|
|
(61 intermediate revisions by 15 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | : ''For the tritave-equivalent 4L 5s pattern, see [[4L 5s (3/1-equivalent)]].'' |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-05-23 15:34:15 UTC</tt>.<br> | |
| : The original revision id was <tt>551972212</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">4L 5s refers to the structure of [[MOSScales|MOS Scales]] whose generator falls between 2\9 (two degrees of [[9edo]] = approx. 266.667¢) and 1\4 (one degree of [[4edo]] = 300¢). In the case of 9edo, L and s are the same size; in the case of 4edo, s is so small it disappears. The spectrum, then, goes something like:
| |
|
| |
|
| ||||||||||~ Generator ||~ Scale ||~ Generator in cents ||~ Comments ||
| | {{Infobox MOS |
| || 2\9 || || || || ||= 1 1 1 1 1 1 1 1 1 || 266.667 ||= || | | | Name = gramitonic |
| || || || || || 9\40 ||= 4 5 4 5 4 5 4 5 4 || 270 || || | | | Periods = 1 |
| || || || || 7\31 || ||= 3 4 3 4 3 4 3 4 3 || 270.968 ||= || | | | nLargeSteps = 4 |
| || || || || || 12\53 ||= 5 7 5 7 5 7 5 7 5 || 271.698 ||= Orwell is around here || | | | nSmallSteps = 5 |
| || || || 5\22 || || ||= 2 3 2 3 2 3 2 3 2 || 272.727 ||= Optimum rank range (L/s=3/2) orwell || | | | Equalized = 2 |
| || || || || || 13\57 ||= 5 8 5 8 5 8 5 8 5 || 273.684 ||= Golden orwell (bad tuning) ||
| | | Collapsed = 1 |
| || || || || 8\35 || ||= 3 5 3 5 3 5 3 5 3 || 274.286 ||= ||
| | | Pattern = LsLsLsLss |
| || || || || || 11\48 ||= 4 7 4 7 4 7 4 7 4 || 275 || ||
| | }} |
| || || 3\13 || || || ||= 1 2 1 2 1 2 1 2 1 || 276.923 ||= Boundary of propriety: | | {{MOS intro}} |
| generators smaller than this are proper ||
| |
| || || || || || 10\43 ||= 3 7 3 7 3 7 3 7 3 || 279.07 || || | |
| || || || || 7\30 || ||= 2 5 2 5 2 5 2 5 2 || 280.000 ||= ||
| |
| || || || || || 11\47 ||= 3 8 3 8 3 8 3 8 3 || 280.851 || ||
| |
| || || || || || ||= 1 e 1 e 1 e 1 e 1 || 281.100 ||= <span style="display: block; text-align: center;">L/s = e</span> ||
| |
| || || || 4\17 || || ||= 1 3 1 3 1 3 1 3 1 || 282.353 ||= L/s = 3 ||
| |
| || || || || || ||= 1 pi 1 pi 1 pi 1 pi 1 || 282.922 ||= <span style="display: block; text-align: center;">L/s = pi</span> ||
| |
| || || || || || 9\38 ||= 2 7 2 <span style="font-size: 12.8000001907349px; line-height: 1.5;">7 </span><span style="font-size: 13px; line-height: 1.5;">2 7 2 7 2 </span> || 284.2105 || ||
| |
| || || || || 5\21 || ||= 1 4 1 4 1 4 1 4 1 || 285.714 ||= L/s = 4 ||
| |
| || || || || || 6\25 ||= 1 5 1 5 1 5 1 5 1 || 288 || ||
| |
| || 1\4 || || || || ||= 0 1 0 1 0 1 0 1 0 || 300.000 ||= ||
| |
|
| |
|
| Note that between 7\31 and 5\22, g approximates frequency ratio 7:6, 2g approximates 11:8, and 3g approximates 8:5. This defines the range of Orwell Temperament, which is the only notable harmonic entropy minimum with this MOS pattern. 4L 5s scales outside of that range are not suitable for Orwell.</pre></div>
| | == Names == |
| <h4>Original HTML content:</h4>
| | The [[TAMNAMS]] name for this pattern is '''gramitonic''' (from ''grave minor third''). |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>4L 5s</title></head><body>4L 5s refers to the structure of <a class="wiki_link" href="/MOSScales">MOS Scales</a> whose generator falls between 2\9 (two degrees of <a class="wiki_link" href="/9edo">9edo</a> = approx. 266.667¢) and 1\4 (one degree of <a class="wiki_link" href="/4edo">4edo</a> = 300¢). In the case of 9edo, L and s are the same size; in the case of 4edo, s is so small it disappears. The spectrum, then, goes something like:<br />
