|
|
| (13 intermediate revisions by 7 users not shown) |
| Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} |
| : This revision was by author [[User:guest|guest]] and made on <tt>2013-01-03 09:59:30 UTC</tt>.<br>
| |
| : The original revision id was <tt>395565156</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, having its large steps separated by intervals of 4s, 4s and 5s; is the quasi-enharmonic scale of Magic temperament. It is also the smallest MOS which is ideal for composing melodies in Magic temperament, owing to the fact that the optimal generator range for it is the range where Magic temperament is tuned most accurately (6/19edo to 7/22edo); and is generated by a small major third no smaller than 5/16edo (375 cents).
| |
| || 1/3 || || || || || || 0 || 0 ||
| |
| || || || || || 9/28 || || 171.429 || 214.286 ||
| |
| || || || || || || 17/53 || 181.132 || 226.415 ||
| |
| || || || || 8/25 || || || 192 || 240 ||
| |
| || || || || || || 23/72 || 200 || 250 ||
| |
| || || || || || 15/47 || || 204.255 || 255.319 ||
| |
| || || || || || || 22/69 || 208.696 || 260.87 ||
| |
| || || || 7/22 || || || || 218.182 || 272.727 ||
| |
| || || || || || || 27/85 || 225.882 || 282.353 ||
| |
| || || || || || 20/63 || || 228.571 || 285.714 ||
| |
| || || || || || || 33/104 || 230.769 || 288.4615 ||
| |
| || || || || 13/41 || || || 234.146 || 292.683 ||
| |
| || || || || || || 32/101 || 237.624 || 297.03 ||
| |
| || || || || || 19/60 || || 240 || 300 ||
| |
| || || || || || || 25/79 || 243.038 || 303.7975 ||
| |
| || || 6/19 || || || || || 252.632 || 315.789 ||
| |
| || || || || || || 29/92 || 260.87 || 326.087 ||
| |
| || || || || || 23/73 || || 263.014 || 328.767 ||
| |
| || || || || || || 40/127 || 264.567 || 330.709 ||
| |
| || || || || 17/54 || || || 266.667 || 333.333 ||
| |
| || || || || || || 45/143 || 264.828 || 331.034 ||
| |
| || || || || || 28/89 || || 269.663 || 337.079 ||
| |
| || || || || || || 39/124 || 270.968 || 338.71 ||
| |
| || || || 11/35 || || || || 274.286 || 342.857 ||
| |
| || || || || || || 38/121 || 277.686 || 347.107 ||
| |
| || || || || || 27/86 || || 279.07 || 348.837 ||
| |
| || || || || || || 43/137 || 280.292 || 350.365 ||
| |
| || || || || 16/51 || || || 282.353 || 352.941 ||
| |
| || || || || || || 37/118 || 284.746 || 355.932 ||
| |
| || || || || || 21/67 || || 286.567 || 358.209 ||
| |
| || 5/16 || || || || || || 300 || 375 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>3L 13s</title></head><body>This MOS, having its large steps separated by intervals of 4s, 4s and 5s; is the quasi-enharmonic scale of Magic temperament. It is also the smallest MOS which is ideal for composing melodies in Magic temperament, owing to the fact that the optimal generator range for it is the range where Magic temperament is tuned most accurately (6/19edo to 7/22edo); and is generated by a small major third no smaller than 5/16edo (375 cents).<br />
| |
|
| |
|
| | This MOS, having its large steps separated by intervals of 4s, 4s and 5s; is the quasi-[[enharmonic]] scale of [[Magic]] temperament. It is also the smallest MOS which is ideal for composing melodies in Magic temperament, owing to the fact that the optimal generator range for it is the range where Magic temperament is tuned most accurately (6/[[19edo]] to 7/[[22edo]]); and is generated by a small major third no smaller than 5/[[16edo]] (375{{c}}). |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <td>1/3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/28<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>171.429<br />
| |
| </td>
| |
| <td>214.286<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/53<br />
| |
| </td>
| |
| <td>181.132<br />
| |
| </td>
| |
| <td>226.415<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>192<br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23/72<br />
| |
| </td>
| |
