List of superparticular intervals: Difference between revisions
alternative name for password comma |
m lc monzo |
||
Line 22: | Line 22: | ||
| 1200.000 | | 1200.000 | ||
| 2/1 | | 2/1 | ||
| {{ | | {{monzo|1}} | ||
| octave, duple; ''after [[octave reduction]]:'' (perfect) unison, unity, perfect prime, tonic | | octave, duple; ''after [[octave reduction]]:'' (perfect) unison, unity, perfect prime, tonic | ||
|- | |- | ||
Line 30: | Line 30: | ||
| 701.955 | | 701.955 | ||
| 3/2 | | 3/2 | ||
| {{ | | {{monzo|-1 1}} | ||
| [[perfect fifth]], 3rd harmonic (octave reduced), diapente | | [[perfect fifth]], 3rd harmonic (octave reduced), diapente | ||
|- | |- | ||
Line 36: | Line 36: | ||
| 498.045 | | 498.045 | ||
| 2<sup>2</sup>/3 | | 2<sup>2</sup>/3 | ||
| {{ | | {{monzo|2 -1}} | ||
| perfect fourth, 3rd subharmonic (octave reduced), diatessaron | | perfect fourth, 3rd subharmonic (octave reduced), diatessaron | ||
|- | |- | ||
Line 42: | Line 42: | ||
| 203.910 | | 203.910 | ||
| 3<sup>2</sup>/2<sup>3</sup> | | 3<sup>2</sup>/2<sup>3</sup> | ||
| {{ | | {{monzo|-3 2}} | ||
| (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | ||
|- | |- | ||
Line 50: | Line 50: | ||
| 386.314 | | 386.314 | ||
| 5/2<sup>2</sup> | | 5/2<sup>2</sup> | ||
| {{ | | {{monzo|-2 0 1}} | ||
| (classic) (5-limit) major third, 5th harmonic (octave reduced) | | (classic) (5-limit) major third, 5th harmonic (octave reduced) | ||
|- | |- | ||
Line 56: | Line 56: | ||
| 315.641 | | 315.641 | ||
| (2*3)/5 | | (2*3)/5 | ||
| {{ | | {{monzo|1 1 -1}} | ||
| (classic) (5-limit) minor third | | (classic) (5-limit) minor third | ||
|- | |- | ||
Line 62: | Line 62: | ||
| 182.404 | | 182.404 | ||
| (2*5)/3<sup>2</sup> | | (2*5)/3<sup>2</sup> | ||
| {{ | | {{monzo|1 -2 1}} | ||
| classic (whole) tone, classic major second, minor whole tone | | classic (whole) tone, classic major second, minor whole tone | ||
|- | |- | ||
Line 68: | Line 68: | ||
| 111.731 | | 111.731 | ||
| 2<sup>4</sup>/(3*5) | | 2<sup>4</sup>/(3*5) | ||
| {{ | | {{monzo|4 -1 -1}} | ||
| minor diatonic semitone, 15th subharmonic | | minor diatonic semitone, 15th subharmonic | ||
|- | |- | ||
Line 74: | Line 74: | ||
| 70.672 | | 70.672 | ||
| 5<sup>2</sup>/(2<sup>3</sup>*3) | | 5<sup>2</sup>/(2<sup>3</sup>*3) | ||
| {{ | | {{monzo|-3 -1 2}} | ||
| chroma, (classic) chromatic semitone, Zarlinian semitone | | chroma, (classic) chromatic semitone, Zarlinian semitone | ||
|- | |- | ||
Line 80: | Line 80: | ||
| 21.506 | | 21.506 | ||
| (3/2)<sup>4</sup>/5 | | (3/2)<sup>4</sup>/5 | ||
| {{ | | {{monzo|-4 4 -1}} | ||
| syntonic comma, Didymus comma | | syntonic comma, Didymus comma | ||
|- | |- | ||
Line 88: | Line 88: | ||
| 266.871 | | 266.871 | ||
| 7/(2*3) | | 7/(2*3) | ||
| {{ | | {{monzo|-1 -1 0 1 }} | ||
| (septimal) subminor third, septimal minor third | | (septimal) subminor third, septimal minor third | ||
|- | |- | ||
Line 94: | Line 94: | ||
| 231.174 | | 231.174 | ||
| 2<sup>3</sup>/7 | | 2<sup>3</sup>/7 | ||
| {{ | | {{monzo|3 0 0 -1}} | ||
| (septimal) supermajor second, septimal whole tone, 7th subharmonic | | (septimal) supermajor second, septimal whole tone, 7th subharmonic | ||
|- | |- | ||
Line 100: | Line 100: | ||
| 119.443 | | 119.443 | ||
| (3*5)/(2*7) | | (3*5)/(2*7) | ||
| {{ | | {{monzo|-1 1 1 -1}} | ||
| septimal diatonic semitone | | septimal diatonic semitone | ||
|- | |- | ||
Line 106: | Line 106: | ||
| 84.467 | | 84.467 | ||
| (3*7)/(2<sup>2</sup>*5) | | (3*7)/(2<sup>2</sup>*5) | ||
| {{ | | {{monzo|-2 1 -1 1}} | ||
| minor semitone, large septimal chroma | | minor semitone, large septimal chroma | ||
|- | |- | ||
Line 112: | Line 112: | ||
| 62.961 | | 62.961 | ||
| (2<sup>2</sup>*7)/3<sup>3</sup> | | (2<sup>2</sup>*7)/3<sup>3</sup> | ||
| {{ | | {{monzo|2 -3 0 1}} | ||
| septimal third-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma | | septimal third-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma | ||
|- | |- | ||
Line 118: | Line 118: | ||
| 48.770 | | 48.770 | ||
| (2<sup>2</sup>*3<sup>3</sup>)/(5*7) | | (2<sup>2</sup>*3<sup>3</sup>)/(5*7) | ||
| {{ | | {{monzo|2 2 -1 -1}} | ||
| septimal quarter tone, septimal diesis | | septimal quarter tone, septimal diesis | ||
|- | |- | ||
Line 124: | Line 124: | ||
| 35.697 | | 35.697 | ||
| 7<sup>2</sup>/(2<sup>4</sup>*3) | | 7<sup>2</sup>/(2<sup>4</sup>*3) | ||
| {{ | | {{monzo|-4 -1 0 2}} | ||
| large septimal diesis, slendro diesis, septimal 1/6-tone | | large septimal diesis, slendro diesis, septimal 1/6-tone | ||
|- | |- | ||
Line 130: | Line 130: | ||
| 34.976 | | 34.976 | ||
| 2*(5/7)<sup>2</sup> | | 2*(5/7)<sup>2</sup> | ||
| {{ | | {{monzo|1 0 2 -2}} | ||
| septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma | | septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma | ||
|- | |- | ||
Line 136: | Line 136: | ||
| 27.264 | | 27.264 | ||
| 2<sup>6</sup>/(3<sup>2</sup>*7) | | 2<sup>6</sup>/(3<sup>2</sup>*7) | ||
| {{ | | {{monzo|6 -2 0 -1}} | ||
| septimal comma, Archytas' comma | | septimal comma, Archytas' comma | ||
|- | |- | ||
Line 142: | Line 142: | ||
| 13.795 | | 13.795 | ||
| (2*3<sup>2</sup>*7)/5<sup>3</sup> | | (2*3<sup>2</sup>*7)/5<sup>3</sup> | ||
| {{ | | {{monzo|1 2 -3 1}} | ||
| starling comma, septimal semicomma | | starling comma, septimal semicomma | ||
|- | |- | ||
Line 148: | Line 148: | ||
| 7.7115 | | 7.7115 | ||
| (3*5)<sup>2</sup>/(2<sup>5</sup>*7) | | (3*5)<sup>2</sup>/(2<sup>5</sup>*7) | ||
| {{ | | {{monzo|-5 2 2 -1}} | ||
| marvel comma, septimal kleisma | | marvel comma, septimal kleisma | ||
|- | |- | ||
Line 154: | Line 154: | ||
| 0.72120 | | 0.72120 | ||
| 7<sup>4</sup>/(2<sup>5</sup>*3*5<sup>2</sup>) | | 7<sup>4</sup>/(2<sup>5</sup>*3*5<sup>2</sup>) | ||
| {{ | | {{monzo|-5 -1 -2 4}} | ||
| breedsma | | breedsma | ||
|- | |- | ||
Line 160: | Line 160: | ||
| 0.39576 | | 0.39576 | ||
| (5<sup>4</sup>*7)/(2*3<sup>7</sup>) | | (5<sup>4</sup>*7)/(2*3<sup>7</sup>) | ||
| {{ | | {{monzo|-1 -7 4 1}} | ||
| ragisma | | ragisma | ||
|- | |- | ||
Line 168: | Line 168: | ||
| 165.004 | | 165.004 | ||
| 11/(2*5) | | 11/(2*5) | ||
| {{ | | {{monzo|-1 0 -1 0 1}} | ||
| (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second | | (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second | ||
|- | |- | ||
Line 174: | Line 174: | ||
| 150.637 | | 150.637 | ||
| (2<sup>2</sup>*3)/11 | | (2<sup>2</sup>*3)/11 | ||
| {{ | | {{monzo|2 1 0 0 -1}} | ||
| (small) (undecimal) neutral second, 3/4-tone | | (small) (undecimal) neutral second, 3/4-tone | ||
|- | |- | ||
Line 180: | Line 180: | ||
| 80.537 | | 80.537 | ||
| (2*11)/(3*7) | | (2*11)/(3*7) | ||
| {{ | | {{monzo|1 -1 0 -1 1}} | ||
| undecimal minor semitone | | undecimal minor semitone | ||
|- | |- | ||
Line 186: | Line 186: | ||
