 1 1 -1 -1 1 }}
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254
{{Optimal ET sequence|legend=0| 41, 53, 58h, 94, 111, 152f, 415dffhh }}*
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]


[|1 0 0 0 0&gt;, |4/3 0 2/21 -1/21 1/21&gt;,
Badness (Smith): 0.661 × 10<sup>-3</sup>
|0 0 1 0 0&gt;, |2 0 3/7 2/7 -2/7&gt;,
|2 0 3/7 -5/7 5/7&gt;]


[[Eigenmonzo]]s: 2, 5/4, 14/11
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Projection pairs: 5120/729 11 14348907/1310720
Comma list: 352/351, 442/441, 540/539, 561/560


Map: [&lt;1 0 0 10 -18|, &lt;0 1 0 -6 15|, &lt;0 0 1 1 -1|]
Mapping: {{mapping| 1 0 0 10 -18 -13 32 | 0 1 0 -6 15 12 -22 | 0 0 1 1 -1 -1 3 }}


EDOs: {{EDOs|41, 53, 58, 94, 99e, 111, 152, 555de, 707de, 859bde}}
Minimax tuning:  
* 17-odd-limit
: [{{monzo| 1 0 0 0 0 0 0 }}, {{monzo| 13/12 0 0 1/12 1/6 -1/12 0 }}, {{monzo| -7/4 0 0 5/4 3/2 -5/4 0 }}, {{monzo| 7/4 0 0 3/4 1/2 -3/4 0 }}, {{monzo| 0 0 0 0 1 0 0 }}, {{monzo| 7/4 0 0 -1/4 1/2 1/4 0 }}, {{monzo| 35/12 0 0 23/12 5/6 -23/12 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.11.13/7


== 13-limit ==
{{Optimal ET sequence|legend=0| 58, 94, 111, 152f, 205, 263df }}
[[Comma]]s: 352/351, 540/539, 847/845


13 and 15 limit minimax tuning
Badness (Smith): 1.19 × 10<sup>-3</sup>


[|1 0 0 0 0 0&gt;, |13/8 -1/2 1/8 0 0 1/8&gt;,
== Akea ==
|13/4 -3 5/4 0 0 1/4&gt;, |7/2 0 1/2 0 0 -1/2&gt;,  
[[File:Lattice Akea.png|thumb|Lattice for 13-limit akea.]]
|25/8 -9/2 5/8 0 0 13/8&gt;,  
[[File:Lattice Akea-commatic.png|thumb|Ditto, but rearranged to basis {~2, ~3, ~81/80}.]]
|13/4 -3 1/4 0 0 5/4&gt;]


[[Eigenmonzo]]s: 2, 11/8, 14/13
[[Subgroup]]: 2.3.5.7.11


== 17-limit ==
[[Comma list]]: 385/384, 2200/2187
[[Comma]]s: 352/351, 540/539, 847/845, 442/441


17-limit minimax
{{Mapping|legend=1| 1 0 0 10 -3 | 0 1 0 -6 7 | 0 0 1 1 -2 }}


[|1 0 0 0 0 0 0&gt;,
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273
|13/12 0 0 1/12 1/6 -1/12 0&gt;,
|-7/4 0 0 5/4 3/2 -5/4 0&gt;,  
|7/4 0 0 3/4 1/2 -3/4 0&gt;,  
|0 0 0 0 1 0 0&gt;,
|7/4 0 0 -1/4 1/2 1/4 0&gt;,
|35/12 0 0 23/12 5/6 -23/12 0&gt;]


[[Eigenmonzo]]s: 2, 11/8, 14/13
[[Minimax tuning]]:
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5.11/5


Map: [&lt;1 0 0 10 -18 -13 32|,  
{{Optimal ET sequence|legend=1| 34, 41, 53, 87, 140, 181, 321 }}


&lt;0 1 0 -6 15 12 -22|, &lt;0 0 1 1 -1 -1 3|]
[[Badness]] (Smith): 0.998 × 10<sup>-3</sup>


[[Generator]]s: 2, 3, 5
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


[[EDO|Edos]]: [[94edo|94]], [[111edo|111]], [[152edo|152]], [[205edo|205]], [[345edo|345]]
Comma list: 325/324, 352/351, 385/384