| <td>200<br />
| |
| </td>
| |
| <td>250<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15/47<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>204.255<br />
| |
| </td>
| |
| <td>255.319<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>22/69<br />
| |
| </td>
| |
| <td>208.696<br />
| |
| </td>
| |
| <td>260.87<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>218.182<br />
| |
| </td>
| |
| <td>272.727<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>27/85<br />
| |
| </td>
| |
| <td>225.882<br />
| |
| </td>
| |
| <td>282.353<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>20/63<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>228.571<br />
| |
| </td>
| |
| <td>285.714<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>33/104<br />
| |
| </td>
| |
| <td>230.769<br />
| |
| </td>
| |
| <td>288.4615<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>234.146<br />
| |
| </td>
| |
| <td>292.683<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>32/101<br />
| |
| </td>
| |
| <td>237.624<br />
| |
| </td>
| |
| <td>297.03<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/60<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| <td>300<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>25/79<br />
| |
| </td>
| |
| <td>243.038<br />
| |
| </td>
| |
| <td>303.7975<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>6/19<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>252.632<br />
| |
| </td>
| |
| <td>315.789<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>29/92<br />
| |
| </td>
| |
| <td>260.87<br />
| |
| </td>
| |
| <td>326.087<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23/73<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>263.014<br />
| |
| </td>
| |
| <td>328.767<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>40/127<br />
| |
| </td>
| |
| <td>264.567<br />
| |
| </td>
| |
| <td>330.709<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>266.667<br />
| |
| </td>
| |
| <td>333.333<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>45/143<br />
| |
| </td>
| |
| <td>264.828<br />
| |
| </td>
| |
| <td>331.034<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>28/89<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>269.663<br />
| |
| </td>
| |
| <td>337.079<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>39/124<br />
| |
| </td>
| |
| <td>270.968<br />
| |
| </td>
| |
| <td>338.71<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>274.286<br />
| |
| </td>
| |
| <td>342.857<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>38/121<br />
| |
| </td>
| |
| <td>277.686<br />
| |
| </td>
| |
| <td>347.107<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>27/86<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>279.07<br />
| |
| </td>
| |
| <td>348.837<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>43/137<br />
| |
| </td>
| |
| <td>280.292<br />
| |
| </td>
| |
| <td>350.365<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16/51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>282.353<br />
| |
| </td>
| |
| <td>352.941<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>37/118<br />
| |
| </td>
| |
| <td>284.746<br />
| |
| </td>
| |
| <td>355.932<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21/67<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>286.567<br />
| |
| </td>
| |
| <td>358.209<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5/16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>300<br />
| |
| </td>
| |
| <td>375<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum}} |
| | |
| | [[Category:Abstract MOS patterns]] |
| | [[Category:Magic]] |
3L 13s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 13 small steps, repeating every octave. 3L 13s is a grandchild scale of 3L 7s, expanding it by 6 tones. Generators that produce this scale range from 375 ¢ to 400 ¢, or from 800 ¢ to 825 ¢.