| 53.273 | | 53.273 | ||
| (3*11)/2<sup>5</sup> | | (3*11)/2<sup>5</sup> | ||
| {{ | | {{monzo|-5 1 0 0 1}} | ||
| undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | | undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | ||
|- | |- | ||
Line 192: | Line 192: | ||
| 38.906 | | 38.906 | ||
| (3/2)<sup>2</sup>*(5/11) | | (3/2)<sup>2</sup>*(5/11) | ||
| {{ | | {{monzo|-2 2 1 0 -1}} | ||
| undecimal 1/5-tone | | undecimal 1/5-tone | ||
|- | |- | ||
Line 198: | Line 198: | ||
| 31.767 | | 31.767 | ||
| (5*11)/(2*3<sup>3</sup>) | | (5*11)/(2*3<sup>3</sup>) | ||
| {{ | | {{monzo|-1 -3 1 0 1}} | ||
| undecimal diasecundal comma, eleventyfive comma | | undecimal diasecundal comma, eleventyfive comma | ||
|- | |- | ||
Line 204: | Line 204: | ||
| 31.194 | | 31.194 | ||
| (2<sup>3</sup>*7)/(5*11) | | (2<sup>3</sup>*7)/(5*11) | ||
| {{ | | {{monzo|3 0 -1 1 -1}} | ||
| undecimal tritonic comma, konbini comma | | undecimal tritonic comma, konbini comma | ||
|- | |- | ||
Line 210: | Line 210: | ||
| 17.576 | | 17.576 | ||
| (3/7)<sup>2</sup>*(11/2) | | (3/7)<sup>2</sup>*(11/2) | ||
| {{ | | {{monzo|-1 2 0 -2 1}} | ||
| small undecimal comma, mothwellsma | | small undecimal comma, mothwellsma | ||
|- | |- | ||
Line 216: | Line 216: | ||
| 17.399 | | 17.399 | ||
| (2*5/3)<sup>2</sup>/11) | | (2*5/3)<sup>2</sup>/11) | ||
| {{ | | {{monzo|2 -2 2 0 -1}} | ||
| Ptolemy's comma, ptolemisma | | Ptolemy's comma, ptolemisma | ||
|- | |- | ||
Line 222: | Line 222: | ||
| 14.376 | | 14.376 | ||
| 11<sup>2</sup>/(2<sup>3</sup>*3*5) | | 11<sup>2</sup>/(2<sup>3</sup>*3*5) | ||
| {{ | | {{monzo|-3 -1 -1 0 2}} | ||
| undecimal seconds comma, [[Biyatismic chords|biyatisma]] | | undecimal seconds comma, [[Biyatismic chords|biyatisma]] | ||
|- | |- | ||
Line 228: | Line 228: | ||
| 9.8646 | | 9.8646 | ||
| (2<sup>4</sup>*11)/(5<sup>2</sup>*7) | | (2<sup>4</sup>*11)/(5<sup>2</sup>*7) | ||
| {{ | | {{monzo|4 0 -2 -1 1}} | ||
| valinorsma | | valinorsma | ||
|- | |- | ||
Line 234: | Line 234: | ||
| 7.1391 | | 7.1391 | ||
| 3<sup>5</sup>/(2*11<sup>2</sup>) | | 3<sup>5</sup>/(2*11<sup>2</sup>) | ||
| {{ | | {{monzo|-1 5 0 0 -2}} | ||
| neutral third comma, rastma | | neutral third comma, rastma | ||
|- | |- | ||
Line 240: | Line 240: | ||
| 4.5026 | | 4.5026 | ||
| (5*7*11)/(2<sup>7</sup>*3) | | (5*7*11)/(2<sup>7</sup>*3) | ||
| {{ | | {{monzo|-7 -1 1 1 1}} | ||
| keenanisma | | keenanisma | ||
|- | |- | ||
Line 246: | Line 246: | ||
| 3.9302 | | 3.9302 | ||
| (3*7)<sup>2</sup>/(2<sup>3</sup>*5*11) | | (3*7)<sup>2</sup>/(2<sup>3</sup>*5*11) | ||
| {{ | | {{monzo|-3 2 -1 2 -1}} | ||
| Werckmeister's undecimal septenarian schisma, werckisma | | Werckmeister's undecimal septenarian schisma, werckisma | ||
|- | |- | ||
Line 252: | Line 252: | ||
| 3.2090 | | 3.2090 | ||
| (2/7)<sup>2</sup>*3<sup>3</sup>*5/11 | | (2/7)<sup>2</sup>*3<sup>3</sup>*5/11 | ||
| {{ | | {{monzo|2 3 1 -2 -1}} | ||
| Swets' comma, swetisma | | Swets' comma, swetisma | ||
|- | |- | ||
Line 258: | Line 258: | ||
| 0.57240 | | 0.57240 | ||
| (5*11)<sup>2</sup>/(2<sup>4</sup>*3<sup>2</sup>*7) | | (5*11)<sup>2</sup>/(2<sup>4</sup>*3<sup>2</sup>*7) | ||
| {{ | | {{monzo|-4 -3 2 -1 2}} | ||
| Lehmerisma | | Lehmerisma | ||
|- | |- | ||
Line 264: | Line 264: | ||
| 0.17665 | | 0.17665 | ||
| (11/(5*7))<sup>2</sup>*3<sup>4</sup>/2<sup>3</sup> | | (11/(5*7))<sup>2</sup>*3<sup>4</sup>/2<sup>3</sup> | ||
| {{ | | {{monzo|-3 4 -2 -2 2}} | ||
| Gauss comma, kalisma | | Gauss comma, kalisma | ||
|- | |- | ||
Line 272: | Line 272: | ||
| 138.573 | | 138.573 | ||
| 13/(2<sup>2</sup>*3) | | 13/(2<sup>2</sup>*3) | ||
| {{ | | {{monzo|-2 -1 0 0 0 1}} | ||
| (large) tridecimal 2/3-tone, tridecimal neutral second | | (large) tridecimal 2/3-tone, tridecimal neutral second | ||
|- | |- | ||
Line 278: | Line 278: | ||
| 128.298 | | 128.298 | ||
| (2*7)/13 | | (2*7)/13 | ||
| {{ | | {{monzo|1 0 0 1 0 -1}} | ||
| (small) tridecimal 2/3-tone, trienthird | | (small) tridecimal 2/3-tone, trienthird | ||
|- | |- | ||
Line 284: | Line 284: | ||
| 67.900 | | 67.900 | ||
| (2*13)/5<sup>2</sup> | | (2*13)/5<sup>2</sup> | ||
| {{ | | {{monzo|1 0 -2 0 0 1}} | ||
| (large) tridecimal 1/3-tone | | (large) tridecimal 1/3-tone | ||
|- | |- | ||
Line 290: | Line 290: | ||
| 65.337 | | 65.337 | ||
| 3<sup>3</sup>/(2*13) | | 3<sup>3</sup>/(2*13) | ||
| {{ | | {{monzo|-1 3 0 0 0 -1}} | ||
| (small) tridecimal 1/3-tone | | (small) tridecimal 1/3-tone | ||
|- | |- | ||
Line 296: | Line 296: | ||
| 43.831 | | 43.831 | ||
| (2<sup>3</sup>*5)/(3*13) | | (2<sup>3</sup>*5)/(3*13) | ||
| {{ | | {{monzo|3 -1 1 0 0 -1}} | ||
| tridecimal minor diesis | | tridecimal minor diesis | ||
|- | |- | ||
Line 302: | Line 302: | ||
| 26.841 | | 26.841 | ||
| (5*13)/2<sup>6</sup> | | (5*13)/2<sup>6</sup> | ||
| {{ | | {{monzo|-6 0 1 0 0 1}} | ||
| wilsorma, 13th-partial chroma | | wilsorma, 13th-partial chroma | ||
|- | |- | ||
Line 308: | Line 308: | ||
| 26.432 | | 26.432 | ||
| (2*3*11)/(5*13) | | (2*3*11)/(5*13) | ||
| {{ | | {{monzo|1 1 -1 0 1 -1}} | ||
| winmeanma | | winmeanma | ||
|- | |- | ||
Line 314: | Line 314: | ||
| 22.339 | | 22.339 | ||
| (2*3*13)/(7*11) | | (2*3*13)/(7*11) | ||
| {{ | | {{monzo|1 1 0 -1 -1 1}} | ||
| negustma | | negustma | ||
|- | |- | ||
Line 320: | Line 320: | ||
| 19.130 | | 19.130 | ||
| (7*13)/(2*3<sup>2</sup>*5) | | (7*13)/(2*3<sup>2</sup>*5) | ||
| {{ | | {{monzo|-1 -2 -1 1 0 1}} | ||
| [[The_Biosphere|Biome]] comma, superleap comma | | [[The_Biosphere|Biome]] comma, superleap comma | ||
|- | |- | ||
Line 326: | Line 326: | ||
| 16.567 | | 16.567 | ||
| (3*5*7)/(2<sup>3</sup>*13) | | (3*5*7)/(2<sup>3</sup>*13) | ||
| {{ | | {{monzo|-3 1 1 1 0 -1}} | ||
| small tridecimal comma, animist comma | | small tridecimal comma, animist comma | ||
|- | |- | ||
Line 332: | Line 332: | ||
| 12.064 | | 12.064 | ||
| (2<sup>2</sup>*3)<sup>2</sup>/(11*13) | | (2<sup>2</sup>*3)<sup>2</sup>/(11*13) | ||
| {{ | | {{monzo|4 2 0 0 -1 -1}} | ||
| grossma | | grossma | ||
|- | |- | ||
Line 338: | Line 338: | ||
| 10.274 | | 10.274 | ||
| 13<sup>2</sup>/(2<sup>3</sup>*3*7) | | 13<sup>2</sup>/(2<sup>3</sup>*3*7) | ||
| {{ | | {{monzo|-3 -1 0 -1 0 2}} | ||
| buzurgisma, dhanvantarisma | | buzurgisma, dhanvantarisma | ||
|- | |- | ||
Line 344: | Line 344: | ||
| 8.8554 | | 8.8554 | ||
| (2*7)<sup>2</sup>/(3*5*13) | | (2*7)<sup>2</sup>/(3*5*13) | ||
| {{ | | {{monzo|2 -1 -1 2 0 -1}} | ||
| [[Mynucumic_chords|mynucuma]] | | [[Mynucumic_chords|mynucuma]] | ||
|- | |- | ||
Line 350: | Line 350: | ||
| 5.3351 | | 5.3351 | ||
| (5<sup>2</sup>*13)/(2<sup>2</sup>*3<sup>4</sup>) | | (5<sup>2</sup>*13)/(2<sup>2</sup>*3<sup>4</sup>) | ||
| {{ | | {{monzo|-2 -4 2 0 0 1}} | ||
| [[Marveltwin|marveltwin comma]] | | [[Marveltwin|marveltwin comma]] | ||
|- | |- | ||
Line 356: | Line 356: | ||
