Sub-Arcturus

From Xenharmonic Wiki
Jump to: navigation, search

Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.

Generator cents L s 3g Notes
4\9 845.313

577.778

211.328

144.444

0.00 633.985

433.333

L=1 s=0
29\65 848.5645

580

204.826

140

29.261

20

643.739

440

L=7 s=1
25\56 849.087

580.357

203.78

139.286

33.9635

23.214

645.306

441.071

L=6 s=1
46\103 849.417

580.5825

203.121

138.835

36.931

25.243

646.295

441.748

21\47 849.81

580.851

202.336

138.298

40.467

27.66

647.474

442.553

L=5 s=1
59\132 850.116

581.061

201.7225

137.879

43.226

29.5455

648.394

443.182

38\85 850.286

581.1765

201.383

137.647

44.752

28.235

648.902

443.529

55\123 850.468

581.301

201.02

137.398

46.309

31.707

649.448

443.902

17\38 850.875

581.579

200.206

136.842

50.051

34.2105

650.669

444.737

L=4 s=1
64\143 851.225

581.818

199.506

136.364

53.2015

36.364

651.719

445.4545

47\105 851.351

581.905

199.252

136.1905

54.342

37.143

652.099

445.714

77\172 851.457

581.977

199.042

136.0465

55.289

37.791

652.415

445.93

30\67 851.622

582.09

198.712

135.821

56.775

38.806

652.91

446.269

L=7 s=2
73\163 851.796

582.209

198.363

135.583

58.342

39.877

653.432

446.626

43\96 851.917

582.292

198.12

135.417

59.436

40.625

653.797

446.875

56\125 852.075

582.4

197.803

135.2

60.863

41.6

654.2725

447.2

13\29 852.6005

582.759

196.754

134.483

65.585

44.828

655.847

448.276

L=3 s=1
61\136 853.083

583.088

195.7895

133.8235

69.925

47.764

657.293

449.265

48\107 853.2135

583.178

195.528

133.645

71.101

48.598

657.685

449.533

83\185 853.3095

583.243

195.336

133.5135

71.966

49.189

657.974

449.73

35\78 853.441

583.333

195.072

133.333

73.152

50

658.369

450

92\205 853.56

583.415

194.834

133.171

74.223

50.732

658.726

450.244

57\127 853.633

583.465

194.688

133.071

74.88

51.181

658.945

450.294

79\176 853.718

583.522

194.518

132.9545

75.646

51.7045

659.2

450.568

22\49 853.939

583.6735

194.077

132.653

77.631

53.061

659.862

451.02

L=5 s=2
75\167 854.171

583.832

193.588

132.335

79.722

54.491

660.559

451.497

53\118 854.268

583.898

193.419

132.203

80.591

55.085

660.849

451.695

84\187 854.354

583.957

193.245

132.086

81.367

55.615

661.107

451.872

31\69 854.5015

584.058

192.952

131.844

82.694

56.522

661.55

452.174

L=7 s=3
71\158 854.676

584.177

192.603

131.646

84.264

57.595

662.073

452.532

40\89 854.811

584.27

192.3325

131.461

85.481

58.427

662.479

452.809

49\109 855.007

584.404

191.94

131.193

87.246

59.633

663.067

453.211

9\20 855.88

585

190.1955

130

95.098

65

665.684

455

L=2 s=1
50\111 856.7365

585.586

188.482

128.829

102.808

70.27

668.2545

456.757

41\91 856.925

585.714

188.105

128.571

104.503

71.429

668.819

457.143

73\162 857.053

585.8025

187.847

128.395

105.664

72.222

669.206

457.407

32\71 857.737

585.9155

187.517

128.169

107.152

73.239

669.7025

457.7565

L=7 s=4
87\193 857.358

586.01

187.239

127.979

108.402

74.093

670.119

458.031

55\122 857.85

586.066

187.0775

127.869

109.129

74.59

670.361

458.198

78\173 857.529

586.127

186.897

127.746

109.94

75.1445

670.6315

458.3815

23\51 857.744

586.2745

186.466

127.451

111.88

76.471

671.278

458.8235

L=5 s=3
83\184 857.947

586.413

186.061

127.174

113.704

77.717

671.886

459.239

60\133 858.025

586.466

185.925

127.068

114.403

78.1955

672.119

459.3985

97\215 858.091

586.512

185.772

126.977

115.002

78.605

672.319

459.535

Golden Sub-Arcturus is near here
37\82 858.199

586.585

185.557

126.829

115.972

79.268

672.643

459.756

88\195 858.318

586.667

185.318

126.667

117.043

80

672.9995

460

51\113 858.4045

586.726

185.146

126.548

117.82

80.531

673.258

460.177

65\144 858.521

586.806

184.912

126.389

118.872

81.25

673.609

460.417

14\31 858.947

587.097

184.06

125.8065

122.707

83.871

674.882

461.291

L=3 s=2
61\135 859.402

587.407

183.151

125.185

126.797

86.667

676,251

462.222

47\104 859.537

587.5

182.88

125

128.016

87.5

676.657

462.5

80\177 859.641

587.571

182.674

124.859

128.946

88.136

676.967

462.712

33\73 859.788

587.671

182.379

124.6575

130.271

89.041

677.409

463.014

L=7 s=5
85\188 859.9265

587.766

182.102

124.468

131.518

89.894

677.824

463.298

52\115 860.014

587.826

181.926

124.348

132.31

90.435

678.088

463.478

71\157 860.12

587.898

181.715

124.204

133.258

91.083

678.404

463.694

19\42 860.408

588.095

181.139

123.8095

135.854

92.857

679.27

464.286

L=4 s=3
62\137 860.739

588.321

180.4775

123.358

138.829

94.8905

680.261

464.9635

43\95 860.885

588.421

180.185

123.158

140.144

95.7895

680.7

465.263

67\148 861.02

588.5135

179.915

122.973

141.3615

96.621

681.1055

465.5405

24\53 861.263

588.679

179.43

122.6415

143.544

98.113

681.833

466.038

L=5 s=4
53\117 861.569

588.889

178.816

122.222

146.304

100

682.753

466.667

29\64 861.823

589.0625

178.308

121.875

148.59

101.5625

683.515

467.1875

L=6 s=5
34\75 862.22

589.333

177.516

121.333

152.156

104

684.704

468

L=7 s=6
5\11 864.525

590.909

172.905

118.182

691.62

472.727

L=1 s=1