Biyatismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fix; -rank-4 biyatismic (addressed in rank-4 temp page)
 
(17 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The '''biyatismic clan''' of rank-3 temperaments tempers out the [[biyatisma]], 121/120 = {{monzo| -3 -1 -1 0 2 }}.
{{Technical data page}}
The '''biyatismic clan''' of [[Rank-3 temperament|rank-3]] [[Temperament|temperaments]] [[Tempering out|tempers out]] the [[biyatisma]], 121/120 = {{monzo| -3 -1 -1 0 2 }}.


Temperaments discussed elsewhere are:  
Temperaments discussed elsewhere are:  
* ''[[Sonic]]'', {55/54, 100/99} → [[Porcupine rank three family #Sonic|Porcupine rank-3 family]]
* ''[[Sonic]]'' (+55/54 or 100/99) → [[Porcupine rank three family #Sonic|Porcupine rank-3 family]]
* ''[[Urania]]'', {81/80, 121/120} → [[Didymus rank three family #Urania|Didymus rank-3 family]]
* ''[[Urania]]'' (+81/80) → [[Didymus rank three family #Urania|Didymus rank-3 family]]
* ''[[Big brother]]'', {99/98, 121/120} → [[Nuwell family #big Brother|Nuwell family]]
* ''[[Big brother]]'' (+99/98) → [[Nuwell family #big Brother|Nuwell family]]
* ''[[Oxpecker]]'', {121/120, 126/125} → [[Starling family #Oxpecker|Starling family]]
* ''[[Bisector]]'' (+245/243) → [[Sensamagic family #Bisector|Sensamagic family]]
* [[Zeus]], {121/120, 176/175} → [[Porwell family #Zeus|Porwell family]]
* ''[[Artemis]]'', {121/120, 225/224} → [[Marvel family #Artemis|Marvel family]]
* ''[[Bisector]]'', {121/120, 245/243} → [[Sensamagic family #Bisector|Sensamagic family]]


Considered below are aphrodite, and the no-7 subgroup temperament, protomere. For the rank-4 biyatismic temperament, see [[Rank-4 temperament #Biyatismic (121/120)]].  
Considered below are zeus, artemis, oxpecker, aphrodite, and the no-7 subgroup temperament, protomere. For the rank-4 biyatismic temperament, see [[Rank-4 temperament #Biyatismic (121/120)]].  


== Protomere ==
== Protomere ==
Subgroup: 2.3.5.11
[[Subgroup]]: 2.3.5.11


[[Comma list]]: 121/120
[[Comma list]]: 121/120


[[Sval]] [[mapping]]: [{{val| 1 0 1 2 }}, {{val| 0 1 1 1 }}, {{val| 0 0 -2 -1 }}]
{{Mapping|legend=2| 1 0 1 2 | 0 1 1 1 | 0 0 -2 -1 }}


Sval mapping generators: ~2, ~3, ~11/10
: Mapping generators: ~2, ~3, ~11/10


[[POTE generator]]s: ~3/2 = 701.4578, ~11/10 = 157.7466
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 701.4578, ~11/10 = 157.7466


{{Optimal ET sequence|legend=1| 7, 15, 22, 31, 46, 53, 137e, 183ee, 190ee }}
{{Optimal ET sequence|legend=1| 7, 15, 22, 31, 46, 53, 137e, 183ee, 190ee }}