| 4.9393 | | 4.9393 | ||
| (3/5)<sup>2</sup>*13/(2*7) | | (3/5)<sup>2</sup>*13/(2*7) | ||
| {{ | | {{monzo|-1 3 -2 -1 0 1}} | ||
| ratwolfsma | | ratwolfsma | ||
|- | |- | ||
Line 362: | Line 362: | ||
| 4.9253 | | 4.9253 | ||
| (2<sup>5</sup>*11)/(3<sup>2</sup>*13) | | (2<sup>5</sup>*11)/(3<sup>2</sup>*13) | ||
| {{ | | {{monzo|5 -3 0 0 1 -1}} | ||
| minthma | | minthma | ||
|- | |- | ||
Line 368: | Line 368: | ||
| 4.7627 | | 4.7627 | ||
| (2/11)<sup>2</sup>*7*13/3 | | (2/11)<sup>2</sup>*7*13/3 | ||
| {{ | | {{monzo|2 -1 0 1 -2 1}} | ||
| gentle comma | | gentle comma | ||
|- | |- | ||
Line 374: | Line 374: | ||
| 2.7722 | | 2.7722 | ||
| (5/2)<sup>4</sup>/(3*13) | | (5/2)<sup>4</sup>/(3*13) | ||
| {{ | | {{monzo|-4 -1 4 0 0 -1}} | ||
| tunbarsma | | tunbarsma | ||
|- | |- | ||
Line 380: | Line 380: | ||
| 2.5629 | | 2.5629 | ||
| (2*13/5)<sup>2</sup>/3<sup>3</sup> | | (2*13/5)<sup>2</sup>/3<sup>3</sup> | ||
| {{ | | {{monzo|2 -3 -2 0 0 2}} | ||
| island comma | | island comma | ||
|- | |- | ||
Line 386: | Line 386: | ||
| 2.3764 | | 2.3764 | ||
| (3<sup>2</sup>/2)<sup>3</sup>/(7*13) | | (3<sup>2</sup>/2)<sup>3</sup>/(7*13) | ||
| {{ | | {{monzo|-3 6 0 -1 0 -1}} | ||
| squbema | | squbema | ||
|- | |- | ||
Line 392: | Line 392: | ||
| 1.7304 | | 1.7304 | ||
| 7*11*13/(2*5)<sup>3</sup> | | 7*11*13/(2*5)<sup>3</sup> | ||
| {{ | | {{monzo|-3 0 -3 1 1 1}} | ||
| sinbadma | | sinbadma | ||
|- | |- | ||
Line 398: | Line 398: | ||
| 1.0092 | | 1.0092 | ||
| 2<sup>2</sup>*3*11*13/(5*7<sup>3</sup>) | | 2<sup>2</sup>*3*11*13/(5*7<sup>3</sup>) | ||
| {{ | | {{monzo|2 1 -1 -3 1 1}} | ||
| lummic comma | | lummic comma | ||
|- | |- | ||
Line 404: | Line 404: | ||
| 0.83252 | | 0.83252 | ||
| 2<sup>5</sup>*5*13/(3<sup>3</sup>*7*11) | | 2<sup>5</sup>*5*13/(3<sup>3</sup>*7*11) | ||
| {{ | | {{monzo|5 -3 1 -1 -1 1}} | ||
| ibnsinma | | ibnsinma | ||
|- | |- | ||
Line 410: | Line 410: | ||
| 0.42272 | | 0.42272 | ||
| (2<sup>6</sup>/3)<sup>2</sup>/(5*7*13) | | (2<sup>6</sup>/3)<sup>2</sup>/(5*7*13) | ||
| {{ | | {{monzo|12 -2 -1 -1 0 -1}} | ||
| tridecimal schisma, Sagittal schismina | | tridecimal schisma, Sagittal schismina | ||
|- | |- | ||
Line 416: | Line 416: | ||
| 0.40981 | | 0.40981 | ||
| (5*13)<sup>2</sup>/(2<sup>7</sup>*3*11) | | (5*13)<sup>2</sup>/(2<sup>7</sup>*3*11) | ||
| {{ | | {{monzo|-7 -1 2 0 -1 2}} | ||
| leprechaun comma | | leprechaun comma | ||
|- | |- | ||
Line 422: | Line 422: | ||
| 0.26012 | | 0.26012 | ||
| (2<sup>3</sup>/11)<sup>3</sup>*13/5 | | (2<sup>3</sup>/11)<sup>3</sup>*13/5 | ||
| {{ | | {{monzo|9 0 -1 0 -3 1}} | ||
| jacobin comma | | jacobin comma | ||
|- | |- | ||
Line 428: | Line 428: | ||
| 0.16260 | | 0.16260 | ||
| (2*11)<sup>3</sup>/((3*13)<sup>2</sup>*7) | | (2*11)<sup>3</sup>/((3*13)<sup>2</sup>*7) | ||
| {{ | | {{monzo|3 -2 0 -1 3 -2}} | ||
| harmonisma | | harmonisma | ||
|- | |- | ||
Line 434: | Line 434: | ||
| 0.014052 | | 0.014052 | ||
| (3/2)<sup>6</sup>*(13/5)<sup>2</sup>/(7*11) | | (3/2)<sup>6</sup>*(13/5)<sup>2</sup>/(7*11) | ||
| {{ | | {{monzo|-6 6 -2 -1 -1 2}} | ||
| chalmersia | | chalmersia | ||
|- | |- | ||
Line 442: | Line 442: | ||
| 104.955 | | 104.955 | ||
| 17/2<sup>4</sup> | | 17/2<sup>4</sup> | ||
| {{ | | {{monzo|-4 0 0 0 0 0 1}} | ||
| large septendecimal semitone, 17th harmonic (octave reduced) | | large septendecimal semitone, 17th harmonic (octave reduced) | ||
|- | |- | ||
Line 448: | Line 448: | ||
| 98.955 | | 98.955 | ||
| (2*3<sup>2</sup>)/17 | | (2*3<sup>2</sup>)/17 | ||
| {{ | | {{monzo|1 2 0 0 0 0 -1}} | ||
| small septendecimal semitone, Arabic lute index finger | | small septendecimal semitone, Arabic lute index finger | ||
|- | |- | ||
Line 454: | Line 454: | ||
| 51.682 | | 51.682 | ||
| (2*17)/(3*11) | | (2*17)/(3*11) | ||
| {{ | | {{monzo|1 -1 0 0 -1 0 1}} | ||
| large septendecimal 1/4-tone | | large septendecimal 1/4-tone | ||
|- | |- | ||
Line 460: | Line 460: | ||
| 50.184 | | 50.184 | ||
| (5*7)/(2*17) | | (5*7)/(2*17) | ||
| {{ | | {{monzo|-1 0 1 1 0 0 -1}} | ||
| small septendecimal 1/4-tone | | small septendecimal 1/4-tone | ||
|- | |- | ||
Line 466: | Line 466: | ||
| 34.283 | | 34.283 | ||
| (3*17)/(2*5<sup>2</sup>) | | (3*17)/(2*5<sup>2</sup>) | ||
| {{ | | {{monzo|-1 1 -2 0 0 0 1}} | ||
| large septendecimal 1/6-tone | | large septendecimal 1/6-tone | ||
|- | |- | ||
Line 472: | Line 472: | ||
| 33.617 | | 33.617 | ||
| (2<sup>2</sup>*13)/(3*17) | | (2<sup>2</sup>*13)/(3*17) | ||
| {{ | | {{monzo|2 -1 0 0 0 1 -1}} | ||
| small septendecimal 1/6-tone | | small septendecimal 1/6-tone | ||
|- | |- | ||
Line 478: | Line 478: | ||
| 20.488 | | 20.488 | ||
| (5*17)/(2<sup>2</sup>*3*7) | | (5*17)/(2<sup>2</sup>*3*7) | ||
| {{ | | {{monzo|-2 -1 1 -1 0 0 1}} | ||
| septendecimal comma (?) | | septendecimal comma (?) | ||
|- | |- | ||
Line 484: | Line 484: | ||
| 14.487 | | 14.487 | ||
| (2<sup>3</sup>*3*5)/(7*17) | | (2<sup>3</sup>*3*5)/(7*17) | ||
| {{ | | {{monzo|3 1 1 -1 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 490: | Line 490: | ||
| 12.777 | | 12.777 | ||
| (2/3)<sup>3</sup>*17/5 | | (2/3)<sup>3</sup>*17/5 | ||
| {{ | | {{monzo|3 -3 -1 0 0 0 1}} | ||
| septendecimal major second comma | | septendecimal major second comma | ||
|- | |- | ||
Line 496: | Line 496: | ||
| 11.278 | | 11.278 | ||
| (2*7*11)/(3<sup>2</sup>*17) | | (2*7*11)/(3<sup>2</sup>*17) | ||
| {{ | | {{monzo|1 -2 0 1 1 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 502: | Line 502: | ||
| 10.214 | | 10.214 | ||
| (2*5*17)/13<sup>2</sup> | | (2*5*17)/13<sup>2</sup> | ||
| {{ | | {{monzo|1 0 1 0 0 -2 1}} | ||
| | | | ||
|- | |- | ||
Line 508: | Line 508: | ||
| 7.8514 | | 7.8514 | ||
| (13*17)/(2<sup>2</sup>*5*11) | | (13*17)/(2<sup>2</sup>*5*11) | ||
| {{ | | {{monzo|-2 0 -1 0 -1 1 1}} | ||
| | | | ||
|- | |- | ||
Line 514: | Line 514: | ||
| 6.7759 | | 6.7759 | ||
| (2<sup>8</sup>)/(3*5*17) | | (2<sup>8</sup>)/(3*5*17) | ||
| {{ | | {{monzo|8 -1 -1 0 0 0 -1}} | ||
| septendecimal kleisma, 255th subharmonic | | septendecimal kleisma, 255th subharmonic | ||
|- | |- | ||
Line 520: | Line 520: | ||
| 6.3532 | | 6.3532 | ||
| (3*7*13)/(2<sup>4</sup>*17) | | (3*7*13)/(2<sup>4</sup>*17) | ||
| {{ | | {{monzo|-4 1 0 1 0 1 -1}} | ||
| tannisma | | tannisma | ||
|- | |- | ||
Line 526: | Line 526: | ||
| 6.0008 | | 6.0008 | ||
| (17/3)<sup>2</sup>/2<sup>5</sup> | | (17/3)<sup>2</sup>/2<sup>5</sup> | ||
| {{ | | {{monzo|-5 -2 0 0 0 0 2}} | ||
| septendecimal 6-cent comma | | septendecimal 6-cent comma | ||
|- | |- | ||
Line 532: | Line 532: | ||
| 4.6228 | | 4.6228 | ||
| (3*5<sup>3</sup>)/(2*11*17) | | (3*5<sup>3</sup>)/(2*11*17) | ||
| {{ | | {{monzo|-1 1 3 0 -1 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 538: | Line 538: | ||
| 3.9213 | | 3.9213 | ||
