9L 2s (tritave-equivalent)
Brightest mode | LLLLLsLLLLs | |
Period | 3/1 | |
Range for bright generator | 6\11edt (1,037.4¢) to 5\9edt (1,056.6¢) | |
Range for dark generator | 4\9edt (845.3¢) to 5\11edt (864.5¢) | |
Parent MOS | 2L 7s<3/1> | |
Daughter MOSes | 11L 9s<3/1>, 9L 11s<3/1> | |
Sister MOS | 2L 9s<3/1> | |
Equal tunings | ||
Supersoft (L:s = 4:3) | 23\42edt (1,041.5¢) | |
Soft (L:s = 3:2) | 17\31edt (1,043.0¢) | |
Semisoft (L:s = 5:3) | 28\51edt (1,044.2¢) | |
Basic (L:s = 2:1) | 11\20edt (1,046.1¢) | |
Semihard (L:s = 5:2) | 27\49edt (1,048.0¢) | |
Hard (L:s = 3:1) | 16\29edt (1,049.4¢) | |
Superhard (L:s = 4:1) | 21\38edt (1,051.1¢) |
9L 2s<3/1> or sub-Arcturus is a tritave-repeating MOS scale having 9 large steps and 2 small steps. This MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.
Generator | cents | L | s | 3g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4\9 | 845.313
577.778 |
211.328
144.444 |
0.00 | 633.985
433.333 |
L=1 s=0 | ||||||
29\65 | 848.5645
580 |
204.826
140 |
29.261
20 |
643.739
440 |
L=7 s=1 | ||||||
25\56 | 849.087
580.357 |
203.78
139.286 |
33.9635
23.214 |
645.306
441.071 |
L=6 s=1 | ||||||
46\103 | 849.417
580.5825 |
203.121
138.835 |
36.931
25.243 |
646.295
441.748 |
|||||||
21\47 | 849.81
580.851 |
202.336
138.298 |
40.467
27.66 |
647.474
442.553 |
L=5 s=1 | ||||||
59\132 | 850.116
581.061 |
201.7225
137.879 |
43.226
29.5455 |
648.394
443.182 |
|||||||
38\85 | 850.286
581.1765 |
201.383
137.647 |
44.752
28.235 |
648.902
443.529 |
|||||||
55\123 | 850.468
581.301 |
201.02
137.398 |
46.309
31.707 |
649.448
443.902 |
|||||||
17\38 | 850.875
581.579 |
200.206
136.842 |
50.051
34.2105 |
650.669
444.737 |
L=4 s=1 | ||||||
64\143 | 851.225
581.818 |
199.506
136.364 |
53.2015
36.364 |
651.719
445.4545 |
|||||||
47\105 | 851.351
581.905 |
199.252
136.1905 |
54.342
37.143 |
652.099
445.714 |
|||||||
77\172 | 851.457
581.977 |
199.042
136.0465 |
55.289
37.791 |
652.415
445.93 |
|||||||
30\67 | 851.622
582.09 |
198.712
135.821 |
56.775
38.806 |
652.91
446.269 |
L=7 s=2 | ||||||
73\163 | 851.796
582.209 |
198.363
135.583 |
58.342
39.877 |
653.432
446.626 |
|||||||
43\96 | 851.917
582.292 |
198.12
135.417 |
59.436
40.625 |
653.797
446.875 |
|||||||
56\125 | 852.075
582.4 |
197.803
135.2 |
60.863
41.6 |
654.2725
447.2 |
|||||||
13\29 | 852.6005
582.759 |
196.754
134.483 |
65.585
44.828 |
655.847
448.276 |
L=3 s=1 | ||||||
61\136 | 853.083
583.088 |
195.7895
133.8235 |
69.925
47.764 |
657.293
449.265 |
|||||||
48\107 | 853.2135
583.178 |
195.528
133.645 |
71.101
48.598 |
657.685
449.533 |
|||||||
83\185 | 853.3095
583.243 |
195.336
133.5135 |
71.966
49.189 |
657.974
449.73 |
|||||||
35\78 | 853.441
583.333 |
195.072
133.333 |
73.152
50 |
658.369
450 |
|||||||
92\205 | 853.56
583.415 |
194.834
133.171 |
74.223
50.732 |
658.726
450.244 |
|||||||
57\127 | 853.633
583.465 |
194.688
133.071 |
74.88
51.181 |
658.945
450.294 |
|||||||
79\176 | 853.718
583.522 |
194.518
132.9545 |
75.646
51.7045 |
659.2
450.568 |
|||||||
22\49 | 853.939
583.6735 |
194.077
132.653 |
77.631
53.061 |
659.862
451.02 |
L=5 s=2 | ||||||
75\167 | 854.171
583.832 |
193.588
132.335 |
79.722
54.491 |
660.559
451.497 |
|||||||
53\118 | 854.268
583.898 |
193.419
132.203 |
80.591
55.085 |
660.849
451.695 |
|||||||
84\187 | 854.354
583.957 |
193.245
132.086 |
81.367
55.615 |