[[Badness]]: 0.0297 × 10<sup>-3</sup>
[[Badness]]: 0.0297 × 10<sup>-3</sup>
== Zeus ==
{{Main| Zeus }}
{{See also| Porwell family #Zeus }}
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: 121/120, 176/175
{{Mapping|legend=1| 1 0 1 4 2 | 0 1 1 -1 1 | 0 0 -2 3 1 }}
[[Mapping to lattice]]: [{{val| 0 1 -1 2 0 }}, {{val| 0 1 1 -1 1 }}]
Lattice basis:
: 11/10, 11/8
: Angle (11/10, 11/8) = 87.464 degrees
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.1530, ~11/10 = 157.0881
[[Minimax tuning]]:
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 11/9 10/9 -1/3 -2/9 0 }}, {{monzo| 22/9 2/9 1/3 -4/9 0 }}, {{monzo| 22/9 2/9 -2/3 5/9 0 }}, {{monzo| 10/3 2/3 0 -1/3 0 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.9/7
{{Optimal ET sequence|legend=1| 15, 22, 31, 46, 53, 68, 77, 99, 130e }}
[[Badness]]: 0.400 × 10<sup>-3</sup>
[[Projection pair]]s: 5 600/121 7 2662/375 11 120/11 to 2.3.11/5
Zeus11[22] [[hobbit]] [[transversal]]
: 33/32, 16/15, 11/10, 8/7, 64/55, 77/64, 5/4, 14/11, 4/3,
: 11/8, 45/32, 16/11, 3/2, 11/7, 8/5, 5/3, 55/32, 7/4,
: 11/6, 15/8, 64/33, 2
Zeus11[24] hobbit transversal
: 33/32, 16/15, 11/10, 9/8, 8/7, 77/64, 11/9, 5/4, 21/16, 4/3,
: 11/8, 45/32, 16/11, 3/2, 32/21, 8/5, 18/11, 5/3, 7/4, 16/9,
: 11/6, 15/8, 64/33, 2
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 351/350
Mapping: {{mapping| 1 0 1 4 2 7 | 0 1 1 -1 1 -2 | 0 0 -2 3 -1 -1 }}
Mapping to lattice: [{{val| 0 1 -1 2 0 -3 }}, {{val| 0 1 1 -1 1 -2 }}]
Lattice basis:
: 11/10 length = 0.7898, 11/8 length = 1.002
: Angle (11/10, 11/8) = 106.7439 degrees
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.8679, ~11/10 = 156.9582
Minimax tuning:
* 13-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 11/9 10/9 -1/3 -2/9 0 0 }}, {{monzo| 22/9 2/9 1/3 -4/9 0 0 }}, {{monzo| 22/9 2/9 -2/3 5/9 0 0 }}, {{monzo| 10/3 2/3 0 -1/3 0 0 }}, {{monzo| 14/3 -8/3 1 1/3 0 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.9/5.9/7
* 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 0 1 0 0 0 0 }}, {{monzo| 11/5 1/5 2/5 -2/5 0 0 }}, {{monzo| 11/5 1/5 -3/5 3/5 0 0 }}, {{monzo| 13/5 3/5 1/5 -1/5 0 0 }}, {{monzo| 38/5 -12/5 1/5 -1/5 0 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.3.7/5
{{Optimal ET sequence|legend=1| 15, 22, 31, 46, 53, 77, 99, 130e }}
Badness: 0.934 × 10<sup>-3</sup>
Projection pairs: 5 600/121 7 2662/375 11 120/11 13 1280/99 to 2.3.11/5
Zeus13[22] hobbit transversal
: 260/243, 88/81, 11/10, 44/39, 162/143, 11/9, 16/13, 320/243, 4/3, 1040/729, 13/9, 729/520, 3/2, 99/65, 44/27, 18/11, 1280/729, 16/9, 11/6, 24/13, 243/130, 2
=== Tinia ===
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 121/120, 176/175
Mapping: {{mapping| 1 0 1 4 2 2 | 0 1 1 -1 1 1 | 0 0 -2 3 -1 -1 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 699.3420, ~11/10 = 155.3666
{{Optimal ET sequence|legend=1| 7, 9, 15, 22f, 24, 31 }}
Badness: 0.808 × 10<sup>-3</sup>
== Artemis ==
Named by [[Graham Breed]] in 2011, artemis was found to be locally efficient in the higher limits among rank-3 extensions of [[marvel]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_19673.html Yahoo! Tuning Group | ''Artemis and friends'']</ref>, although it is a [[weak extension]]. However, the alternative 13-limit extension called diana is more accurate.
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: 121/120, 225/224
{{Mapping|legend=1| 1 0 1 -3 2 | 0 1 1 4 1 | 0 0 -2 -4 -1 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 699.8719, ~11/10 = 158.3232
{{Optimal ET sequence|legend=1| 9, 15d, 16d, 20, 22, 31, 53, 82e, 84e, 113e, 144ee }}
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 121/120, 196/195
Mapping: {{mapping| 1 0 1 -3 2 -5 | 0 1 1 4 1 6 | 0 0 -2 -4 -1 -6 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.7090, ~11/10 = 158.7117
{{Optimal ET sequence|legend=1| 9, 20, 22f, 29, 31 }}
=== Diana ===
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 225/224, 275/273
Mapping: {{mapping| 1 0 1 -3 2 7 | 0 1 1 4 1 -2 | 0 0 -2 -4 -1 -1 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.9789, ~11/10 = 159.0048
{{Optimal ET sequence|legend=1| 22, 29, 31, 53, 82e, 84e, 113e, 166ee }}
== Oxpecker ==
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: 121/120, 126/125
{{Mapping|legend=1| 1 0 1 2 2 | 0 1 1 1 1 | 0 0 -2 -6 -1 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 700.8882, ~11/10 = 155.7756
{{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31, 46, 77 }}
[[Badness]]: 0.699 × 10<sup>-3</sup>
=== Woodpecker ===
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 121/120, 126/125
Mapping: {{mapping| 1 0 1 2 2 2 | 0 1 1 1 1 1 | 0 0 -2 -6 -1 1 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.5946, ~11/10 = 154.8652
{{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31 }}
Badness: 1.093 × 10<sup>-3</sup>