| (2*13*17)/(3*7)<sup>2</sup> | | (2*13*17)/(3*7)<sup>2</sup> | ||
| {{ | | {{monzo|1 -2 0 -2 0 1 1}} | ||
| | | | ||
|- | |- | ||
Line 544: | Line 544: | ||
| 3.0887 | | 3.0887 | ||
| (3*11*17)/(2<sup>4</sup>*5*7) | | (3*11*17)/(2<sup>4</sup>*5*7) | ||
| {{ | | {{monzo|-4 1 -1 -1 1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 550: | Line 550: | ||
| 2.9121 | | 2.9121 | ||
| (5*7*17)/(2*3<sup>3</sup>*11) | | (5*7*17)/(2*3<sup>3</sup>*11) | ||
| {{ | | {{monzo|-1 -3 1 1 -1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 556: | Line 556: | ||
| 2.4230 | | 2.4230 | ||
| (5*11*13)/(2*3*7*17) | | (5*11*13)/(2*3*7*17) | ||
| {{ | | {{monzo|-1 -1 1 -1 1 1 -1}} | ||
| | | | ||
|- | |- | ||
Line 562: | Line 562: | ||
| 2.0796 | | 2.0796 | ||
| (7<sup>2</sup>*17)/(2<sup>6</sup>*13) | | (7<sup>2</sup>*17)/(2<sup>6</sup>*13) | ||
| {{ | | {{monzo|-6 0 0 2 0 -1 1}} | ||
| | | | ||
|- | |- | ||
Line 568: | Line 568: | ||
| 1.8506 | | 1.8506 | ||
| (2<sup>3</sup>*3<sup>2</sup>*13)/(5*11*17) | | (2<sup>3</sup>*3<sup>2</sup>*13)/(5*11*17) | ||
| {{ | | {{monzo|3 2 -1 0 -1 1 -1}} | ||
| ainos comma, ainma | | ainos comma, ainma | ||
|- | |- | ||
Line 574: | Line 574: | ||
| 1.5905 | | 1.5905 | ||
| (3<sup>2</sup>*11<sup>2</sup>)/(2<sup>6</sup>*17) | | (3<sup>2</sup>*11<sup>2</sup>)/(2<sup>6</sup>*17) | ||
| {{ | | {{monzo|-6 2 0 0 2 0 -1}} | ||
| twosquare comma | | twosquare comma | ||
|- | |- | ||
Line 580: | Line 580: | ||
| 1.4983 | | 1.4983 | ||
| (2<sup>2</sup>*17<sup>2</sup>)/(3*5*7*11) | | (2<sup>2</sup>*17<sup>2</sup>)/(3*5*7*11) | ||
| {{ | | {{monzo|2 -1 -1 -1 -1 0 2}} | ||
| | | | ||
|- | |- | ||
Line 586: | Line 586: | ||
| 1.4138 | | 1.4138 | ||
| (5<sup>2</sup>*7<sup>2</sup>)/(2<sup>3</sup>*3<sup>2</sup>*17) | | (5<sup>2</sup>*7<sup>2</sup>)/(2<sup>3</sup>*3<sup>2</sup>*17) | ||
| {{ | | {{monzo|-3 -2 2 2 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 592: | Line 592: | ||
| 1.3584 | | 1.3584 | ||
| (3*5<sup>2</sup>*17)/(2*7<sup>2</sup>*13) | | (3*5<sup>2</sup>*17)/(2*7<sup>2</sup>*13) | ||
| {{ | | {{monzo|-1 1 2 -2 0 -1 1}} | ||
| | | | ||
|- | |- | ||
Line 598: | Line 598: | ||
| 1.0181 | | 1.0181 | ||
| (3<sup>5</sup>*7)/[(2*5)<sup>2</sup>*17] | | (3<sup>5</sup>*7)/[(2*5)<sup>2</sup>*17] | ||
| {{ | | {{monzo|-2 5 -2 1 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 604: | Line 604: | ||
| 0.84143 | | 0.84143 | ||
| (2*3*7<sup>3</sup>)/(11<sup>2</sup>*17) | | (2*3*7<sup>3</sup>)/(11<sup>2</sup>*17) | ||
| {{ | | {{monzo|1 1 0 3 -2 0 -1}} | ||
| xenisma | | xenisma | ||
|- | |- | ||
Line 610: | Line 610: | ||
| 0.71230 | | 0.71230 | ||
| (11*13*17)/(2*3<sup>5</sup>*5) | | (11*13*17)/(2*3<sup>5</sup>*5) | ||
| {{ | | {{monzo|-1 -5 -1 0 1 1 1}} | ||
| | | | ||
|- | |- | ||
Line 616: | Line 616: | ||
| 0.69263 | | 0.69263 | ||
| (2<sup>2</sup>*5<sup>4</sup>)/(3*7<sup>2</sup>*17) | | (2<sup>2</sup>*5<sup>4</sup>)/(3*7<sup>2</sup>*17) | ||
| {{ | | {{monzo|2 -1 4 -2 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 622: | Line 622: | ||
| 0.66573 | | 0.66573 | ||
| (3<sup>2</sup>*17<sup>2</sup>)/(2<sup>3</sup>*5<sup>2</sup>*13) | | (3<sup>2</sup>*17<sup>2</sup>)/(2<sup>3</sup>*5<sup>2</sup>*13) | ||
| {{ | | {{monzo|-3 2 -2 0 0 -1 2}} | ||
| | | | ||
|- | |- | ||
Line 628: | Line 628: | ||
| 0.35234 | | 0.35234 | ||
| (2*3<sup>3</sup>*7*13)/(17<sup>3</sup>) | | (2*3<sup>3</sup>*7*13)/(17<sup>3</sup>) | ||
| {{ | | {{monzo|1 3 0 1 0 1 -3}} | ||
| | | | ||
|- | |- | ||
Line 634: | Line 634: | ||
| 0.29688 | | 0.29688 | ||
| (2<sup>3</sup>*3<sup>6</sup>)/(7<sup>3</sup>*17) | | (2<sup>3</sup>*3<sup>6</sup>)/(7<sup>3</sup>*17) | ||
| {{ | | {{monzo|3 6 0 -3 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 640: | Line 640: | ||
| 0.13989 | | 0.13989 | ||
| (2<sup>3</sup>*7*13*17)/(3<sup>2</sup>*5<sup>3</sup>*11) | | (2<sup>3</sup>*7*13*17)/(3<sup>2</sup>*5<sup>3</sup>*11) | ||
| {{ | | {{monzo|3 -2 -3 1 -1 1 1}} | ||
| flashma | | flashma | ||
|- | |- | ||
Line 646: | Line 646: | ||
| 0.12023 | | 0.12023 | ||
| (2<sup>6</sup>*3<sup>2</sup>*5<sup>2</sup>)/(7*11<sup>2</sup>*17) | | (2<sup>6</sup>*3<sup>2</sup>*5<sup>2</sup>)/(7*11<sup>2</sup>*17) | ||
| {{ | | {{monzo|6 2 2 -1 -2 0 -1}} | ||
| sparkisma | | sparkisma | ||
|- | |- | ||
Line 652: | Line 652: | ||
| 0.060616 | | 0.060616 | ||
| (13<sup>4</sup>)/(2<sup>4</sup>*3*5*7*17) | | (13<sup>4</sup>)/(2<sup>4</sup>*3*5*7*17) | ||
| {{ | | {{monzo|-4 -1 -1 -1 0 4 -1}} | ||
| | | | ||
|- | |- | ||
Line 658: | Line 658: | ||
| 0.055466 | | 0.055466 | ||
| (7<sup>4</sup>*13)/(2<sup>2</sup>*3<sup>3</sup>*17<sup>2</sup>) | | (7<sup>4</sup>*13)/(2<sup>2</sup>*3<sup>3</sup>*17<sup>2</sup>) | ||
| {{ | | {{monzo|-2 -3 0 4 0 1 -2}} | ||
| | | | ||
|- | |- | ||
Line 664: | Line 664: | ||
| 0.046564 | | 0.046564 | ||
| (2<sup>2</sup>*5*11*13<sup>2</sup>)/(3<sup>7</sup>*17) | | (2<sup>2</sup>*5*11*13<sup>2</sup>)/(3<sup>7</sup>*17) | ||
| {{ | | {{monzo|2 -7 1 0 1 2 -1}} | ||
| | | | ||
|- | |- | ||
Line 670: | Line 670: | ||
| 0.008902 | | 0.008902 | ||
| (3<sup>4</sup>*7<sup>4</sup>)/(2<sup>4</sup>*5*11*13*17) | | (3<sup>4</sup>*7<sup>4</sup>)/(2<sup>4</sup>*5*11*13*17) | ||
| {{ | | {{monzo|-4 4 -1 4 -1 -1 -1}} | ||
| scintillisma | | scintillisma | ||
|- | |- | ||
Line 676: | Line 676: | ||
| 0.005150 | | 0.005150 | ||
| (3<sup>2</sup>*13<sup>3</sup>*17)/(2<sup>2</sup>*5*7<sup>5</sup>) | | (3<sup>2</sup>*13<sup>3</sup>*17)/(2<sup>2</sup>*5*7<sup>5</sup>) | ||
| {{ | | {{monzo|-2 2 -1 -5 0 3 1}} | ||
| | | | ||
|- | |- | ||
Line 684: | Line 684: | ||
| 93.603 | | 93.603 | ||
| 19/(2*3<sup>2</sup>) | | 19/(2*3<sup>2</sup>) | ||
| {{ | | {{monzo|-1 -2 0 0 0 0 0 1}} | ||
| large undevicesimal semitone | | large undevicesimal semitone | ||
|- | |- | ||
Line 690: | Line 690: | ||
| 88.801 | | 88.801 | ||
| (2<sup>2</sup>*5)/19 | | (2<sup>2</sup>*5)/19 | ||
| {{ | | {{monzo|2 0 1 0 0 0 0 -1}} | ||
| small undevicesimal semitone | | small undevicesimal semitone | ||
|- | |- | ||
Line 696: | Line 696: | ||
| 44.970 | | 44.970 | ||
| (3*13)/(2*19) | | (3*13)/(2*19) | ||
| {{ | | {{monzo|-1 1 0 0 0 1 0 -1}} | ||
| undevicesimal 2/9-tone | | undevicesimal 2/9-tone | ||
|- | |- | ||
Line 702: | Line 702: | ||
| 30.642 | | 30.642 | ||
| (3*19)/(2<sup>3</sup>*7) | | (3*19)/(2<sup>3</sup>*7) | ||
| {{ | | {{monzo|-3 1 0 -1 0 0 0 1}} | ||
| hendrix comma | | hendrix comma | ||
|- | |- | ||
Line 708: | Line 708: | ||
| 22.931 | | 22.931 | ||
| (2<sup>2</sup>*19)/(3*5<sup>2</sup>) | | (2<sup>2</sup>*19)/(3*5<sup>2</sup>) | ||
| {{ | | {{monzo|2 -1 -2 0 0 0 0 1}} | ||
| undevicesimal 1/9-tone (greater) | | undevicesimal 1/9-tone (greater) | ||
|- | |- | ||
Line 714: | Line 714: | ||
| 22.631 | | 22.631 | ||
| (7*11)/(2<sup>2</sup>*19) | | (7*11)/(2<sup>2</sup>*19) | ||
| {{ | | {{monzo|-2 0 0 1 1 0 0 -1}} | ||