= Akea =
Mapping: {{mapping| 1 0 0 10 -3 2 | 0 1 0 -6 7 4 | 0 0 1 1 -2 -2 }}
[[Comma]]s: 385/384, 2200/2187


[[Minimax tuning]]
Lattice basis:
: 3/2 length = 0.5354, 27/20 length = 1.0463
: Angle (3/2, 27/20) = 80.5628 degrees
 
Mapping to lattice: [{{val| 0 1 3 -3 1 -2 }}, {{val| 0 0 -1 -1 2 2 }}]
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158


[|1 0 0 0 0&gt;, |5/3 0 1/6 -1/6 0&gt;,  
Minimax tuning:
|26/9 0 13/18 -7/18 -1/3&gt;,
* 13- and 15-odd-limit
|26/9 0 -5/18 11/18 -1/3&gt;,  
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 0 }}, {{monzo| 26/9 0 -7/9 1/9 2/3 0 }}]
|26/9 0 -5/18 -7/18 2/3&gt;]
: unchanged-interval (eigenmonzo) basis: 2.7/5.11/5


[[Eigenmonzo]]s: 2, 14/11, 7/5
{{Optimal ET sequence|legend=0| 34, 41, 46, 53, 87, 140, 321, 461e }}


Map: [&lt;1 0 0 10 -3|, &lt;0 1 0 -6 7|, &lt;0 0 1 1 -2|]
Badness (Smith): 0.822 × 10<sup>-3</sup>


[[Generator]]s: 2, 3, 5
Scales: [[akea46_13]]


EDOs: 34, 41, 53, 87, 140, 181, 321
== Lono ==
[[Subgroup]]: 2.3.5.7.11


Badness: 0.000998
[[Comma list]]: 176/175, 5120/5103


==13-limit==
{{Mapping|legend=1| 1 0 0 10 6 | 0 1 0 -6 -6 | 0 0 1 1 3 }}
Commas: 325/324, 352/351, 385/384


13 and 15 limit minimax
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932


[|1 0 0 0 0 0&gt;, |5/3 0 1/6 -1/6 0 0&gt;,  
{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 111, 268cd }}
|26/9 0 13/18 -7/18 -1/3 0&gt;,  
|26/9 0 -5/18 11/18 -1/3 0&gt;,  
|26/9 0 -5/18 -7/18 2/3 0&gt;,  
|26/9 0 -7/9 1/9 2/3 0&gt;]


Eigenmonzos: 2, 14/11, 7/5
[[Badness]] (Smith): 1.18 × 10<sup>-3</sup>


Lattice basis: 3/2 length 0.5354 27/20 length 1.0463
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Angle(3/2, 27/20) = 80.5628 degrees
Comma list: 176/175, 351/350, 847/845


Map to lattice: [&lt;0 1 3 -3 1 -2|, &lt;0 0 -1 -1 2 2|]
Mapping: {{mapping| 1 0 0 10 6 11 | 0 1 0 -6 -6 -9 | 0 0 1 1 3 3 }}


Map: [&lt;1 0 0 10 -3 2|, &lt;0 1 0 -6 7 4|, &lt;0 0 1 1 -2 -2|]
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277


Generators: 2, 3, 5
{{Optimal ET sequence|legend=0| 46, 53, 58, 99, 104c, 111, 268cd }}


[[EDO|EDOs]]: 7, 41, 46, 53, 87, [[94edo|94]], [[140edo|140]], [[181edo|181]], [[321edo|321]], [[408edo|408]]
Badness (Smith): 0.908 × 10<sup>-3</sup>


Badness: 0.000822
== Kapo ==
[[Subgroup]]: 2.3.5.7.11


Scales: [[akea46_13|akea46_13]]
[[Comma list]]: 3025/3024, 5120/5103


= Kapo =
{{Mapping|legend=1| 1 0 0 10 7 | 0 1 1 -5 -2 | 0 0 2 2 -1 }}
[[Comma]]s: 3025/3024, 5120/5103


[[Minimax tuning]]
: mapping generators: ~2, ~3, ~128/99


[|1 0 0 0 0&gt;, |8/5 2/5 0 -1/15 -2/15&gt;,
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516
|14/5 6/5 0 7/15 -16/15&gt;,
|16/5 -6/5 0 13/15 -4/15&gt;,  
|16/5 -6/5 0 -2/15 11/15&gt;]