== Aphrodite ==
== Aphrodite ==
Line 31: Line 174:


=== 7-limit (squalentine) ===
=== 7-limit (squalentine) ===
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 64827/64000
[[Comma list]]: 64827/64000


[[Mapping]]: [{{val| 1 0 1 3 }}, {{val| 0 1 1 0 }}, {{val| 0 0 4 3 }}]
{{Mapping|legend=1| 1 0 1 3 | 0 1 1 0 | 0 0 -4 -3 }}


Mapping generators: ~2, ~3, ~21/20
: Mapping generators: ~2, ~3, ~21/20
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 700.2144, ~21/20 = 78.5694


{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60, 77, 91, 122, 137d, 168d }}
{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60, 77, 91, 122, 137d, 168d }}
Line 46: Line 191:


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 121/120, 441/440
[[Comma list]]: 121/120, 441/440


[[Mapping]]: [{{val| 1 0 1 3 2 }}, {{val| 0 1 1 0 1 }}, {{val| 0 0 4 3 2 }}]
{{Mapping|legend=1| 1 0 1 3 2 | 0 1 1 0 1 | 0 0 -4 -3 -2 }}


Mapping generators: ~2, ~3, ~22/21
: Mapping generators: ~2, ~3, ~22/21
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.3200, ~21/20 = 78.6421


{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60e, 77, 91e, 137de, 168dee }}
{{Optimal ET sequence|legend=1| 14c, 15, 29, 31, 46, 60e, 77, 91e, 137de, 168dee }}
Line 63: Line 210:
Comma list: 121/120, 351/350, 441/440
Comma list: 121/120, 351/350, 441/440


Mapping: [{{val| 1 0 1 3 2 6 }}, {{val| 0 1 1 0 1 -1 }}, {{val| 0 0 4 3 2 11 }}]
Mapping: {{mapping| 1 0 1 3 2 6 | 0 1 1 0 1 -1 | 0 0 -4 -3 -2 -11 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.1158, ~21/20 = 78.5211


{{Optimal ET sequence|legend=1| 14cf, 31, 45ef, 46, 77, 122ee, 137def, 168deef }}
{{Optimal ET sequence|legend=1| 14cf, 31, 45ef, 46, 77, 122ee, 137def, 168deef }}
Line 70: Line 219:


==== Eros ====
==== Eros ====
Eros fairs impressively into the 23-limit as a rank 3 temperament; not only is it fairly simple (considering this is a subgroup as complex as the full 23-limit, with many challenges) but all the generators are positive (or only 1 into the negatives in the case of the fifth) meaning it's even simpler than it might appear and has the pleasing property of all harmonics and subharmonics being "on the same side"; specifically: -3 to 1 fifths ([[2L 3s]]) and -5 to 0 ~[[23/22]]'s will get you every prime, up to octave equivalence; you can think of this as a 5 by 6 grid if you like and is a recommendable place to start looking at its structure. Tempering the less accurate comma [[121/120|S11]] can be seen as a consequence of tempering {[[441/440|S21]], [[484/483|S22]], [[529/528|S23]]} so is very natural and given its properties certainly excusable. Therefore characteristic of any good tuning is the ~11 being the most flat prime, with other primes having strictly less than 5{{cent}} of error. This temperament was first logged on x31eq by [[Scott Dakota]].
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 121/120, 196/195, 352/351
Comma list: 121/120, 196/195, 352/351


Mapping: [{{val| 1 0 1 3 2 7 }}, {{val| 0 1 1 0 1 -2 }}, {{val| 0 0 4 3 2 2 }}]
Mapping: {{mapping| 1 0 1 3 2 7 | 0 1 1 0 1 -2 | 0 0 -4 -3 -2 -2 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.5014, ~21/20 = 78.6143


{{Optimal ET sequence|legend=1| 17c, 29, 31, 46, 60e, 77, 106de, 183dee }}
{{Optimal ET sequence|legend=1| 17c, 29, 31, 46, 60e, 77, 106de, 183dee }}


Badness: 1.150 × 10<sup>-3</sup>
Badness: 1.150 × 10<sup>-3</sup>
===== 17-limit =====
Note that this extension requires the 29g val for 29edo, which has the sizes of 17/16 and 18/17 swapped.
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 196/195, 352/351
Mapping: {{mapping| 1 0 1 3 2 7 6 | 0 1 1 0 1 -2 -1 | 0 0 -4 -3 -2 -2 -5 }}
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 701.9299, ~22/21 = 78.2539
* CWE: ~2 = 1\1, ~3/2 = 701.7925, ~22/21 = 78.6203
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 31, 46, 60e, 77, 106de }}
Badness:
* Smith: 0.979 × 10<sup>-3</sup>
* Dirichlet: 0.931
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 154/153, 196/195, 286/285, 352/351
Mapping: {{mapping| 1 0 1 3 2 7 6 9 | 0 1 1 0 1 -2 -1 -3 | 0 0 -4 -3 -2 -2 -5 0 }}
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 701.5642, ~22/21 = 78.2353
* CWE: ~2 = 1\1, ~3/2 = 701.6963, ~22/21 = 78.6479
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 31, 46, 60e, 75dfgh, 77, 106de }}
Badness:
* Smith: 1.13 × 10<sup>-3</sup>
* Dirichlet: 1.159
===== 23-limit =====
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 121/120, 154/153, 161/160, 196/195, 286/285, 352/351
Mapping: {{mapping| 1 0 1 3 2 7 6 9 3 | 0 1 1 0 1 -2 -1 -3 1 | 0 0 -4 -3 -2 -2 -5 0 -1 }}
Optimal tunings:
* CTE: ~2 = 1\1, ~3 = 1901.7115, ~23/22 = 78.2054
* CWE: ~2 = 1\1, ~3 = 1901.8010, ~23/22 = 78.7188
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 31, 46, 60e, 75dfgh, 77, 106de }}
Badness:
* Smith: 0.939 × 10<sup>-3</sup>
* Dirichlet: 1.084


==== Inanna ====
==== Inanna ====
Line 85: Line 291:
Comma list: 105/104, 121/120, 275/273
Comma list: 105/104, 121/120, 275/273


Mapping: [{{val| 1 0 1 3 2 1 }}, {{val| 0 1 1 0 1 2 }}, {{val| 0 0 4 3 2 7 }}]
Mapping: {{mapping| 1 0 1 3 2 1 | 0 1 1 0 1 2 | 0 0 -4 -3 -2 -7 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.7754, ~21/20 = 79.6096