| undevicesimal 1/9-tone (lesser) | | undevicesimal 1/9-tone (lesser) | ||
|- | |- | ||
Line 720: | Line 720: | ||
| 18.128 | | 18.128 | ||
| (2<sup>5</sup>*3)/(5*19) | | (2<sup>5</sup>*3)/(5*19) | ||
| {{ | | {{monzo|5 1 -1 0 0 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 726: | Line 726: | ||
| 13.066 | | 13.066 | ||
| (19*7)/(2<sup>2</sup>*3*11) | | (19*7)/(2<sup>2</sup>*3*11) | ||
| {{ | | {{monzo|-2 -1 0 1 -1 0 0 1}} | ||
| | | | ||
|- | |- | ||
Line 732: | Line 732: | ||
| 11.352 | | 11.352 | ||
| (3<sup>2</sup>*17)/(2<sup>3</sup>*19) | | (3<sup>2</sup>*17)/(2<sup>3</sup>*19) | ||
| {{ | | {{monzo|-3 2 0 0 0 0 1 -1}} | ||
| | | | ||
|- | |- | ||
Line 738: | Line 738: | ||
| 10.154 | | 10.154 | ||
| (3<sup>2</sup>*19)/(2*5*17) | | (3<sup>2</sup>*19)/(2*5*17) | ||
| {{ | | {{monzo|-1 2 -1 0 0 0 -1 1}} | ||
| | | | ||
|- | |- | ||
Line 744: | Line 744: | ||
| 9.1358 | | 9.1358 | ||
| (2*5*19)/(3<sup>3</sup>*7) | | (2*5*19)/(3<sup>3</sup>*7) | ||
| {{ | | {{monzo|1 -3 1 -1 0 0 0 1}} | ||
| | | | ||
|- | |- | ||
Line 750: | Line 750: | ||
| 8.3033 | | 8.3033 | ||
| (11*19)/(2<sup>4</sup>*13) | | (11*19)/(2<sup>4</sup>*13) | ||
| {{ | | {{monzo|-4 0 0 0 1 -1 0 1}} | ||
| yama comma | | yama comma | ||
|- | |- | ||
Line 756: | Line 756: | ||
| 8.2637 | | 8.2637 | ||
| (2*3*5*7)/(11*19) | | (2*3*5*7)/(11*19) | ||
| {{ | | {{monzo|1 1 1 1 -1 0 0 -1}} | ||
| spleen comma | | spleen comma | ||
|- | |- | ||
Line 762: | Line 762: | ||
| 6.0639 | | 6.0639 | ||
| (2*11*13)/(3*5*19) | | (2*11*13)/(3*5*19) | ||
| {{ | | {{monzo|1 -1 -1 0 1 1 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 768: | Line 768: | ||
| 5.3516 | | 5.3516 | ||
| (2<sup>2</sup>*3<sup>4</sup>)/(17*19) | | (2<sup>2</sup>*3<sup>4</sup>)/(17*19) | ||
| {{ | | {{monzo|2 4 0 0 0 0 -1 -1}} | ||
| | | | ||
|- | |- | ||
Line 774: | Line 774: | ||
| 5.0547 | | 5.0547 | ||
| 7<sup>4</sup>/(2*3<sup>3</sup>*19) | | 7<sup>4</sup>/(2*3<sup>3</sup>*19) | ||
| {{ | | {{monzo|-1 -2 0 3 0 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 780: | Line 780: | ||
| 4.8023 | | 4.8023 | ||
| 19<sup>2</sup>/(2<sup>3</sup>*3<sup>2</sup>*5) | | 19<sup>2</sup>/(2<sup>3</sup>*3<sup>2</sup>*5) | ||
| {{ | | {{monzo|-3 -2 -1 0 0 0 0 2}} | ||
| go comma | | go comma | ||
|- | |- | ||
Line 786: | Line 786: | ||
| 4.3335 | | 4.3335 | ||
| (2<sup>4</sup>*5<sup>2</sup>)/(3*7*19) | | (2<sup>4</sup>*5<sup>2</sup>)/(3*7*19) | ||
| {{ | | {{monzo|4 -1 2 -1 0 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 792: | Line 792: | ||
| 3.8007 | | 3.8007 | ||
| (2<sup>3</sup>*3*19)/(5*7*13) | | (2<sup>3</sup>*3*19)/(5*7*13) | ||
| {{ | | {{monzo|3 1 -1 -1 0 -1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 798: | Line 798: | ||
| 3.6409 | | 3.6409 | ||
| (2<sup>2</sup>*7*17)/(5<sup>2</sup>*19) | | (2<sup>2</sup>*7*17)/(5<sup>2</sup>*19) | ||
| {{ | | {{monzo|2 0 -2 1 0 0 1 -1}} | ||
| | | | ||
|- | |- | ||
Line 804: | Line 804: | ||
| 3.5010 | | 3.5010 | ||
| (3<sup>2</sup>*5*11)/(2*13*19) | | (3<sup>2</sup>*5*11)/(2*13*19) | ||
| {{ | | {{monzo|-1 2 1 0 1 -1 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 810: | Line 810: | ||
| 3.3780 | | 3.3780 | ||
| (3<sup>3</sup>*19)/2<sup>9</sup> | | (3<sup>3</sup>*19)/2<sup>9</sup> | ||
| {{ | | {{monzo|-9 3 0 0 0 0 0 1}} | ||
| undevicesimal comma, undevicesimal schisma, 513th harmonic | | undevicesimal comma, undevicesimal schisma, 513th harmonic | ||
|- | |- | ||
Line 816: | Line 816: | ||
| 1.7875 | | 1.7875 | ||
| (3*17*19)/(2<sup>3</sup>*11<sup>2</sup>) | | (3*17*19)/(2<sup>3</sup>*11<sup>2</sup>) | ||
| {{ | | {{monzo|-3 1 0 0 -2 0 1 1}} | ||
| | | | ||
|- | |- | ||
Line 822: | Line 822: | ||
| 1.4243 | | 1.4243 | ||
| (2<sup>6</sup>*19)/(3<sup>5</sup>*5) | | (2<sup>6</sup>*19)/(3<sup>5</sup>*5) | ||
| {{ | | {{monzo|6 -5 -1 0 0 0 0 1}} | ||
| password comma, Eratosthenes' comma | | password comma, Eratosthenes' comma | ||
|- | |- | ||
Line 828: | Line 828: | ||
| 1.3012 | | 1.3012 | ||
| 11<sup>3</sup>/(2*5*7*19) | | 11<sup>3</sup>/(2*5*7*19) | ||
| {{ | | {{monzo|-1 0 -1 -1 3 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 834: | Line 834: | ||
| 1.1985 | | 1.1985 | ||
| 5*(17/(2*19))<sup>2</sup> | | 5*(17/(2*19))<sup>2</sup> | ||
| {{ | | {{monzo|-2 0 1 0 0 0 2 -2}} | ||
| | | | ||
|- | |- | ||
Line 840: | Line 840: | ||
| 1.1386 | | 1.1386 | ||
| (3*13)<sup>2</sup>/(2<sup>4</sup>*5*19) | | (3*13)<sup>2</sup>/(2<sup>4</sup>*5*19) | ||
| {{ | | {{monzo|-4 2 -1 0 0 2 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 846: | Line 846: | ||
| 1.1245 | | 1.1245 | ||
| (2<sup>2</sup>*5*7*11)/(3<sup>4</sup>*19) | | (2<sup>2</sup>*5*7*11)/(3<sup>4</sup>*19) | ||
| {{ | | {{monzo|2 -4 1 1 1 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 852: | Line 852: | ||
| 1.0016 | | 1.0016 | ||
| (7*13*19)/(2<sup>6</sup>*3<sup>3</sup>) | | (7*13*19)/(2<sup>6</sup>*3<sup>3</sup>) | ||
| {{ | | {{monzo|-6 -3 0 1 0 1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 858: | Line 858: | ||
| 0.7288 | | 0.7288 | ||
| (5<sup>3</sup>*19)/(2<sup>3</sup>*3<sup>3</sup>*11) | | (5<sup>3</sup>*19)/(2<sup>3</sup>*3<sup>3</sup>*11) | ||
| {{ | | {{monzo|-3 -3 3 0 -1 0 0 1}} | ||
| | | | ||
|- | |- | ||
Line 864: | Line 864: | ||
| 0.7120 | | 0.7120 | ||
| (11*13*17)/(2<sup>7</sup>*19) | | (11*13*17)/(2<sup>7</sup>*19) | ||
| {{ | | {{monzo|-7 0 0 0 1 1 1 -1}} | ||
| Blumeyer comma | | Blumeyer comma | ||
|- | |- | ||
Line 870: | Line 870: | ||
| 0.5918 | | 0.5918 | ||
| (2*7*11*19)/(3<sup>2</sup>*5<sup>2</sup>*13) | | (2*7*11*19)/(3<sup>2</sup>*5<sup>2</sup>*13) | ||
| {{ | | {{monzo|1 -2 -2 1 1 -1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 876: | Line 876: | ||
| 0.5521 | | 0.5521 | ||
| (2<sup>6</sup>*7<sup>2</sup>)/(3*5*11*19) | | (2<sup>6</sup>*7<sup>2</sup>)/(3*5*11*19) | ||
| {{ | | {{monzo|6 -1 -1 2 -1 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 882: | Line 882: | ||
| 0.5328 | | 0.5328 | ||
| (2*5<sup>3</sup>*13)/(3<sup>2</sup>*19<sup>2</sup>) | | (2*5<sup>3</sup>*13)/(3<sup>2</sup>*19<sup>2</sup>) | ||
| {{ | | {{monzo|1 -2 3 0 0 1 0 -2}} | ||
| | | | ||
|- | |- | ||
Line 888: | Line 888: | ||
| 0.4123 | | 0.4123 | ||
| (2<sup>3</sup>*3*5<sup>2</sup>*7)/(13*17*19) | | (2<sup>3</sup>*3*5<sup>2</sup>*7)/(13*17*19) | ||
| {{ | | {{monzo|3 1 2 1 0 -1 -1 -1}} | ||
| | | | ||
|- | |- | ||
Line 894: | Line 894: | ||
| 0.2998 | | 0.2998 | ||
| (2<sup>4</sup>*19<sup>2</sup>)/(3*5<sup>2</sup>*7*11) | | (2<sup>4</sup>*19<sup>2</sup>)/(3*5<sup>2</sup>*7*11) | ||
| {{ | | {{monzo|4 -1 -2 -1 -1 0 0 2}} | ||
| | | | ||
|- | |- | ||
Line 900: | Line 900: | ||
| 0.2920 | | 0.2920 | ||
| (7<sup>2</sup>*11<sup>2</sup>)/(2<sup>3</sup>*3*13*19) | | (7<sup>2</sup>*11<sup>2</sup>)/(2<sup>3</sup>*3*13*19) | ||
| {{ | | {{monzo|-3 -1 0 2 2 -1 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 906: | Line 906: | ||