This MOS, having its large steps separated by intervals of 4s, 4s and 5s; is the quasi-enharmonic scale of Magic temperament. It is also the smallest MOS which is ideal for composing melodies in Magic temperament, owing to the fact that the optimal generator range for it is the range where Magic temperament is tuned most accurately (6/19edo to 7/22edo); and is generated by a small major third no smaller than 5/16edo (375 ¢).
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 3L 13s
| Intervals
|
Steps subtended
|
Range in cents
|
| Generic
|
Specific
|
Abbrev.
|
| 0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
| 1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 75.0 ¢
|
| Major 1-mosstep
|
M1ms
|
L
|
75.0 ¢ to 400.0 ¢
|
| 2-mosstep
|
Minor 2-mosstep
|
m2ms
|
2s
|
0.0 ¢ to 150.0 ¢
|
| Major 2-mosstep
|
M2ms
|
L + s
|
150.0 ¢ to 400.0 ¢
|
| 3-mosstep
|
Minor 3-mosstep
|
m3ms
|
3s
|
0.0 ¢ to 225.0 ¢
|
| Major 3-mosstep
|
M3ms
|
L + 2s
|
225.0 ¢ to 400.0 ¢
|
| 4-mosstep
|
Minor 4-mosstep
|
m4ms
|
4s
|
0.0 ¢ to 300.0 ¢
|
| Major 4-mosstep
|
M4ms
|
L + 3s
|
300.0 ¢ to 400.0 ¢
|
| 5-mosstep
|
Diminished 5-mosstep
|
d5ms
|
5s
|
0.0 ¢ to 375.0 ¢
|
| Perfect 5-mosstep
|
P5ms
|
L + 4s
|
375.0 ¢ to 400.0 ¢
|
| 6-mosstep
|
Minor 6-mosstep
|
m6ms
|
L + 5s
|
400.0 ¢ to 450.0 ¢
|
| Major 6-mosstep
|
M6ms
|
2L + 4s
|
450.0 ¢ to 800.0 ¢
|
| 7-mosstep
|
Minor 7-mosstep
|
m7ms
|
L + 6s
|
400.0 ¢ to 525.0 ¢
|
| Major 7-mosstep
|
M7ms
|
2L + 5s
|
525.0 ¢ to 800.0 ¢
|
| 8-mosstep
|
Minor 8-mosstep
|
m8ms
|
L + 7s
|
400.0 ¢ to 600.0 ¢
|
| Major 8-mosstep
|
M8ms
|
2L + 6s
|
600.0 ¢ to 800.0 ¢
|
| 9-mosstep
|
Minor 9-mosstep
|
m9ms
|
L + 8s
|
400.0 ¢ to 675.0 ¢
|
| Major 9-mosstep
|
M9ms
|
2L + 7s
|
675.0 ¢ to 800.0 ¢
|
| 10-mosstep
|
Minor 10-mosstep
|
m10ms
|
L + 9s
|
400.0 ¢ to 750.0 ¢
|
| Major 10-mosstep
|
M10ms
|
2L + 8s
|
750.0 ¢ to 800.0 ¢
|
| 11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
2L + 9s
|
800.0 ¢ to 825.0 ¢
|
| Augmented 11-mosstep
|
A11ms
|
3L + 8s
|
825.0 ¢ to 1200.0 ¢
|
| 12-mosstep
|
Minor 12-mosstep
|
m12ms
|
2L + 10s
|
800.0 ¢ to 900.0 ¢
|
| Major 12-mosstep
|
M12ms
|
3L + 9s
|
900.0 ¢ to 1200.0 ¢
|
| 13-mosstep
|
Minor 13-mosstep
|
m13ms
|
2L + 11s
|
800.0 ¢ to 975.0 ¢
|
| Major 13-mosstep
|
M13ms
|
3L + 10s
|
975.0 ¢ to 1200.0 ¢
|
| 14-mosstep
|
Minor 14-mosstep
|
m14ms
|
2L + 12s
|
800.0 ¢ to 1050.0 ¢
|
| Major 14-mosstep
|
M14ms
|
3L + 11s
|
1050.0 ¢ to 1200.0 ¢
|
| 15-mosstep
|
Minor 15-mosstep
|
m15ms
|
2L + 13s
|
800.0 ¢ to 1125.0 ¢
|
| Major 15-mosstep
|
M15ms
|
3L + 12s
|
1125.0 ¢ to 1200.0 ¢
|
| 16-mosstep
|
Perfect 16-mosstep
|
P16ms
|
3L + 13s
|
1200.0 ¢
|
Generator chain
Generator chain of 3L 13s
| Bright gens |
Scale degree |
Abbrev.
|
| 18 |
Augmented 10-mosdegree |
A10md
|
| 17 |
Augmented 5-mosdegree |
A5md
|
| 16 |
Augmented 0-mosdegree |
A0md
|
| 15 |
Augmented 11-mosdegree |
A11md
|
| 14 |
Major 6-mosdegree |
M6md
|
| 13 |
Major 1-mosdegree |
M1md
|
| 12 |
Major 12-mosdegree |
M12md
|
| 11 |
Major 7-mosdegree |
M7md
|
| 10 |
Major 2-mosdegree |
M2md
|
| 9 |
Major 13-mosdegree |
M13md
|
| 8 |
Major 8-mosdegree |
M8md
|
| 7 |
Major 3-mosdegree |
M3md
|
| 6 |
Major 14-mosdegree |
M14md
|
| 5 |
Major 9-mosdegree |
M9md
|
| 4 |
Major 4-mosdegree |
M4md
|
| 3 |
Major 15-mosdegree |
M15md
|
| 2 |
Major 10-mosdegree |
M10md
|
| 1 |
Perfect 5-mosdegree |
P5md
|
| 0 |
Perfect 0-mosdegree Perfect 16-mosdegree |
P0md P16md
|
| −1 |
Perfect 11-mosdegree |
P11md
|
| −2 |
Minor 6-mosdegree |
m6md
|
| −3 |
Minor 1-mosdegree |
m1md
|
| −4 |
Minor 12-mosdegree |
m12md
|
| −5 |
Minor 7-mosdegree |
m7md
|
| −6 |
Minor 2-mosdegree |
m2md
|
| −7 |
Minor 13-mosdegree |
m13md
|
| −8 |
Minor 8-mosdegree |
m8md
|
| −9 |
Minor 3-mosdegree |
m3md
|
| −10 |
Minor 14-mosdegree |
m14md
|
| −11 |
Minor 9-mosdegree |
m9md
|
| −12 |
Minor 4-mosdegree |
