4L 5s: Difference between revisions
CompactStar (talk | contribs) 40edo is a forgotten orwell tuning |
ArrowHead294 (talk | contribs) |
||
(20 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
: ''For the tritave-equivalent 4L 5s pattern, see [[4L 5s (3/1-equivalent)]].'' | : ''For the tritave-equivalent 4L 5s pattern, see [[4L 5s (3/1-equivalent)]].'' | ||
{{Infobox MOS | {{Infobox MOS | ||
Line 15: | Line 15: | ||
The [[TAMNAMS]] name for this pattern is '''gramitonic''' (from ''grave minor third''). | The [[TAMNAMS]] name for this pattern is '''gramitonic''' (from ''grave minor third''). | ||
== | == Scale properties == | ||
{{TAMNAMS use}} | |||
=== Intervals === | |||
{{MOS intervals}} | |||
=== Generator chain === | |||
{{MOS genchain}} | |||
=== Modes === | |||
{{MOS mode degrees}} | |||
== | ==== Proposed names ==== | ||
[http://twitter.com/Lilly__Flores/status/1640779893108805632 Lilly Flores] proposed using the Greek name relating to water as mode names. The names are in reference to the scale's former name ''orwelloid'' because the word Orwell comes from 'a spring situated near a promontory'. | |||
{{MOS modes | |||
| Mode Names= | |||
Roi $ | |||
Steno $ | |||
Limni $ | |||
Telma $ | |||
Krini $ | |||
Elos $ | |||
Mychos $ | |||
Akti $ | |||
Dini $ | |||
}} | |||
== Theory == | |||
The only low harmonic entropy minimum corresponds to [[orwell]] temperament, where 1 generator approximates [[7/6]], 2 generators approximate [[11/8]], and 3 generators approximate [[8/5]]. | |||
== Tuning ranges == | == Tuning ranges == | ||
=== Parasoft === | === Parasoft === | ||
Parasoft tunings of 4L 5s have a step ratio between 4/3 and 3/2, implying a generator sharper than {{nowrap|7\31 {{=}} 270.97{{c}}}} and flatter than {{nowrap|5\22 {{=}} 272.73{{c}}}}. | |||
Parasoft | Parasoft 4L 5s edos include [[22edo]], [[31edo]], [[53edo]], and [[84edo]]. | ||
* [[22edo]] can be used to make large and small steps more distinct (the step ratio is 3/2). | |||
* [[31edo]] can be used for its nearly pure [[5/4]] and having a better approximation of [[13/8]] than 22edo. | |||
* [[53edo]] can be used for its nearly pure [[3/2]] and [[5/4]] and having much more accurate approximations of 13-limit intervals than 22edo or 31edo. | |||
The sizes of the generator, large step and small step of 4L 5s are as follows in various parasoft 4L 5s tunings. | |||
{| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7" | {| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7" | ||
|- | |- | ||
Line 56: | Line 72: | ||
| [[7/6]] | | [[7/6]] | ||
|- | |- | ||
| L (5g | | L (5g − octave) | ||
| 3\22, 163.64 | | 3\22, 163.64 | ||
| 4\31, 154.84 | | 4\31, 154.84 | ||
Line 63: | Line 79: | ||
| [[12/11]], [[11/10]] | | [[12/11]], [[11/10]] | ||
|- | |- | ||
| s (octave | | s (octave − 4g) | ||
| 2\22, 109.09 | | 2\22, 109.09 | ||
| 3\31, 116.13 | | 3\31, 116.13 | ||
Line 71: | Line 87: | ||
|} | |} | ||
This set of JI interpretations (g | This set of JI interpretations ({{nowrap|g → 7/6|2g → 11/8|3g → 8/5|7g → 3/2}}) is called 11-limit [[Orwell]] temperament in regular temperament theory. | ||
== | == Scales == | ||
* [[Guanyintet9]] – [[311edo|70\311]] tuning | |||
* [[Orwell9]] – [[84edo|19\84]] tuning | |||
* [[Lovecraft9]] – [[116edo|27\116]] tuning | |||
== Scale tree == | == Scale tree == | ||
{{MOS tuning spectrum | |||
| 6/5 = Lower range of [[Orwell]] | |||
| 5/3 = Upper range of Orwell | |||
| 13/8 = Unnamed golden tuning | |||
| 12/5 = [[Lovecraft]] | |||
| 13/5 = Golden lovecraft | |||
| 6/1 = [[Gariberttet]]/[[Quasitemp]]/[[Kleiboh]] ↓ | |||
}} | |||
| | |||
[[Category:Gramitonic]] <!-- main article --> | [[Category:Gramitonic]] <!-- main article --> |
Latest revision as of 12:41, 1 June 2025
- For the tritave-equivalent 4L 5s pattern, see 4L 5s (3/1-equivalent).