661.107
451.872 |
|||||||
31\69 | 854.5015
584.058 |
192.952
131.844 |
82.694
56.522 |
661.55
452.174 |
L=7 s=3 | ||||||
71\158 | 854.676
584.177 |
192.603
131.646 |
84.264
57.595 |
662.073
452.532 |
|||||||
40\89 | 854.811
584.27 |
192.3325
131.461 |
85.481
58.427 |
662.479
452.809 |
|||||||
49\109 | 855.007
584.404 |
191.94
131.193 |
87.246
59.633 |
663.067
453.211 |
|||||||
9\20 | 855.88
585 |
190.1955
130 |
95.098
65 |
665.684
455 |
L=2 s=1 | ||||||
50\111 | 856.7365
585.586 |
188.482
128.829 |
102.808
70.27 |
668.2545
456.757 |
|||||||
41\91 | 856.925
585.714 |
188.105
128.571 |
104.503
71.429 |
668.819
457.143 |
|||||||
73\162 | 857.053
585.8025 |
187.847
128.395 |
105.664
72.222 |
669.206
457.407 |
|||||||
32\71 | 857.737
585.9155 |
187.517
128.169 |
107.152
73.239 |
669.7025
457.7565 |
L=7 s=4 | ||||||
87\193 | 857.358
586.01 |
187.239
127.979 |
108.402
74.093 |
670.119
458.031 |
|||||||
55\122 | 857.85
586.066 |
187.0775
127.869 |
109.129
74.59 |
670.361
458.198 |
|||||||
78\173 | 857.529
586.127 |
186.897
127.746 |
109.94
75.1445 |
670.6315
458.3815 |
|||||||
23\51 | 857.744
586.2745 |
186.466
127.451 |
111.88
76.471 |
671.278
458.8235 |
L=5 s=3 | ||||||
83\184 | 857.947
586.413 |
186.061
127.174 |
113.704
77.717 |
671.886
459.239 |
|||||||
60\133 | 858.025
586.466 |
185.925
127.068 |
114.403
78.1955 |
672.119
459.3985 |
|||||||
97\215 | 858.091
586.512 |
185.772
126.977 |
115.002
78.605 |
672.319
459.535 |
Golden Sub-Arcturus is near here | ||||||
37\82 | 858.199
586.585 |
185.557
126.829 |
115.972
79.268 |
672.643
459.756 |
|||||||
88\195 | 858.318
586.667 |
185.318
126.667 |
117.043
80 |
672.9995
460 |
|||||||
51\113 | 858.4045
586.726 |
185.146
126.548 |
117.82
80.531 |
673.258
460.177 |
|||||||
65\144 | 858.521
586.806 |
184.912
126.389 |
118.872
81.25 |
673.609
460.417 |
|||||||
14\31 | 858.947
587.097 |
184.06
125.8065 |
122.707
83.871 |
674.882
461.291 |
L=3 s=2 | ||||||
61\135 | 859.402
587.407 |
183.151
125.185 |
126.797
86.667 |
676,251
462.222 |
|||||||
47\104 | 859.537
587.5 |
182.88
125 |
128.016
87.5 |
676.657
462.5 |
|||||||
80\177 | 859.641
587.571 |
182.674
124.859 |
128.946
88.136 |
676.967
462.712 |
|||||||
33\73 | 859.788
587.671 |
182.379
124.6575 |
130.271
89.041 |
677.409
463.014 |
L=7 s=5 | ||||||
85\188 | 859.9265
587.766 |
182.102
124.468 |
131.518
89.894 |
677.824
463.298 |
|||||||
52\115 | 860.014
587.826 |
181.926
124.348 |
132.31
90.435 |
678.088
463.478 |
|||||||
71\157 | 860.12
587.898 |
181.715
124.204 |
133.258
91.083 |
678.404
463.694 |
|||||||
19\42 | 860.408
588.095 |
181.139
123.8095 |
135.854
92.857 |
679.27
464.286 |
L=4 s=3 | ||||||
62\137 | 860.739
588.321 |
180.4775
123.358 |
138.829
94.8905 |
680.261
464.9635 |
|||||||
43\95 | 860.885
588.421 |
180.185
123.158 |
140.144
95.7895 |
680.7
465.263 |
|||||||
67\148 | 861.02
588.5135 |
179.915
122.973 |
141.3615
96.621 |
681.1055
465.5405 |
|||||||
24\53 | 861.263
588.679 |
179.43
122.6415 |
143.544
98.113 |
681.833
466.038 |
L=5 s=4 | ||||||
53\117 | 861.569
588.889 |
178.816
122.222 |
146.304
100 |
682.753
466.667 |
|||||||
29\64 | 861.823
589.0625 |
178.308
121.875 |
148.59
101.5625 |
683.515
467.1875 |
L=6 s=5 | ||||||
34\75 | 862.22
589.333 |
177.516
121.333 |
152.156
104 |
684.704
468 |
L=7 s=6 | ||||||
5\11 | 864.525
590.909 |
172.905
118.182 |
691.62
472.727 |
L=1 s=1 |