m4md
|
| −13 |
Minor 15-mosdegree |
m15md
|
| −14 |
Minor 10-mosdegree |
m10md
|
| −15 |
Diminished 5-mosdegree |
d5md
|
| −16 |
Diminished 16-mosdegree |
d16md
|
| −17 |
Diminished 11-mosdegree |
d11md
|
| −18 |
Diminished 6-mosdegree |
d6md
|
Modes
Scale degrees of the modes of 3L 13s
| UDP
|
Cyclic order
|
Step pattern
|
Scale degree (mosdegree)
|
| 0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
| 15|0
|
1
|
LssssLssssLsssss
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 14|1
|
6
|
LssssLsssssLssss
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 13|2
|
11
|
LsssssLssssLssss
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 12|3
|
16
|
sLssssLssssLssss
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 11|4
|
5
|
sLssssLsssssLsss
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 10|5
|
10
|
sLsssssLssssLsss
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 9|6
|
15
|
ssLssssLssssLsss
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
| 8|7
|
4
|
ssLssssLsssssLss
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
| 7|8
|
9
|
ssLsssssLssssLss
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
| 6|9
|
14
|
sssLssssLssssLss
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
| 5|10
|
3
|
sssLssssLsssssLs
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
| 4|11
|
8
|
sssLsssssLssssLs
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
| 3|12
|
13
|
ssssLssssLssssLs
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
| 2|13
|
2
|
ssssLssssLsssssL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
| 1|14
|
7
|
ssssLsssssLssssL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
| 0|15
|
12
|
sssssLssssLssssL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 3L 13s
| Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
| Bright
|
Dark
|
L:s
|
Hardness
|
| 5\16
|
|
|
|
|
|
375.000
|
825.000
|
1:1
|
1.000
|
Equalized 3L 13s
|
|
|
|
|
|
|
26\83
|
375.904
|
824.096
|
6:5
|
1.200
|
|
|
|
|
|
|
21\67
|
|
376.119
|
823.881
|
5:4
|
1.250
|
|
|
|
|
|
|
|
37\118
|
376.271
|
823.729
|
9:7
|
1.286
|
|
|
|
|
|
16\51
|
|
|
376.471
|
823.529
|
4:3
|
1.333
|
Supersoft 3L 13s
|
|
|
|
|
|
|
43\137
|
376.642
|
823.358
|
11:8
|
1.375
|
|
|
|
|
|
|
27\86
|
|
376.744
|
823.256
|
7:5
|
1.400
|
|
|
|
|
|
|
|
38\121
|
376.860
|
823.140
|
10:7
|
1.429
|
|
|
|
|
11\35
|
|
|
|
377.143
|
822.857
|
3:2
|
1.500
|
Soft 3L 13s
|
|
|
|
|
|
|
39\124
|
377.419
|
822.581
|
11:7
|
1.571
|
|
|
|
|
|
|
28\89
|
|
377.528
|
822.472
|
8:5
|
1.600
|
|
|
|
|
|
|
|
45\143
|
377.622
|
822.378
|
13:8
|
1.625
|
|
|
|
|
|
17\54
|
|
|
377.778
|
822.222
|
5:3
|
1.667
|
Semisoft 3L 13s
|
|
|
|
|
|
|
40\127
|
377.953
|
822.047
|
12:7
|
1.714
|
|
|
|
|
|
|
23\73
|
|
378.082
|
821.918
|
7:4
|
1.750
|
|
|
|
|
|
|
|
29\92
|
378.261
|
821.739
|
9:5
|
1.800
|
|
|
|
6\19
|
|
|
|
|
378.947
|
821.053
|
2:1
|
2.000
|
Basic 3L 13s Scales with tunings softer than this are proper
|
|
|
|
|
|
|
25\79
|
379.747
|
820.253
|
9:4
|
2.250
|
|
|
|
|
|
|
19\60
|
|
380.000
|
820.000
|
7:3
|
2.333
|
|
|
|
|
|
|
|
32\101
|
380.198
|
819.802
|
12:5
|
2.400
|
|
|
|
|
|
13\41
|
|
|
380.488
|
819.512
|
5:2
|
2.500
|
Semihard 3L 13s
|
|
|
|
|
|
|
33\104
|
380.769
|
819.231
|
13:5
|
2.600
|
|
|
|
|
|
|
20\63
|
|
380.952
|
819.048
|
8:3
|
2.667
|
|
|
|
|
|
|
|
27\85
|
381.176
|
818.824
|
11:4
|
2.750
|
|
|
|
|
7\22
|
|
|
|
381.818
|
818.182
|
3:1
|
3.000
|
Hard 3L 13s
|
|
|
|
|
|
|
22\69
|
382.609
|
817.391
|
10:3
|
3.333
|
|
|
|
|
|
|
15\47
|
|
382.979
|
817.021
|
7:2
|
3.500
|
|
|
|
|
|
|
|
23\72
|
383.333
|
816.667
|
11:3
|
3.667
|
|
|
|
|
|
8\25
|
|
|
384.000
|
816.000
|
4:1
|
4.000
|
Superhard 3L 13s
|
|
|
|
|
|
|
17\53
|
384.906
|
815.094
|
9:2
|
4.500
|
|
|
|
|
|
|
9\28
|
|
385.714
|
814.286
|
5:1
|
5.000
|
|
|
|
|
|
|
|
10\31
|
387.097
|
812.903
|
6:1
|
6.000
|
|
| 1\3
|
|
|
|
|
|
400.000
|
800.000
|
1:0
|
→ ∞
|
Collapsed 3L 13s
|