| |
| <br />
| |
|
| |
|
| | == Scale properties == |
| | {{TAMNAMS use}} |
|
| |
|
| <table class="wiki_table">
| | === Intervals === |
| <tr>
| | {{MOS intervals}} |
| <th colspan="5">Generator<br />
| |
| </th>
| |
| <th>Scale<br />
| |
| </th>
| |
| <th>Generator in cents<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>2\9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">1 1 1 1 1 1 1 1 1<br />
| |
| </td>
| |
| <td>266.667<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\40<br />
| |
| </td>
| |
| <td style="text-align: center;">4 5 4 5 4 5 4 5 4<br />
| |
| </td>
| |
| <td>270<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">3 4 3 4 3 4 3 4 3<br />
| |
| </td>
| |
| <td>270.968<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12\53<br />
| |
| </td>
| |
| <td style="text-align: center;">5 7 5 7 5 7 5 7 5<br />
| |
| </td>
| |
| <td>271.698<br />
| |
| </td>
| |
| <td style="text-align: center;">Orwell is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">2 3 2 3 2 3 2 3 2<br />
| |
| </td>
| |
| <td>272.727<br />
| |
| </td>
| |
| <td style="text-align: center;">Optimum rank range (L/s=3/2) orwell<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\57<br />
| |
| </td>
| |
| <td style="text-align: center;">5 8 5 8 5 8 5 8 5<br />
| |
| </td>
| |
| <td>273.684<br />
| |
| </td>
| |
| <td style="text-align: center;">Golden orwell (bad tuning)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">3 5 3 5 3 5 3 5 3<br />
| |
| </td>
| |
| <td>274.286<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\48<br />
| |
| </td>
| |
| <td style="text-align: center;">4 7 4 7 4 7 4 7 4<br />
| |
| </td>
| |
| <td>275<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>3\13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">1 2 1 2 1 2 1 2 1<br />
| |
| </td>
| |
| <td>276.923<br />
| |
| </td>
| |
| <td style="text-align: center;">Boundary of propriety:<br />
| |
| generators smaller than this are proper<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10\43<br />
| |
| </td>
| |
| <td style="text-align: center;">3 7 3 7 3 7 3 7 3<br />
| |
| </td>
| |
| <td>279.07<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\30<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">2 5 2 5 2 5 2 5 2<br />
| |
| </td>
| |
| <td>280.000<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\47<br />
| |
| </td>
| |
| <td style="text-align: center;">3 8 3 8 3 8 3 8 3<br />
| |
| </td>
| |
| <td>280.851<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">1 e 1 e 1 e 1 e 1<br />
| |
| </td>
| |
| <td>281.100<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = e</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\17<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">1 3 1 3 1 3 1 3 1<br />
| |
| </td>
| |
| <td>282.353<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">1 pi 1 pi 1 pi 1 pi 1<br />
| |
| </td>
| |
| <td>282.922<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = pi</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\38<br />
| |
| </td>
| |
| <td style="text-align: center;">2 7 2 <span style="font-size: 12.8000001907349px; line-height: 1.5;">7 </span><span style="font-size: 13px; line-height: 1.5;">2 7 2 7 2 </span><br />
| |
| </td>
| |
| <td>284.2105<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">1 4 1 4 1 4 1 4 1<br />
| |
| </td>
| |
| <td>285.714<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\25<br />
| |
| </td>
| |
| <td style="text-align: center;">1 5 1 5 1 5 1 5 1<br />