↖ 3L 4s | ↑ 4L 4s | 5L 4s ↗ |
← 3L 5s | 4L 5s | 5L 5s → |
↙ 3L 6s | ↓ 4L 6s | 5L 6s ↘ |
┌╥┬╥┬╥┬╥┬┬┐ │║│║│║│║│││ │││││││││││ └┴┴┴┴┴┴┴┴┴┘
ssLsLsLsL
4L 5s, named gramitonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 5 small steps, repeating every octave. Generators that produce this scale range from 266.7 ¢ to 300 ¢, or from 900 ¢ to 933.3 ¢.
Names
The TAMNAMS name for this pattern is gramitonic (from grave minor third).
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-gramstep | Perfect 0-gramstep | P0gms | 0 | 0.0 ¢ |
1-gramstep | Minor 1-gramstep | m1gms | s | 0.0 ¢ to 133.3 ¢ |
Major 1-gramstep | M1gms | L | 133.3 ¢ to 300.0 ¢ | |
2-gramstep | Diminished 2-gramstep | d2gms | 2s | 0.0 ¢ to 266.7 ¢ |
Perfect 2-gramstep | P2gms | L + s | 266.7 ¢ to 300.0 ¢ | |
3-gramstep | Minor 3-gramstep | m3gms | L + 2s | 300.0 ¢ to 400.0 ¢ |
Major 3-gramstep | M3gms | 2L + s | 400.0 ¢ to 600.0 ¢ | |
4-gramstep | Minor 4-gramstep | m4gms | L + 3s | 300.0 ¢ to 533.3 ¢ |
Major 4-gramstep | M4gms | 2L + 2s | 533.3 ¢ to 600.0 ¢ | |
5-gramstep | Minor 5-gramstep | m5gms | 2L + 3s | 600.0 ¢ to 666.7 ¢ |
Major 5-gramstep | M5gms | 3L + 2s | 666.7 ¢ to 900.0 ¢ | |
6-gramstep | Minor 6-gramstep | m6gms | 2L + 4s | 600.0 ¢ to 800.0 ¢ |
Major 6-gramstep | M6gms | 3L + 3s | 800.0 ¢ to 900.0 ¢ | |
7-gramstep | Perfect 7-gramstep | P7gms | 3L + 4s | 900.0 ¢ to 933.3 ¢ |
Augmented 7-gramstep | A7gms | 4L + 3s | 933.3 ¢ to 1200.0 ¢ | |
8-gramstep | Minor 8-gramstep | m8gms | 3L + 5s | 900.0 ¢ to 1066.7 ¢ |
Major 8-gramstep | M8gms | 4L + 4s | 1066.7 ¢ to 1200.0 ¢ | |
9-gramstep | Perfect 9-gramstep | P9gms | 4L + 5s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
12 | Augmented 6-gramdegree | A6gmd |
11 | Augmented 4-gramdegree | A4gmd |
10 | Augmented 2-gramdegree | A2gmd |
9 | Augmented 0-gramdegree | A0gmd |
8 | Augmented 7-gramdegree | A7gmd |
7 | Major 5-gramdegree | M5gmd |
6 | Major 3-gramdegree | M3gmd |
5 | Major 1-gramdegree | M1gmd |
4 | Major 8-gramdegree | M8gmd |
3 | Major 6-gramdegree | M6gmd |
2 | Major 4-gramdegree | M4gmd |
1 | Perfect 2-gramdegree | P2gmd |
0 | Perfect 0-gramdegree Perfect 9-gramdegree |
P0gmd P9gmd |
−1 | Perfect 7-gramdegree | P7gmd |
−2 | Minor 5-gramdegree | m5gmd |
−3 | Minor 3-gramdegree | m3gmd |
−4 | Minor 1-gramdegree | m1gmd |
−5 | Minor 8-gramdegree | m8gmd |
−6 | Minor 6-gramdegree | m6gmd |
−7 | Minor 4-gramdegree | m4gmd |