[[Eigenmonzo]]s: 2, 11/9, 9/7
[[Minimax tuning]]:
* [[11-odd-limit]]:  
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 8/5 2/5 0 -1/15 -2/15 }}, {{monzo| 14/5 6/5 0 7/15 -16/15 }}, {{monzo| 16/5 -6/5 0 13/15 -4/15 }}, {{monzo| 16/5 -6/5 0 -2/15 11/15 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7.11/9


Map: [&lt;1 0 0 10 7|, &lt;0 1 1 -5 -2|, &lt;0 0 2 2 -1|]
{{Optimal ET sequence|legend=1| 41, 87, 111, 152, 239, 391 }}


[[Generator]]s: 2, 3, 128/99
[[Badness]] (Smith): 0.994 × 10<sup>-3</sup>


[[EDO|EDOs]]: 41, 87, 111, [[152edo|152]], [[198edo|198]], [[239edo|239]], [[350edo|350]], [[391edo|391]], [[478edo|478]], [[589edo|589]]
== Namaka ==
[[Subgroup]]: 2.3.5.7.11


Badness: 0.000994
[[Comma list]]: 3388/3375, 5120/5103


= Lono =
{{Mapping|legend=1| 1 0 0 10 -6 | 0 2 0 -12 9 | 0 0 1 1 1 }}
Commas: 176/175, 5120/5103


Map: [&lt;1 0 0 10 6|, &lt;0 1 0 -6 -6|, &lt;0 0 1 1 3|]
: mapping generators: ~2, ~400/231, ~5


EDOs: 7, 12, 39, 46, 53, 58, 99, 111
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868


Badness: 0.00118
{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}


= Namaka =
[[Badness]] (Smith): 1.74 × 10<sup>-3</sup>
Commas: 3388/3375, 5120/5103


Map: [&lt;1 0 0 10 -6|, &lt;0 2 0 -12 9|, &lt;0 0 1 1 1|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


EDOs: 29, 53, 58, 87, 111, 140, 198
Comma list: 352/351, 676/675, 847/845


Badness: 0.00174
Mapping: {{mapping| 1 0 0 10 -6 -1 | 0 2 0 -12 9 3 | 0 0 1 1 1 1 }}


== 13-limit ==
Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606
Commas: 352/351, 676/675, 847/845


Map: [&lt;1 0 0 10 -6 -1|, &lt;0 2 0 -12 9 3|, &lt;0 0 1 1 1 1|]
{{Optimal ET sequence|legend=0| 29, 53, 58, 87, 111, 140, 198 }}


EDOs: 29, 53, 58, 87, 111, 140, 198
Badness (Smith): 0.781 × 10<sup>-3</sup>


Badness: 0.000781
== Notes ==


[[Category:Theory]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Hemifamity]]
[[Category:Hemifamity family| ]] <!-- main article -->
[[Category:Hemifamity| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]
[[Category:Listen]]

Latest revision as of 00:41, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The hemifamity family of rank-3 temperaments tempers out 5120/5103 (monzo[10 -6 1 -1), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, 36/35 into two equal steps, each representing 81/80~64/63, the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same chain of fifths inflected by the same comma to the opposite sides. In addition we may identify 10/7 by the augmented fourth (C–F#) and 50/49 by the Pythagorean comma. Hemifamity can be compared to garibaldi, with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.

It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have 5/4 at the down major third (C–vE) and 7/4 at the down minor seventh (C–vBb).

Hemifamity

Subgroup: 2.3.5.7

Comma list: 5120/5103

Mapping[1 0 0 10], 0 1 0 -6], 0 0 1 1]]

mapping generators: ~2, ~3, ~5

Mapping to lattice: [0 1 2 -4], 0 0 1 1]]

Lattice basis:

3/2 length = 0.5670, 10/9 length = 1.8063
Angle (3/2, 10/9) = 82.112 degrees

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144

Minimax tuning: c = 5120/5103

[[1 0 0 0, [10/7 1/7 1/7 -1/7, [0 0 1 0, [10/7 -6/7 1/7 6/7]
unchanged-interval (eigenmonzo) basis: 2.5.7/3
[[1 0 0 0, [5/4 1/4 1/8 -1/8, [0 0 1 0, [5/2 -3/2 1/4 3/4]
unchanged-interval (eigenmonzo) basis: 2.5.9/7

Optimal ET sequence41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd

Badness (Smith): 0.153 × 10-3

Projection pairs: 7 5120/729

Music

Overview to extensions

11- and 13-limit extensions

Strong extensions of hemifamity are pele, laka, akea, and lono. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the 11/8 at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v3F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the 13/11 at the minor third (C–Eb), tempering out 352/351, 847/845, and 2080/2079.