| |
| </td>
| |
| <td>288<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td style="text-align: center;">0 1 0 1 0 1 0 1 0<br />
| |
| </td>
| |
| <td>300.000<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | === Generator chain === |
| Note that between 7\31 and 5\22, g approximates frequency ratio 7:6, 2g approximates 11:8, and 3g approximates 8:5. This defines the range of Orwell Temperament, which is the only notable harmonic entropy minimum with this MOS pattern. 4L 5s scales outside of that range are not suitable for Orwell.</body></html></pre></div>
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | ==== Proposed names ==== |
| | [http://twitter.com/Lilly__Flores/status/1640779893108805632 Lilly Flores] proposed using the Greek name relating to water as mode names. The names are in reference to the scale's former name ''orwelloid'' because the word Orwell comes from 'a spring situated near a promontory'. |
| | {{MOS modes |
| | | Mode Names= |
| | Roi $ |
| | Steno $ |
| | Limni $ |
| | Telma $ |
| | Krini $ |
| | Elos $ |
| | Mychos $ |
| | Akti $ |
| | Dini $ |
| | }} |
| | |
| | == Theory == |
| | The only low harmonic entropy minimum corresponds to [[orwell]] temperament, where 1 generator approximates [[7/6]], 2 generators approximate [[11/8]], and 3 generators approximate [[8/5]]. |
| | |
| | == Tuning ranges == |
| | === Parasoft === |
| | Parasoft tunings of 4L 5s have a step ratio between 4/3 and 3/2, implying a generator sharper than {{nowrap|7\31 {{=}} 270.97{{c}}}} and flatter than {{nowrap|5\22 {{=}} 272.73{{c}}}}. |
| | |
| | Parasoft 4L 5s edos include [[22edo]], [[31edo]], [[53edo]], and [[84edo]]. |
| | * [[22edo]] can be used to make large and small steps more distinct (the step ratio is 3/2). |
| | * [[31edo]] can be used for its nearly pure [[5/4]] and having a better approximation of [[13/8]] than 22edo. |
| | * [[53edo]] can be used for its nearly pure [[3/2]] and [[5/4]] and having much more accurate approximations of 13-limit intervals than 22edo or 31edo. |
| | |
| | The sizes of the generator, large step and small step of 4L 5s are as follows in various parasoft 4L 5s tunings. |
| | |
| | {| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7" |
| | |- |
| | ! |
| | ! [[22edo]] |
| | ! [[31edo]] |
| | ! [[53edo]] |
| | ! [[84edo]] |
| | ! JI intervals represented |
| | |- |
| | | generator (g) |
| | | 5\22, 272.73 |
| | | 7\31, 270.97 |
| | | 12\53, 271.70 |
| | | 19\84, 271.43 |
| | | [[7/6]] |
| | |- |
| | | L (5g − octave) |
| | | 3\22, 163.64 |
| | | 4\31, 154.84 |
| | | 7\53, 158.49 |
| | | 11\84, 157.14 |
| | | [[12/11]], [[11/10]] |
| | |- |
| | | s (octave − 4g) |
| | | 2\22, 109.09 |
| | | 3\31, 116.13 |
| | | 5\53, 113.21 |
| | | 8\84, 114.29 |
| | | [[16/15]], [[15/14]] |
| | |} |
| | |
| | This set of JI interpretations ({{nowrap|g → 7/6|2g → 11/8|3g → 8/5|7g → 3/2}}) is called 11-limit [[Orwell]] temperament in regular temperament theory. |
| | |
| | == Scales == |
| | * [[Guanyintet9]] – [[311edo|70\311]] tuning |
| | * [[Orwell9]] – [[84edo|19\84]] tuning |
| | * [[Lovecraft9]] – [[116edo|27\116]] tuning |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 6/5 = Lower range of [[Orwell]] |
| | | 5/3 = Upper range of Orwell |
| | | 13/8 = Unnamed golden tuning |
| | | 12/5 = [[Lovecraft]] |
| | | 13/5 = Golden lovecraft |
| | | 6/1 = [[Gariberttet]]/[[Quasitemp]]/[[Kleiboh]] ↓ |
| | }} |
| | |
| | [[Category:Gramitonic]] <!-- main article --> |
- For the tritave-equivalent 4L 5s pattern, see 4L 5s (3/1-equivalent).