{{Optimal ET sequence|legend=1| 14cf, 15, 29, 31, 45ef, 60e }}
{{Optimal ET sequence|legend=1| 14cf, 15, 29, 31, 45ef, 60e }}
Line 96: Line 304:
Comma list: 91/90, 121/120, 441/440
Comma list: 91/90, 121/120, 441/440


Mapping: [{{val| 1 0 1 3 2 -1 }}, {{val| 0 1 1 0 1 3 }}, {{val| 0 0 4 3 2 1 }}]
Mapping: {{mapping| 1 0 1 3 2 -1 | 0 1 1 0 1 3 | 0 0 -4 -3 -2 -1 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.3952, ~21/20 = 78.9578


{{Optimal ET sequence|legend=1| 14cf, 15, 17c, 29, 31f, 46, 106deff, 121def }}
{{Optimal ET sequence|legend=1| 14cf, 15, 17c, 29, 31f, 46, 106deff, 121def }}


Badness: 1.151 × 10<sup>-3</sup>
Badness: 1.151 × 10<sup>-3</sup>
== Notes ==


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Biyatismic clan| ]] <!-- main article -->
[[Category:Biyatismic clan| ]] <!-- main article -->
[[Category:Biyatismic| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]

Latest revision as of 00:41, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The biyatismic clan of rank-3 temperaments tempers out the biyatisma, 121/120 = [-3 -1 -1 0 2.

Temperaments discussed elsewhere are:

Considered below are zeus, artemis, oxpecker, aphrodite, and the no-7 subgroup temperament, protomere. For the rank-4 biyatismic temperament, see Rank-4 temperament #Biyatismic (121/120).

Protomere

Subgroup: 2.3.5.11

Comma list: 121/120

Sval mapping[1 0 1 2], 0 1 1 1], 0 0 -2 -1]]

Mapping generators: ~2, ~3, ~11/10

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.4578, ~11/10 = 157.7466

Optimal ET sequence7, 15, 22, 31, 46, 53, 137e, 183ee, 190ee

Badness: 0.0297 × 10-3

Zeus

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175

Mapping[1 0 1 4 2], 0 1 1 -1 1], 0 0 -2 3 1]]

Mapping to lattice: [0 1 -1 2 0], 0 1 1 -1 1]]

Lattice basis:

11/10, 11/8
Angle (11/10, 11/8) = 87.464 degrees

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.1530, ~11/10 = 157.0881

Minimax tuning:

[[1 0 0 0 0, [11/9 10/9 -1/3 -2/9 0, [22/9 2/9 1/3 -4/9 0, [22/9 2/9 -2/3 5/9 0, [10/3 2/3 0 -1/3 0]
unchanged-interval (eigenmonzo) basis: 2.9/5.9/7

Optimal ET sequence15, 22, 31, 46, 53, 68, 77, 99, 130e

Badness: 0.400 × 10-3

Projection pairs: 5 600/121 7 2662/375 11 120/11 to 2.3.11/5

Zeus11[22] hobbit transversal

33/32, 16/15, 11/10, 8/7, 64/55, 77/64, 5/4, 14/11, 4/3,
11/8, 45/32, 16/11, 3/2, 11/7, 8/5, 5/3, 55/32, 7/4,
11/6, 15/8, 64/33, 2

Zeus11[24] hobbit transversal

33/32, 16/15, 11/10, 9/8, 8/7, 77/64, 11/9, 5/4, 21/16, 4/3,
11/8, 45/32, 16/11, 3/2, 32/21, 8/5, 18/11, 5/3, 7/4, 16/9,
11/6, 15/8, 64/33, 2

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350

Mapping: [1 0 1 4 2 7], 0 1 1 -1 1 -2], 0 0 -2 3 -1 -1]]

Mapping to lattice: [0 1 -1 2 0 -3], 0 1 1 -1 1 -2]]

Lattice basis:

11/10 length = 0.7898, 11/8 length = 1.002
Angle (11/10, 11/8) = 106.7439 degrees

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.8679, ~11/10 = 156.9582

Minimax tuning:

  • 13-odd-limit
[[1 0 0 0 0 0, [11/9 10/9 -1/3 -2/9 0 0, [22/9 2/9 1/3 -4/9 0 0, [22/9 2/9 -2/3 5/9 0 0, [10/3 2/3 0 -1/3 0 0, [14/3 -8/3 1 1/3 0 0]
unchanged-interval (eigenmonzo) basis: 2.9/5.9/7
  • 15-odd-limit
[[1 0 0 0 0 0, [0 1 0 0 0 0, [11/5 1/5 2/5 -2/5 0 0, [11/5 1/5 -3/5 3/5 0 0, [13/5 3/5 1/5 -1/5 0 0, [38/5 -12/5 1/5 -1/5 0 0]
unchanged-interval (eigenmonzo) basis: 2.3.7/5

Optimal ET sequence15, 22, 31, 46, 53, 77, 99, 130e

Badness: 0.934 × 10-3

Projection pairs: 5 600/121 7 2662/375 11 120/11 13 1280/99 to 2.3.11/5

Zeus13[22] hobbit transversal

260/243, 88/81, 11/10, 44/39, 162/143, 11/9, 16/13, 320/243, 4/3, 1040/729, 13/9, 729/520, 3/2, 99/65, 44/27, 18/11, 1280/729, 16/9, 11/6, 24/13, 243/130, 2

Tinia

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 121/120, 176/175

Mapping: [1 0 1 4 2 2], 0 1 1 -1 1 1], 0 0 -2 3 -1 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 699.3420, ~11/10 = 155.3666

Optimal ET sequence7, 9, 15, 22f, 24, 31

Badness: 0.808 × 10-3

Artemis

Named by Graham Breed in 2011, artemis was found to be locally efficient in the higher limits among rank-3 extensions of marvel[1], although it is a weak extension. However, the alternative 13-limit extension called diana is more accurate.

Subgroup: 2.3.5.7.11

Comma list: 121/120, 225/224

Mapping[1 0 1 -3 2], 0 1 1 4 1], 0 0 -2 -4 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 699.8719, ~11/10 = 158.3232

Optimal ET sequence9, 15d, 16d, 20, 22, 31, 53, 82e, 84e, 113e, 144ee

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 121/120, 196/195

Mapping: [1 0 1 -3 2 -5], 0 1 1 4 1 6], 0 0 -2 -4 -1 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.7090, ~11/10 = 158.7117

Optimal ET sequence9, 20, 22f, 29, 31

Diana

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 225/224, 275/273

Mapping: [1 0 1 -3 2 7], 0 1 1 4 1 -2], 0 0 -2 -4 -1 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.9789, ~11/10 = 159.0048

Optimal ET sequence22, 29, 31, 53, 82e, 84e, 113e, 166ee

Oxpecker

Subgroup: 2.3.5.7.11

Comma list: 121/120, 126/125

Mapping[1 0 1 2 2], 0 1 1 1 1], 0 0 -2 -6 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.8882, ~11/10 = 155.7756

Optimal ET sequence7d, 8d, 15, 23de, 24d, 31, 46, 77

Badness: 0.699 × 10-3

Woodpecker

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 121/120, 126/125

Mapping: [1 0 1 2 2 2], 0 1 1 1 1 1], 0 0 -2 -6 -1 1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.5946, ~11/10 = 154.8652

Optimal ET sequence7d, 8d, 15, 23de, 24d, 31

Badness: 1.093 × 10-3

Aphrodite

Aphrodite tempers out the squalentine comma, 64827/64000, in the 7-limit. Its generators can be taken to be 2, 3, and 21/20, and it equates (21/20)3 with 8/7.