| 0.2893 | | 0.2893 | ||
| (2<sup>5</sup>*11*17)/(3<sup>2</sup>*5*7*19) | | (2<sup>5</sup>*11*17)/(3<sup>2</sup>*5*7*19) | ||
| {{ | | {{monzo|5 -2 -1 -1 1 0 1 -1}} | ||
| | | | ||
|- | |- | ||
Line 912: | Line 912: | ||
| 0.2804 | | 0.2804 | ||
| (5<sup>2</sup>*13*19)/(2*3<sup>2</sup>*7<sup>3</sup>) | | (5<sup>2</sup>*13*19)/(2*3<sup>2</sup>*7<sup>3</sup>) | ||
| {{ | | {{monzo|-1 -2 2 -3 0 1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 918: | Line 918: | ||
| 0.2524 | | 0.2524 | ||
| (2<sup>2</sup>*5*7<sup>3</sup>)/(19<sup>3</sup>) | | (2<sup>2</sup>*5*7<sup>3</sup>)/(19<sup>3</sup>) | ||
| {{ | | {{monzo|2 0 1 3 0 0 0 -3}} | ||
| | | | ||
|- | |- | ||
Line 924: | Line 924: | ||
| 0.1691 | | 0.1691 | ||
| (7<sup>2</sup>*11*19)/(2<sup>11</sup>*5) | | (7<sup>2</sup>*11*19)/(2<sup>11</sup>*5) | ||
| {{ | | {{monzo|-11 0 -1 2 1 0 0 1}} | ||
| | | | ||
|- | |- | ||
Line 930: | Line 930: | ||
| 0.1599 | | 0.1599 | ||
| (2*3*5*19<sup>2</sup>)/(7<sup>2</sup>*13*17) | | (2*3*5*19<sup>2</sup>)/(7<sup>2</sup>*13*17) | ||
| {{ | | {{monzo|1 1 1 -2 0 -1 -1 2}} | ||
| | | | ||
|- | |- | ||
Line 936: | Line 936: | ||
| 0.1370 | | 0.1370 | ||
| (2<sup>2</sup>*3<sup>5</sup>*13)/(5*7*19<sup>2</sup>) | | (2<sup>2</sup>*3<sup>5</sup>*13)/(5*7*19<sup>2</sup>) | ||
| {{ | | {{monzo|2 5 -1 -1 0 1 0 -2}} | ||
| | | | ||
|- | |- | ||
Line 942: | Line 942: | ||
| 0.1294 | | 0.1294 | ||
| (3*7<sup>3</sup>*13)/(2<sup>6</sup>*11*19) | | (3*7<sup>3</sup>*13)/(2<sup>6</sup>*11*19) | ||
| {{ | | {{monzo|-6 1 0 3 -1 1 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 948: | Line 948: | ||
| 0.1230 | | 0.1230 | ||
| (2<sup>8</sup>*5*11)/(3*13*19<sup>2</sup>) | | (2<sup>8</sup>*5*11)/(3*13*19<sup>2</sup>) | ||
| {{ | | {{monzo|8 -1 1 0 1 -1 0 -2}} | ||
| | | | ||
|- | |- | ||
Line 954: | Line 954: | ||
| 0.1205 | | 0.1205 | ||
| (5*13<sup>2</sup>*17)/(2<sup>2</sup>*3<sup>3</sup>*7*19) | | (5*13<sup>2</sup>*17)/(2<sup>2</sup>*3<sup>3</sup>*7*19) | ||
| {{ | | {{monzo|-2 -3 1 -1 0 1 1 -1}} | ||
| | | | ||
|- | |- | ||
Line 960: | Line 960: | ||
| 0.07396 | | 0.07396 | ||
| (3<sup>4</sup>*17<sup>2</sup>)/(2<sup>4</sup>*7*11*19) | | (3<sup>4</sup>*17<sup>2</sup>)/(2<sup>4</sup>*7*11*19) | ||
| {{ | | {{monzo|-4 4 0 -1 -1 0 1 -1}} | ||
| | | | ||
|- | |- | ||
Line 966: | Line 966: | ||
| 0.06306 | | 0.06306 | ||
| (2<sup>6</sup>*3*11*17)/(5*17<sup>2</sup>*19) | | (2<sup>6</sup>*3*11*17)/(5*17<sup>2</sup>*19) | ||
| {{ | | {{monzo|6 1 -1 0 1 0 -2 -1}} | ||
| | | | ||
|- | |- | ||
Line 972: | Line 972: | ||
| 0.05991 | | 0.05991 | ||
| (2<sup>2</sup>*5<sup>2</sup>*17<sup>2</sup>)/(3<sup>2</sup>*13<sup>2</sup>*19) | | (2<sup>2</sup>*5<sup>2</sup>*17<sup>2</sup>)/(3<sup>2</sup>*13<sup>2</sup>*19) | ||
| {{ | | {{monzo|2 -2 2 0 0 -2 2 -1}} | ||
| | | | ||
|- | |- | ||
Line 978: | Line 978: | ||
| 0.03963 | | 0.03963 | ||
| (11<sup>2</sup>*19<sup>2</sup>)/(2<sup>5</sup>*3*5*7*13) | | (11<sup>2</sup>*19<sup>2</sup>)/(2<sup>5</sup>*3*5*7*13) | ||
| {{ | | {{monzo|-5 -1 -1 -1 2 -1 0 2}} | ||
| | | | ||
|- | |- | ||
Line 984: | Line 984: | ||
| 0.01937 | | 0.01937 | ||
| (2<sup>5</sup>*3*7<sup>2</sup>*19)/(5<sup>4</sup>*11*13) | | (2<sup>5</sup>*3*7<sup>2</sup>*19)/(5<sup>4</sup>*11*13) | ||
| {{ | | {{monzo|5 1 -4 2 -1 -1 0 1}} | ||
| | | | ||
|- | |- | ||
Line 990: | Line 990: | ||
| 0.01649 | | 0.01649 | ||
| (2<sup>4</sup>*3<sup>8</sup>)/(5<sup>2</sup>*13*17*19) | | (2<sup>4</sup>*3<sup>8</sup>)/(5<sup>2</sup>*13*17*19) | ||
| {{ | | {{monzo|4 8 -2 0 0 0 -1 -1 -1}} | ||
| | | | ||
|- | |- | ||
Line 996: | Line 996: | ||
| 0.01047 | | 0.01047 | ||
| (2<sup>9</sup>*17*19)/(3<sup>3</sup>*5<sup>3</sup>*7<sup>2</sup>) | | (2<sup>9</sup>*17*19)/(3<sup>3</sup>*5<sup>3</sup>*7<sup>2</sup>) | ||
| {{ | | {{monzo|9 -3 -3 -2 0 0 1 1}} | ||
| | | | ||
|- | |- | ||
Line 1,002: | Line 1,002: | ||
| 0.007590 | | 0.007590 | ||
| (2<sup>8</sup>*3<sup>4</sup>*11)/(5*7<sup>4</sup>*19) | | (2<sup>8</sup>*3<sup>4</sup>*11)/(5*7<sup>4</sup>*19) | ||
| {{ | | {{monzo|8 4 -1 -4 1 0 0 -1}} | ||
| | | | ||
|- | |- | ||
Line 1,008: | Line 1,008: | ||
| 0.002879 | | 0.002879 | ||
| (2*7<sup>2</sup>*17*19<sup>2</sup>)/(3<sup>7</sup>*5<sup>2</sup>*11) | | (2*7<sup>2</sup>*17*19<sup>2</sup>)/(3<sup>7</sup>*5<sup>2</sup>*11) | ||
| {{ | | {{monzo|2 -7 -2 2 -1 0 1 2}} | ||
| | | | ||
|- | |- | ||
Line 1,014: | Line 1,014: | ||
| 0.002733 | | 0.002733 | ||
| (2<sup>2</sup>*7*11<sup>3</sup>*17)/(3<sup>3</sup>*5*13*19<sup>2</sup>) | | (2<sup>2</sup>*7*11<sup>3</sup>*17)/(3<sup>3</sup>*5*13*19<sup>2</sup>) | ||
| {{ | | {{monzo|2 -3 -1 1 3 -1 1 -2}} | ||
| | | | ||
|- | |- | ||
Line 1,020: | Line 1,020: | ||
| 0.002440 | | 0.002440 | ||
| (2<sup>10</sup>*3<sup>2</sup>*7*11)/(13<sup>3</sup>*17*19) | | (2<sup>10</sup>*3<sup>2</sup>*7*11)/(13<sup>3</sup>*17*19) | ||
| {{ | | {{monzo|10 2 0 1 1 -3 -1 -1}} | ||
| | | | ||
|- | |- | ||
Line 1,026: | Line 1,026: | ||
| 0.0002929 | | 0.0002929 | ||
| (11<sup>2</sup>*13<sup>2</sup>*17<sup>2</sup>)/(2<sup>8</sup>*3<sup>5</sup>*5*19) | | (11<sup>2</sup>*13<sup>2</sup>*17<sup>2</sup>)/(2<sup>8</sup>*3<sup>5</sup>*5*19) | ||
| {{ | | {{monzo|-8 -5 -1 0 2 2 2 -1}} | ||
| | | | ||
|- | |- | ||
Line 1,032: | Line 1,032: | ||
| 0.0001460 | | 0.0001460 | ||
| (7*13*19<sup>4</sup>)/(2*3<sup>4</sup>*5*11<sup>4</sup>) | | (7*13*19<sup>4</sup>)/(2*3<sup>4</sup>*5*11<sup>4</sup>) | ||
| {{ | | {{monzo|-1 -4 -1 1 -4 1 0 4}} | ||
| | | | ||
|- | |- |
Revision as of 12:18, 17 January 2021
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 19-limit.
Superparticular numbers are ratios of the form (n + 1)/n, or 1 + 1/n, where n is a whole number other than 1. They appear frequently in just intonation and harmonic series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22×32)/(5×7), while 37/36 would belong to the 37-limit.
Størmer's theorem states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS: A002071 gives the number of superparticular ratios in each prime limit, OEIS: A145604 shows the increment from limit to limit, and OEIS: A117581 gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from the Scala website.
Ratio | Cents | Factorization | Monzo | Name(s) |
---|---|---|---|---|
2-limit (complete) | ||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic |
3-limit (complete) | ||||
3/2 | 701.955 | 3/2 | [-1 1⟩ | perfect fifth, 3rd harmonic (octave reduced), diapente |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, 3rd subharmonic (octave reduced), diatessaron |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) |
5-limit (complete) | ||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | (classic) (5-limit) major third, 5th harmonic (octave reduced) |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | (classic) (5-limit) minor third |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic (whole) tone, classic major second, minor whole tone |