4L 5s, named gramitonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 5 small steps, repeating every octave. Generators that produce this scale range from 266.7 ¢ to 300 ¢, or from 900 ¢ to 933.3 ¢.
Names
The TAMNAMS name for this pattern is gramitonic (from grave minor third).
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 4L 5s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-gramstep
|
Perfect 0-gramstep
|
P0gms
|
0
|
0.0 ¢
|
1-gramstep
|
Minor 1-gramstep
|
m1gms
|
s
|
0.0 ¢ to 133.3 ¢
|
Major 1-gramstep
|
M1gms
|
L
|
133.3 ¢ to 300.0 ¢
|
2-gramstep
|
Diminished 2-gramstep
|
d2gms
|
2s
|
0.0 ¢ to 266.7 ¢
|
Perfect 2-gramstep
|
P2gms
|
L + s
|
266.7 ¢ to 300.0 ¢
|
3-gramstep
|
Minor 3-gramstep
|
m3gms
|
L + 2s
|
300.0 ¢ to 400.0 ¢
|
Major 3-gramstep
|
M3gms
|
2L + s
|
400.0 ¢ to 600.0 ¢
|
4-gramstep
|
Minor 4-gramstep
|
m4gms
|
L + 3s
|
300.0 ¢ to 533.3 ¢
|
Major 4-gramstep
|
M4gms
|
2L + 2s
|
533.3 ¢ to 600.0 ¢
|
5-gramstep
|
Minor 5-gramstep
|
m5gms
|
2L + 3s
|
600.0 ¢ to 666.7 ¢
|
Major 5-gramstep
|
M5gms
|
3L + 2s
|
666.7 ¢ to 900.0 ¢
|
6-gramstep
|
Minor 6-gramstep
|
m6gms
|
2L + 4s
|
600.0 ¢ to 800.0 ¢
|
Major 6-gramstep
|
M6gms
|
3L + 3s
|
800.0 ¢ to 900.0 ¢
|
7-gramstep
|
Perfect 7-gramstep
|
P7gms
|
3L + 4s
|
900.0 ¢ to 933.3 ¢
|
Augmented 7-gramstep
|
A7gms
|
4L + 3s
|
933.3 ¢ to 1200.0 ¢
|
8-gramstep
|
Minor 8-gramstep
|
m8gms
|
3L + 5s
|
900.0 ¢ to 1066.7 ¢
|
Major 8-gramstep
|
M8gms
|
4L + 4s
|
1066.7 ¢ to 1200.0 ¢
|
9-gramstep
|
Perfect 9-gramstep
|
P9gms
|
4L + 5s
|
1200.0 ¢
|
Generator chain
Generator chain of 4L 5s
Bright gens |
Scale degree |
Abbrev.