−8 | Diminished 2-gramdegree | d2gmd |
−9 | Diminished 9-gramdegree | d9gmd |
−10 | Diminished 7-gramdegree | d7gmd |
−11 | Diminished 5-gramdegree | d5gmd |
−12 | Diminished 3-gramdegree | d3gmd |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (gramdegree) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
8|0 | 1 | LsLsLsLss | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Perf. |
7|1 | 3 | LsLsLssLs | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
6|2 | 5 | LsLssLsLs | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
5|3 | 7 | LssLsLsLs | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
4|4 | 9 | sLsLsLsLs | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
3|5 | 2 | sLsLsLssL | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. |
2|6 | 4 | sLsLssLsL | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. |
1|7 | 6 | sLssLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. |
0|8 | 8 | ssLsLsLsL | Perf. | Min. | Dim. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. |
Proposed names
Lilly Flores proposed using the Greek name relating to water as mode names. The names are in reference to the scale's former name orwelloid because the word Orwell comes from 'a spring situated near a promontory'.
UDP | Cyclic order |
Step pattern |
Mode names |
---|---|---|---|
8|0 | 1 | LsLsLsLss | Roi |
7|1 | 3 | LsLsLssLs | Steno |
6|2 | 5 | LsLssLsLs | Limni |
5|3 | 7 | LssLsLsLs | Telma |
4|4 | 9 | sLsLsLsLs | Krini |
3|5 | 2 | sLsLsLssL | Elos |
2|6 | 4 | sLsLssLsL | Mychos |
1|7 | 6 | sLssLsLsL | Akti |
0|8 | 8 | ssLsLsLsL | Dini |
Theory
The only low harmonic entropy minimum corresponds to orwell temperament, where 1 generator approximates 7/6, 2 generators approximate 11/8, and 3 generators approximate 8/5.
Tuning ranges
Parasoft
Parasoft tunings of 4L 5s have a step ratio between 4/3 and 3/2, implying a generator sharper than 7\31 = 270.97 ¢ and flatter than 5\22 = 272.73 ¢.
Parasoft 4L 5s edos include 22edo, 31edo, 53edo, and 84edo.
- 22edo can be used to make large and small steps more distinct (the step ratio is 3/2).
- 31edo can be used for its nearly pure 5/4 and having a better approximation of 13/8 than 22edo.
- 53edo can be used for its nearly pure 3/2 and 5/4 and having much more accurate approximations of 13-limit intervals than 22edo or 31edo.
The sizes of the generator, large step and small step of 4L 5s are as follows in various parasoft 4L 5s tunings.
