461edo
Jump to navigation
Jump to search
Prime factorization
461 (prime)
Step size
2.60304¢
Fifth
270\461 (702.82¢)
Semitones (A1:m2)
46:33 (119.7¢ : 85.9¢)
Consistency limit
3
Distinct consistency limit
3
← 460edo | 461edo | 462edo → |
461 equal divisions of the octave (abbreviated 461edo or 461ed2), also called 461-tone equal temperament (461tet) or 461 equal temperament (461et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 461 equal parts of about 2.6 ¢ each. Each step represents a frequency ratio of 21/461, or the 461st root of 2.
Theory
461edo is only consistent to the 3-odd-limit. It can be considered for the 2.3.11.13.29.31.37.41.43 subgroup, tempering out 1189/1188, 1333/1332, 3224/3219, 4433/4428, 39904/39897, 19778/19773, 17303/17298 and 2564692/2558061. It supports quartemka in the 5-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.86 | -1.06 | -0.50 | -0.87 | +0.53 | +0.25 | -0.20 | -0.83 | -0.77 | +0.37 | -0.94 |
Relative (%) | +33.2 | -40.9 | -19.1 | -33.5 | +20.2 | +9.7 | -7.7 | -32.0 | -29.5 | +14.2 | -36.2 | |
Steps (reduced) |
731 (270) |
1070 (148) |
1294 (372) |
1461 (78) |
1595 (212) |
1706 (323) |
1801 (418) |
1884 (40) |
1958 (114) |
2025 (181) |
2085 (241) |
Subsets and supersets
461edo is the 89th prime edo. 1383edo, which triples it, gives a good correction to the harmonic 5.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [731 -461⟩ | ⟨461 731] | -0.2729 | 0.2728 | 10.48 |