|
12 |
Augmented 6-gramdegree |
A6gmd
|
11 |
Augmented 4-gramdegree |
A4gmd
|
10 |
Augmented 2-gramdegree |
A2gmd
|
9 |
Augmented 0-gramdegree |
A0gmd
|
8 |
Augmented 7-gramdegree |
A7gmd
|
7 |
Major 5-gramdegree |
M5gmd
|
6 |
Major 3-gramdegree |
M3gmd
|
5 |
Major 1-gramdegree |
M1gmd
|
4 |
Major 8-gramdegree |
M8gmd
|
3 |
Major 6-gramdegree |
M6gmd
|
2 |
Major 4-gramdegree |
M4gmd
|
1 |
Perfect 2-gramdegree |
P2gmd
|
0 |
Perfect 0-gramdegree Perfect 9-gramdegree |
P0gmd P9gmd
|
−1 |
Perfect 7-gramdegree |
P7gmd
|
−2 |
Minor 5-gramdegree |
m5gmd
|
−3 |
Minor 3-gramdegree |
m3gmd
|
−4 |
Minor 1-gramdegree |
m1gmd
|
−5 |
Minor 8-gramdegree |
m8gmd
|
−6 |
Minor 6-gramdegree |
m6gmd
|
−7 |
Minor 4-gramdegree |
m4gmd
|
−8 |
Diminished 2-gramdegree |
d2gmd
|
−9 |
Diminished 9-gramdegree |
d9gmd
|
−10 |
Diminished 7-gramdegree |
d7gmd
|
−11 |
Diminished 5-gramdegree |
d5gmd
|
−12 |
Diminished 3-gramdegree |
d3gmd
|
Modes
Scale degrees of the modes of 4L 5s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (gramdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
8|0
|
1
|
LsLsLsLss
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Maj.
|
Perf.
|
7|1
|
3
|
LsLsLssLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
6|2
|
5
|
LsLssLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
5|3
|
7
|
LssLsLsLs
|
Perf.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
4|4
|
9
|
sLsLsLsLs
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
3|5
|
2
|
sLsLsLssL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Perf.
|
2|6
|
4
|
sLsLssLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
1|7
|
6
|
sLssLsLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
0|8
|
8
|
ssLsLsLsL
|
Perf.
|
Min.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
Proposed names
Lilly Flores proposed using the Greek name relating to water as mode names. The names are in reference to the scale's former name orwelloid because the word Orwell comes from 'a spring situated near a promontory'.
Modes of 4L 5s
UDP |
Cyclic order |
Step pattern |
Mode names
|
8|0 |
1 |
LsLsLsLss |
Roi
|
7|1 |
3 |
LsLsLssLs |
Steno
|
6|2 |
5 |
LsLssLsLs |
Limni
|
5|3 |
7 |
LssLsLsLs |
Telma
|
4|4 |
9 |
sLsLsLsLs |
Krini
|
3|5 |
2 |
sLsLsLssL |
Elos
|
2|6 |
4 |
sLsLssLsL |
Mychos
|
1|7 |
6 |
sLssLsLsL |
Akti
|
0|8 |
8 |
ssLsLsLsL |
Dini
|
Theory
The only low harmonic entropy minimum corresponds to orwell temperament, where 1 generator approximates 7/6, 2 generators approximate 11/8, and 3 generators approximate 8/5.
Tuning ranges
Parasoft
Parasoft tunings of 4L 5s have a step ratio between 4/3 and 3/2, implying a generator sharper than 7\31 = 270.97 ¢ and flatter than 5\22 = 272.73 ¢.
Parasoft 4L 5s edos include 22edo, 31edo, 53edo, and 84edo.
- 22edo can be used to make large and small steps more distinct (the step ratio is 3/2).
- 31edo can be used for its nearly pure 5/4 and having a better approximation of 13/8 than 22edo.
- 53edo can be used for its nearly pure 3/2 and 5/4 and having much more accurate approximations of 13-limit intervals than 22edo or 31edo.
The sizes of the generator, large step and small step of 4L 5s are as follows in various parasoft 4L 5s tunings.
|
22edo
|
31edo
|
53edo
|
84edo
|
JI intervals represented
|
generator (g)
|
5\22, 272.73
|
7\31, 270.97
|
12\53, 271.70
|
19\84, 271.43
|
7/6
|
L (5g − octave)
|
3\22, 163.64
|
4\31, 154.84
|
7\53, 158.49
|
11\84, 157.14
|
12/11, 11/10
|
s (octave − 4g)
|
2\22, 109.09
|
3\31, 116.13
|
5\53, 113.21
|
8\84, 114.29
|
16/15, 15/14
|
This set of JI interpretations (g → 7/6, 2g → 11/8, 3g → 8/5, 7g → 3/2) is called 11-limit Orwell temperament in regular temperament theory.