22edo | 31edo | 53edo | 84edo | JI intervals represented | |
---|---|---|---|---|---|
generator (g) | 5\22, 272.73 | 7\31, 270.97 | 12\53, 271.70 | 19\84, 271.43 | 7/6 |
L (5g − octave) | 3\22, 163.64 | 4\31, 154.84 | 7\53, 158.49 | 11\84, 157.14 | 12/11, 11/10 |
s (octave − 4g) | 2\22, 109.09 | 3\31, 116.13 | 5\53, 113.21 | 8\84, 114.29 | 16/15, 15/14 |
This set of JI interpretations (g → 7/6, 2g → 11/8, 3g → 8/5, 7g → 3/2) is called 11-limit Orwell temperament in regular temperament theory.
Scales
- Guanyintet9 – 70\311 tuning
- Orwell9 – 19\84 tuning
- Lovecraft9 – 27\116 tuning
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
2\9 | 266.667 | 933.333 | 1:1 | 1.000 | Equalized 4L 5s | |||||
11\49 | 269.388 | 930.612 | 6:5 | 1.200 | Lower range of Orwell | |||||
9\40 | 270.000 | 930.000 | 5:4 | 1.250 | ||||||
16\71 | 270.423 | 929.577 | 9:7 | 1.286 | ||||||
7\31 | 270.968 | 929.032 | 4:3 | 1.333 | Supersoft 4L 5s | |||||
19\84 | 271.429 | 928.571 | 11:8 | 1.375 | ||||||
12\53 | 271.698 | 928.302 | 7:5 | 1.400 | ||||||
17\75 | 272.000 | 928.000 | 10:7 | 1.429 | ||||||
5\22 | 272.727 | 927.273 | 3:2 | 1.500 | Soft 4L 5s | |||||
18\79 | 273.418 | 926.582 | 11:7 | 1.571 | ||||||
13\57 | 273.684 | 926.316 | 8:5 | 1.600 | ||||||
21\92 | 273.913 | 926.087 | 13:8 | 1.625 | Unnamed golden tuning | |||||
8\35 | 274.286 | 925.714 | 5:3 | 1.667 | Semisoft 4L 5s Upper range of Orwell | |||||
19\83 | 274.699 | 925.301 | 12:7 | 1.714 | ||||||
11\48 | 275.000 | 925.000 | 7:4 | 1.750 | ||||||
14\61 | 275.410 | 924.590 | 9:5 | 1.800 | ||||||
3\13 | 276.923 | 923.077 | 2:1 | 2.000 | Basic 4L 5s Scales with tunings softer than this are proper | |||||
13\56 | 278.571 | 921.429 | 9:4 | 2.250 | ||||||
10\43 | 279.070 | 920.930 | 7:3 | 2.333 | ||||||
17\73 | 279.452 | 920.548 | 12:5 | 2.400 | Lovecraft | |||||
7\30 | 280.000 | 920.000 | 5:2 | 2.500 | Semihard 4L 5s | |||||
18\77 | 280.519 | 919.481 | 13:5 | 2.600 | Golden lovecraft | |||||
11\47 | 280.851 | 919.149 | 8:3 | 2.667 | ||||||
15\64 | 281.250 | 918.750 | 11:4 | 2.750 | ||||||
4\17 | 282.353 | 917.647 | 3:1 | 3.000 | Hard 4L 5s | |||||
13\55 | 283.636 | 916.364 | 10:3 | 3.333 | ||||||
9\38 | 284.211 | 915.789 | 7:2 | 3.500 | ||||||
14\59 | 284.746 | 915.254 | 11:3 | 3.667 | ||||||
5\21 | 285.714 | 914.286 | 4:1 | 4.000 | Superhard 4L 5s | |||||
11\46 | 286.957 | 913.043 | 9:2 | 4.500 | ||||||
6\25 | 288.000 | 912.000 | 5:1 | 5.000 | ||||||
7\29 | 289.655 | 910.345 | 6:1 | 6.000 | Gariberttet/Quasitemp/Kleiboh ↓ | |||||
1\4 | 300.000 | 900.000 | 1:0 | → ∞ | Collapsed 4L 5s |