Subgroup extensions

A notable 2.3.5.7.19 subgroup extension, counterpyth, is given right below.

Counterpyth

Developed analogous to parapyth, counterpyth is an extension of hemifamity with an even milder fifth, as it finds 19/15 at the major third (C–E) and 19/10 at the major seventh (C–B). Notice the factorization 5120/5103 = (400/399)⋅(1216/1215). Other important ratios are 21/19 at the diminished third (C–Ebb) and 19/14 at the augmented third (C–E#).

It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.

Subgroup: 2.3.5.7.19

Comma list: 400/399, 1216/1215

Mapping: [1 0 0 10 -6], 0 1 0 -6 5], 0 0 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452

Optimal ET sequence: 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh

Badness (Smith): 0.212 × 10-3

Pele

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891

Mapping[1 0 0 10 17], 0 1 0 -6 -10], 0 0 1 1 1]]

Mapping to lattice: [0 1 4 -2 -6], 0 0 -1 -1 -1]]

Lattice basis:

3/2 length = 0.3812, 56/55 length = 1.5893
Angle(3/2, 56/55) = 90.4578 degrees

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647

Minimax tuning:

[[1 0 0 0 0, [17/10 0 1/10 0 -1/10, [17/5 -2 6/5 0 -1/5, [16/5 -2 3/5 0 2/5, [17/5 -2 1/5 0 4/5]
unchanged-interval (eigenmonzo) basis: 2.9/5.11/9

Optimal ET sequence29, 41, 58, 87, 99e, 145, 186e

Badness (Smith): 0.648 × 10-3

Projection pairs: 7 5120/729 11 655360/59049

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363

Mapping: [1 0 0 10 17 22], 0 1 0 -6 -10 -13], 0 0 1 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933

Minimax tuning:

  • 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
  • 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9

Optimal ET sequence: 29, 41, 46, 58, 87, 145, 232

Badness (Smith): 0.703 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 364/363

Mapping: [1 0 0 10 17 22 8], 0 1 0 -6 -10 -13 -1], 0 0 1 1 1 1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654

Optimal ET sequence: 29, 41, 46, 58, 87, 99ef, 145

Badness (Smith): 0.930 × 10-3

Laka

Laka can be described as the 41 & 53 & 58 temperament, tempering out 540/539. Gene Ward Smith considered it to be a 17-limit temperament, assigning †442/441 (41g & 53 & 58) as the main extension. It should be noted that 41 & 53g & 58 also makes for a possible extension.

It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.

Graham Breed[1]

It makes most sense as a 2.3.5.7.11.13.19-subgroup temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5120/5103

Mapping[1 0 0 10 -18], 0 1 0 -6 15], 0 0 1 1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563

Minimax tuning

[[1 0 0 0 0, [4/3 0 2/21 -1/21 1/21, [0 0 1 0 0, [2 0 3/7 2/7 -2/7, [2 0 3/7 -5/7 5/7]
unchanged-interval (eigenmonzo) basis: 2.5.11/7

Optimal ET sequence41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee

Badness (Smith): 0.825 × 10-3

Projection pairs: 5120/729 11 14348907/1310720

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 729/728

Mapping: [1 0 0 10 -18 -13], 0 1 0 -6 15 12], 0 0 1 1 -1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [13/8 -1/2 1/8 0 0 1/8, [13/4 -3 5/4 0 0 1/4, [7/2 0 1/2 0 0 -1/2, [25/8 -9/2 5/8 0 0 13/8, [13/4 -3 1/4 0 0 5/4]
unchanged-interval (eigenmonzo) basis: 2.11.13/7

Optimal ET sequence: 41, 53, 58, 94, 111, 152f, 415dff*

* optimal patent val: 205

Badness (Smith): 0.822 × 10-3

2.3.5.7.11.13.19 subgroup

Subgroup: 2.3.5.7.11.13.19

Comma list: 352/351, 400/399, 456/455, 495/494

Mapping: [1 0 0 10 -18 -13 -6], 0 1 0 -6 15 12 5], 0 0 1 1 -1 -1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254

