461edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 460edo 461edo 462edo →
Prime factorization 461 (prime)
Step size 2.60304¢ 
Fifth 270\461 (702.82¢)
Semitones (A1:m2) 46:33 (119.7¢ : 85.9¢)
Consistency limit 3
Distinct consistency limit 3

461 equal divisions of the octave (abbreviated 461edo or 461ed2), also called 461-tone equal temperament (461tet) or 461 equal temperament (461et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 461 equal parts of about 2.6 ¢ each. Each step represents a frequency ratio of 21/461, or the 461st root of 2.

Odd Harmonics

Approximation of odd harmonics in 461edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.86 -1.06 -0.50 -0.87 +0.53 +0.25 -0.20 -0.83 -0.77 +0.37 -0.94
Relative (%) +33.2 -40.9 -19.1 -33.5 +20.2 +9.7 -7.7 -32.0 -29.5 +14.2 -36.2
Steps
(reduced)
731
(270)
1070
(148)
1294
(372)
1461
(78)
1595
(212)
1706
(323)
1801
(418)
1884
(40)
1958
(114)
2025
(181)
2085
(241)
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.