16/15 | 111.731 | 24/(3*5) | [4 -1 -1⟩ | minor diatonic semitone, 15th subharmonic |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | chroma, (classic) chromatic semitone, Zarlinian semitone |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma |
7-limit (complete) | ||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, 7th subharmonic |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal diatonic semitone |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | minor semitone, large septimal chroma |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal third-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma |
36/35 | 48.770 | (22*33)/(5*7) | [2 2 -1 -1⟩ | septimal quarter tone, septimal diesis |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | large septimal diesis, slendro diesis, septimal 1/6-tone |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma |
11-limit (complete) | ||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) (undecimal) neutral second, 3/4-tone |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | undecimal 1/5-tone |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | undecimal diasecundal comma, eleventyfive comma |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | small undecimal comma, mothwellsma |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | Ptolemy's comma, ptolemisma |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | undecimal seconds comma, biyatisma |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | neutral third comma, rastma |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | Werckmeister's undecimal septenarian schisma, werckisma |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | Swets' comma, swetisma |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | Lehmerisma |
9801/9800 | 0.17665 | (11/(5*7))2*34/23 | [-3 4 -2 -2 2⟩ | Gauss comma, kalisma |
13-limit (complete) | ||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | (large) tridecimal 2/3-tone, tridecimal neutral second |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | (small) tridecimal 2/3-tone, trienthird |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | (large) tridecimal 1/3-tone |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | (small) tridecimal 1/3-tone |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | small tridecimal comma, animist comma |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | mynucuma |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | marveltwin comma |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma |
625/624 | 2.7722 | (5/2)4/(3*13) | [-4 -1 4 0 0 -1⟩ | tunbarsma |
676/675 | 2.5629 | (2*13/5)2/33 | [2 -3 -2 0 0 2⟩ | island comma |
729/728 | 2.3764 | (32/2)3/(7*13) | [-3 6 0 -1 0 -1⟩ | squbema |
1001/1000 | 1.7304 | 7*11*13/(2*5)3 | [-3 0 -3 1 1 1⟩ | sinbadma |
1716/1715 | 1.0092 | 22*3*11*13/(5*73) | [2 1 -1 -3 1 1⟩ | lummic comma |
2080/2079 | 0.83252 | 25*5*13/(33*7*11) | [5 -3 1 -1 -1 1⟩ | ibnsinma |
4096/4095 | 0.42272 | (26/3)2/(5*7*13) | [12 -2 -1 -1 0 -1⟩ | tridecimal schisma, Sagittal schismina |
4225/4224 | 0.40981 | (5*13)2/(27*3*11) | [-7 -1 2 0 -1 2⟩ | leprechaun comma |
6656/6655 | 0.26012 | (23/11)3*13/5 | [9 0 -1 0 -3 1⟩ | jacobin comma |
10648/10647 | 0.16260 | (2*11)3/((3*13)2*7) | [3 -2 0 -1 3 -2⟩ | harmonisma |
123201/123200 | 0.014052 | (3/2)6*(13/5)2/(7*11) | [-6 6 -2 -1 -1 2⟩ | chalmersia |
17-limit (complete) | ||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | large septendecimal semitone, 17th harmonic (octave reduced) |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | small septendecimal semitone, Arabic lute index finger |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | large septendecimal 1/4-tone |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | small septendecimal 1/4-tone |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | large septendecimal 1/6-tone |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | small septendecimal 1/6-tone |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | septendecimal comma (?) |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | septendecimal major second comma |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | |
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | |
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | |
256/255 | 6.7759 | (28)/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | septendecimal kleisma, 255th subharmonic |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | tannisma |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | septendecimal 6-cent comma |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | |
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | |
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | ainos comma, ainma |
1089/1088 | 1.5905 | (32*112)/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma |
1156/1155 | 1.4983 | (22*172)/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | |
1225/1224 | 1.4138 | (52*72)/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | |
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | |
2058/2057 | 0.84143 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma |
2431/2430 | 0.71230 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | |
2500/2499 | 0.69263 | (22*54)/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | |
2601/2600 | 0.66573 | (32*172)/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | |
4914/4913 | 0.35234 | (2*33*7*13)/(173) | [1 3 0 1 0 1 -3⟩ | |
5832/5831 | 0.29688 | (23*36)/(73*17) | [3 6 0 -3 0 0 -1⟩ | |
12376/12375 | 0.13989 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | flashma |
14400/14399 | 0.12023 | (26*32*52)/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | sparkisma |
28561/28560 | 0.060616 | (134)/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | |
31213/31212 | 0.055466 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | |
37180/37179 | 0.046564 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | |
194481/194480 | 0.008902 | (34*74)/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma |
336141/336140 | 0.005150 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | |
19-limit (complete) | ||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | large undevicesimal semitone |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | undevicesimal 2/9-tone |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | hendrix comma |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | undevicesimal 1/9-tone (greater) |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | undevicesimal 1/9-tone (lesser) |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | |
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | |
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | |
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | yama comma |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | spleen comma |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | |
324/323 | 5.3516 | (22*34)/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | |
343/342 | 5.0547 | 74/(2*33*19) | [-1 -2 0 3 0 0 0 -1⟩ | |
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | go comma |
400/399 | 4.3335 | (24*52)/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | |
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | |
495/494 | 3.5010 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | |
513/512 | 3.3780 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | undevicesimal comma, undevicesimal schisma, 513th harmonic |
969/968 | 1.7875 | (3*17*19)/(23*112) | [-3 1 0 0 -2 0 1 1⟩ | |
1216/1215 | 1.4243 | (26*19)/(35*5) | [6 -5 -1 0 0 0 0 1⟩ | password comma, Eratosthenes' comma |
1331/1330 | 1.3012 | 113/(2*5*7*19) | [-1 0 -1 -1 3 0 0 -1⟩ | |
1445/1444 | 1.1985 | 5*(17/(2*19))2 | [-2 0 1 0 0 0 2 -2⟩ | |
1521/1520 | 1.1386 | (3*13)2/(24*5*19) | [-4 2 -1 0 0 2 0 -1⟩ | |
1540/1539 | 1.1245 | (22*5*7*11)/(34*19) | [2 -4 1 1 1 0 0 -1⟩ | |
1729/1728 | 1.0016 | (7*13*19)/(26*33) | [-6 -3 0 1 0 1 0 1⟩ | |
2376/2375 | 0.7288 | (53*19)/(23*33*11) | [-3 -3 3 0 -1 0 0 1⟩ | |
2432/2431 | 0.7120 | (11*13*17)/(27*19) | [-7 0 0 0 1 1 1 -1⟩ | Blumeyer comma |
2926/2925 | 0.5918 | (2*7*11*19)/(32*52*13) | [1 -2 -2 1 1 -1 0 1⟩ | |
3136/3135 | 0.5521 | (26*72)/(3*5*11*19) | [6 -1 -1 2 -1 0 0 -1⟩ | |
3250/3249 | 0.5328 | (2*53*13)/(32*192) | [1 -2 3 0 0 1 0 -2⟩ | |
4200/4199 | 0.4123 | (23*3*52*7)/(13*17*19) | [3 1 2 1 0 -1 -1 -1⟩ | |
5776/5775 | 0.2998 | (24*192)/(3*52*7*11) | [4 -1 -2 -1 -1 0 0 2⟩ | |
5929/5928 | 0.2920 | (72*112)/(23*3*13*19) | [-3 -1 0 2 2 -1 0 -1⟩ | |
5985/5984 | 0.2893 | (25*11*17)/(32*5*7*19) | [5 -2 -1 -1 1 0 1 -1⟩ | |
6175/6174 | 0.2804 | (52*13*19)/(2*32*73) | [-1 -2 2 -3 0 1 0 1⟩ | |
6860/6859 | 0.2524 | (22*5*73)/(193) | [2 0 1 3 0 0 0 -3⟩ | |
10241/10240 | 0.1691 | (72*11*19)/(211*5) | [-11 0 -1 2 1 0 0 1⟩ | |
10830/10829 | 0.1599 | (2*3*5*192)/(72*13*17) | [1 1 1 -2 0 -1 -1 2⟩ | |
12636/12635 | 0.1370 | (22*35*13)/(5*7*192) | [2 5 -1 -1 0 1 0 -2⟩ | |
13377/13376 | 0.1294 | (3*73*13)/(26*11*19) | [-6 1 0 3 -1 1 0 -1⟩ | |
14080/14079 | 0.1230 | (28*5*11)/(3*13*192) | [8 -1 1 0 1 -1 0 -2⟩ | |
14365/14364 | 0.1205 | (5*132*17)/(22*33*7*19) | [-2 -3 1 -1 0 1 1 -1⟩ | |
23409/23408 | 0.07396 | (34*172)/(24*7*11*19) | [-4 4 0 -1 -1 0 1 -1⟩ | |
27456/27455 | 0.06306 | (26*3*11*17)/(5*172*19) | [6 1 -1 0 1 0 -2 -1⟩ | |
28900/28899 | 0.05991 | (22*52*172)/(32*132*19) | [2 -2 2 0 0 -2 2 -1⟩ | |
43681/43680 | 0.03963 | (112*192)/(25*3*5*7*13) | [-5 -1 -1 -1 2 -1 0 2⟩ | |
89376/89375 | 0.01937 | (25*3*72*19)/(54*11*13) | [5 1 -4 2 -1 -1 0 1⟩ | |
104976/104975 | 0.01649 | (24*38)/(52*13*17*19) | [4 8 -2 0 0 0 -1 -1 -1⟩ | |
165376/165375 | 0.01047 | (29*17*19)/(33*53*72) | [9 -3 -3 -2 0 0 1 1⟩ | |
228096/228095 | 0.007590 | (28*34*11)/(5*74*19) | [8 4 -1 -4 1 0 0 -1⟩ | |
601426/601425 | 0.002879 | (2*72*17*192)/(37*52*11) | [2 -7 -2 2 -1 0 1 2⟩ | |
633556/633555 | 0.002733 | (22*7*113*17)/(33*5*13*192) | [2 -3 -1 1 3 -1 1 -2⟩ | |
709632/709631 | 0.002440 | (210*32*7*11)/(133*17*19) | [10 2 0 1 1 -3 -1 -1⟩ | |
5909761/5909760 | 0.0002929 | (112*132*172)/(28*35*5*19) | [-8 -5 -1 0 2 2 2 -1⟩ | |
11859211/11859210 | 0.0001460 | (7*13*194)/(2*34*5*114) | [-1 -4 -1 1 -4 1 0 4⟩ | |
23-limit (incomplete) | ||||
23/22 | 76.956 | 23/(2*11) | greater vicesimotertial semitone | |
24/23 | 73.681 | (23*3)/23 | small vicesimotertial semitone | |
46/45 | 38.051 | (2*23)/(32*5) | vicesimotertial 1/5-tone | |
69/68 | 25.274 | (3*23)/(22*17) | vicesimotertial 1/8-tone (greater) | |
70/69 | 24.910 | (2*5*7)/(3*23) | vicesimotertial 1/8-tone (lesser) | |
92/91 | 18.921 | (22*23)/(7*13) | ||
115/114 | 15.120 | (5*23)/(2*3*19) | ||
161/160 | 10.787 | (7*23)/(25*5) | ||
162/161 | 10.720 | (2*34)/(7*23) | ||
208/207 | 8.3433 | (24*13)/(32*23) | ||
231/230 | 7.5108 | (3*7*11)/(2*5*23) | ||
253/252 | 6.8564 | (11*23)/((2*3)2*7) | ||
276/275 | 6.2840 | (22*3*23)/(52*11) | ||
300/299 | 5.7804 | ((2*5)2*3)/(13*23) | ||
323/322 | 5.3682 | (17*19)/(2*7*23) | ||
391/390 | 4.4334 | (17*23)/(2*3*5*13) | ||
392/391 | 4.4221 | (23*7*7)/(17*23) | ||
460/459 | 3.7676 | (22*5*23)/(33*17) | ||
484/483 | 3.5806 | (2*11)2/(3*7*23) | ||
507/506 | 3.4180 | (3*132)/(2*11*23) | ||
529/528 | 3.2758 | 232/(24*3*11) | ||
576/575 | 3.0082 | (26*32)/(23*52) | ||
29-limit (incomplete) | ||||
29/28 | 60.751 | 29/(22*7) | ||
30/29 | 58.692 | (2*3*5)/29 | ||
58/57 | 30.109 | (2*29)/(3*19) | ||
88/87 | 19.786 | (23*11)/(3*29) | ||
116/115 | 14.989 | (22*29)/(5*23) | ||
117/116 | 14.860 | (33*13)/(22*29) | ||
145/144 | 11.981 | (5*29)/(24*32) | ||
31-limit (incomplete) | ||||
31/30 | 56.767 | 31/(2*3*5) | ||
32/31 | 54.964 | 25/31 | 31st subharmonic | |
63/62 | 27.700 | (32*7)/(2*31) | ||
93/92 | 18.716 | (3*31)/(22*23) | ||
125/124 | 13.906 | (53)/(22*31) | Twizzler | |
37-limit (incomplete) | ||||
37/36 | 47.434 | 37/(22*32) | ||
38/37 | 46.169 | (2*19)/37 | ||
75/74 | 23.238 | (3*52)/(2*37) | ||
41-limit (incomplete) | ||||
41/40 | 42.749 | 41/(23*5) | ||
42/41 | 41.719 | (2*3*7)/41 | ||
82/81 | 21.242 | (2*41)/34 | ||
43-limit (incomplete) | ||||
43/42 | 40.737 | 43/(2*3*7) | ||
44/43 | 39.800 | (22*11)/43 | ||
86/85 | 20.249 | (2*43)/(5*17) | ||
87/86 | 20.014 | (3*29)/(2*43) | ||
47-limit (incomplete) | ||||
47/46 | 37.232 | 47/(2*23) | ||
48/47 | 36.448 | (24*3)/47 | ||
94/93 | 18.516 | (2*47)/(3*31) | ||
95/94 | 18.320 | (5*19)/(2*47) | ||
53-limit (incomplete) | ||||
53/52 | 32.977 | 53/(22*13) | ||
54/53 | 32.360 | (2*33)/53 | ||
59-limit (incomplete) | ||||
59/58 | 29.594 | 59/(2*29) | ||
60/59 | 29.097 | (22*3*5)/59 | ||
61-limit (incomplete) | ||||
61/60 | 28.616 | 61/(22*3*5) | ||
62/61 | 28.151 | (2*31)/61 | ||
67-limit (incomplete) | ||||
67/66 | 26.034 | 67/(2*3*11) | ||
68/67 | 25.648 | (22*17)/67 | ||
71-limit (incomplete) | ||||
71/70 | 24.557 | 71/(2*5*7) | ||
72/71 | 24.213 | (23*32)/71 | ||
73-limit (incomplete) | ||||
73/72 | 23.879 | 73/(23*32) | ||
74/73 | 23.555 | (2*37)/73 | ||
79-limit (incomplete) | ||||
79/78 | 22.054 | 79/(2*3*13) | ||
80/79 | 21.777 | (24*5)/79 | ||
83-limit (incomplete) | ||||
83/82 | 20.985 | 83/(2*41) | ||
84/83 | 20.734 | (22*3*7)/83 | ||
89-limit (incomplete) | ||||
89/88 | 19.562 | 89/(23*11) | ||
90/89 | 19.344 | (2*32*5)/89 | ||
97-limit (incomplete) | ||||
97/96 | 17.940 | 97/(25*3) | ||
98/97 | 17.756 | (2*72)/97 | ||
101-limit (incomplete) | ||||
101/100 | 17.226 | 101/(22*52) | ||
102/101 | 17.057 | (2*3*17)/101 |