Scales
Scale tree
Scale tree and tuning spectrum of 4L 5s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
2\9
|
|
|
|
|
|
266.667
|
933.333
|
1:1
|
1.000
|
Equalized 4L 5s
|
|
|
|
|
|
11\49
|
269.388
|
930.612
|
6:5
|
1.200
|
Lower range of Orwell
|
|
|
|
|
9\40
|
|
270.000
|
930.000
|
5:4
|
1.250
|
|
|
|
|
|
|
16\71
|
270.423
|
929.577
|
9:7
|
1.286
|
|
|
|
|
7\31
|
|
|
270.968
|
929.032
|
4:3
|
1.333
|
Supersoft 4L 5s
|
|
|
|
|
|
19\84
|
271.429
|
928.571
|
11:8
|
1.375
|
|
|
|
|
|
12\53
|
|
271.698
|
928.302
|
7:5
|
1.400
|
|
|
|
|
|
|
17\75
|
272.000
|
928.000
|
10:7
|
1.429
|
|
|
|
5\22
|
|
|
|
272.727
|
927.273
|
3:2
|
1.500
|
Soft 4L 5s
|
|
|
|
|
|
18\79
|
273.418
|
926.582
|
11:7
|
1.571
|
|
|
|
|
|
13\57
|
|
273.684
|
926.316
|
8:5
|
1.600
|
|
|
|
|
|
|
21\92
|
273.913
|
926.087
|
13:8
|
1.625
|
Unnamed golden tuning
|
|
|
|
8\35
|
|
|
274.286
|
925.714
|
5:3
|
1.667
|
Semisoft 4L 5s Upper range of Orwell
|
|
|
|
|
|
19\83
|
274.699
|
925.301
|
12:7
|
1.714
|
|
|
|
|
|
11\48
|
|
275.000
|
925.000
|
7:4
|
1.750
|
|
|
|
|
|
|
14\61
|
275.410
|
924.590
|
9:5
|
1.800
|
|
|
3\13
|
|
|
|
|
276.923
|
923.077
|
2:1
|
2.000
|
Basic 4L 5s Scales with tunings softer than this are proper
|
|
|
|
|
|
13\56
|
278.571
|
921.429
|
9:4
|
2.250
|
|
|
|
|
|
10\43
|
|
279.070
|
920.930
|
7:3
|
2.333
|
|
|
|
|
|
|
17\73
|
279.452
|
920.548
|
12:5
|
2.400
|
Lovecraft
|
|
|
|
7\30
|
|
|
280.000
|
920.000
|
5:2
|
2.500
|
Semihard 4L 5s
|
|
|
|
|
|
18\77
|
280.519
|
919.481
|
13:5
|
2.600
|
Golden lovecraft
|
|
|
|
|
11\47
|
|
280.851
|
919.149
|
8:3
|
2.667
|
|
|
|
|
|
|
15\64
|
281.250
|
918.750
|
11:4
|
2.750
|
|
|
|
4\17
|
|
|
|
282.353
|
917.647
|
3:1
|
3.000
|
Hard 4L 5s
|
|
|
|
|
|
13\55
|
283.636
|
916.364
|
10:3
|
3.333
|
|
|
|
|
|
9\38
|
|
284.211
|
915.789
|
7:2
|
3.500
|
|
|
|
|
|
|
14\59
|
284.746
|
915.254
|
11:3
|
3.667
|
|
|
|
|
5\21
|
|
|
285.714
|
914.286
|
4:1
|
4.000
|
Superhard 4L 5s
|
|
|
|
|
|
11\46
|
286.957
|
913.043
|
9:2
|
4.500
|
|
|
|
|
|
6\25
|
|
288.000
|
912.000
|
5:1
|
5.000
|
|
|
|
|
|
|
7\29
|
289.655
|
910.345
|
6:1
|
6.000
|
Gariberttet/Quasitemp/Kleiboh ↓
|
1\4
|
|
|
|
|
|
300.000
|
900.000
|
1:0
|
→ ∞
|
Collapsed 4L 5s
|