Optimal ET sequence: 41, 53, 58h, 94, 111, 152f, 415dffhh*

* optimal patent val: 205

Badness (Smith): 0.661 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 442/441, 540/539, 561/560

Mapping: [1 0 0 10 -18 -13 32], 0 1 0 -6 15 12 -22], 0 0 1 1 -1 -1 3]]

Minimax tuning:

  • 17-odd-limit
[[1 0 0 0 0 0 0, [13/12 0 0 1/12 1/6 -1/12 0, [-7/4 0 0 5/4 3/2 -5/4 0, [7/4 0 0 3/4 1/2 -3/4 0, [0 0 0 0 1 0 0, [7/4 0 0 -1/4 1/2 1/4 0, [35/12 0 0 23/12 5/6 -23/12 0]
unchanged-interval (eigenmonzo) basis: 2.11.13/7

Optimal ET sequence: 58, 94, 111, 152f, 205, 263df

Badness (Smith): 1.19 × 10-3

Akea

Lattice for 13-limit akea.
Ditto, but rearranged to basis {~2, ~3, ~81/80}.

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2200/2187

Mapping[1 0 0 10 -3], 0 1 0 -6 7], 0 0 1 1 -2]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273

Minimax tuning:

[[1 0 0 0 0, [5/3 0 1/6 -1/6 0, [26/9 0 13/18 -7/18 -1/3, [26/9 0 -5/18 11/18 -1/3, [26/9 0 -5/18 -7/18 2/3]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence34, 41, 53, 87, 140, 181, 321

Badness (Smith): 0.998 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 385/384

Mapping: [1 0 0 10 -3 2], 0 1 0 -6 7 4], 0 0 1 1 -2 -2]]

Lattice basis:

3/2 length = 0.5354, 27/20 length = 1.0463
Angle (3/2, 27/20) = 80.5628 degrees

Mapping to lattice: [0 1 3 -3 1 -2], 0 0 -1 -1 2 2]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [5/3 0 1/6 -1/6 0 0, [26/9 0 13/18 -7/18 -1/3 0, [26/9 0 -5/18 11/18 -1/3 0, [26/9 0 -5/18 -7/18 2/3 0, [26/9 0 -7/9 1/9 2/3 0]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence: 34, 41, 46, 53, 87, 140, 321, 461e

Badness (Smith): 0.822 × 10-3

Scales: akea46_13

Lono

Subgroup: 2.3.5.7.11

Comma list: 176/175, 5120/5103

Mapping[1 0 0 10 6], 0 1 0 -6 -6], 0 0 1 1 3]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932

Optimal ET sequence46, 53, 58, 99, 111, 268cd

Badness (Smith): 1.18 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 847/845

Mapping: [1 0 0 10 6 11], 0 1 0 -6 -6 -9], 0 0 1 1 3 3]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277

Optimal ET sequence: 46, 53, 58, 99, 104c, 111, 268cd

Badness (Smith): 0.908 × 10-3

Kapo

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 5120/5103

Mapping[1 0 0 10 7], 0 1 1 -5 -2], 0 0 2 2 -1]]

mapping generators: ~2, ~3, ~128/99

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516

Minimax tuning:

[[1 0 0 0 0, [8/5 2/5 0 -1/15 -2/15, [14/5 6/5 0 7/15 -16/15, [16/5 -6/5 0 13/15 -4/15, [16/5 -6/5 0 -2/15 11/15]
unchanged-interval (eigenmonzo) basis: 2.9/7.11/9

Optimal ET sequence41, 87, 111, 152, 239, 391

Badness (Smith): 0.994 × 10-3

Namaka

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 5120/5103

Mapping[1 0 0 10 -6], 0 2 0 -12 9], 0 0 1 1 1]]

mapping generators: ~2, ~400/231, ~5

Optimal tuning (CTE): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868

Optimal ET sequence29, 53, 58, 87, 111, 140, 198

Badness (Smith): 1.74 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 676/675, 847/845

Mapping: [1 0 0 10 -6 -1], 0 2 0 -12 9 3], 0 0 1 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606

Optimal ET sequence: 29, 53, 58, 87, 111, 140, 198

Badness (Smith): 0.781 × 10-3

Notes