7-limit (squalentine)

Subgroup: 2.3.5.7

Comma list: 64827/64000

Mapping[1 0 1 3], 0 1 1 0], 0 0 -4 -3]]

Mapping generators: ~2, ~3, ~21/20

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.2144, ~21/20 = 78.5694

Optimal ET sequence14c, 15, 29, 31, 46, 60, 77, 91, 122, 137d, 168d

Badness: 0.943 × 10-3

Projection pairs: 5 320000/64827 7 64000/9261 to 2.3.7/5

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 441/440

Mapping[1 0 1 3 2], 0 1 1 0 1], 0 0 -4 -3 -2]]

Mapping generators: ~2, ~3, ~22/21

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.3200, ~21/20 = 78.6421

Optimal ET sequence14c, 15, 29, 31, 46, 60e, 77, 91e, 137de, 168dee

Badness: 0.583 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 351/350, 441/440

Mapping: [1 0 1 3 2 6], 0 1 1 0 1 -1], 0 0 -4 -3 -2 -11]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.1158, ~21/20 = 78.5211

Optimal ET sequence14cf, 31, 45ef, 46, 77, 122ee, 137def, 168deef

Badness: 1.456 × 10-3

Eros

Eros fairs impressively into the 23-limit as a rank 3 temperament; not only is it fairly simple (considering this is a subgroup as complex as the full 23-limit, with many challenges) but all the generators are positive (or only 1 into the negatives in the case of the fifth) meaning it's even simpler than it might appear and has the pleasing property of all harmonics and subharmonics being "on the same side"; specifically: -3 to 1 fifths (2L 3s) and -5 to 0 ~23/22's will get you every prime, up to octave equivalence; you can think of this as a 5 by 6 grid if you like and is a recommendable place to start looking at its structure. Tempering the less accurate comma S11 can be seen as a consequence of tempering {S21, S22, S23} so is very natural and given its properties certainly excusable. Therefore characteristic of any good tuning is the ~11 being the most flat prime, with other primes having strictly less than 5 ¢ of error. This temperament was first logged on x31eq by Scott Dakota.

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 196/195, 352/351

Mapping: [1 0 1 3 2 7], 0 1 1 0 1 -2], 0 0 -4 -3 -2 -2]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.5014, ~21/20 = 78.6143

Optimal ET sequence17c, 29, 31, 46, 60e, 77, 106de, 183dee

Badness: 1.150 × 10-3

17-limit

Note that this extension requires the 29g val for 29edo, which has the sizes of 17/16 and 18/17 swapped.

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 196/195, 352/351

Mapping: [1 0 1 3 2 7 6], 0 1 1 0 1 -2 -1], 0 0 -4 -3 -2 -2 -5]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 701.9299, ~22/21 = 78.2539
  • CWE: ~2 = 1\1, ~3/2 = 701.7925, ~22/21 = 78.6203

Optimal ET sequence: 17cg, 29g, 31, 46, 60e, 77, 106de

Badness:

  • Smith: 0.979 × 10-3
  • Dirichlet: 0.931
19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 121/120, 154/153, 196/195, 286/285, 352/351

Mapping: [1 0 1 3 2 7 6 9], 0 1 1 0 1 -2 -1 -3], 0 0 -4 -3 -2 -2 -5 0]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 701.5642, ~22/21 = 78.2353
  • CWE: ~2 = 1\1, ~3/2 = 701.6963, ~22/21 = 78.6479

Optimal ET sequence: 17cg, 29g, 31, 46, 60e, 75dfgh, 77, 106de

Badness:

  • Smith: 1.13 × 10-3
  • Dirichlet: 1.159
23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 121/120, 154/153, 161/160, 196/195, 286/285, 352/351

Mapping: [1 0 1 3 2 7 6 9 3], 0 1 1 0 1 -2 -1 -3 1], 0 0 -4 -3 -2 -2 -5 0 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3 = 1901.7115, ~23/22 = 78.2054
  • CWE: ~2 = 1\1, ~3 = 1901.8010, ~23/22 = 78.7188

Optimal ET sequence: 17cg, 29g, 31, 46, 60e, 75dfgh, 77, 106de

Badness:

  • Smith: 0.939 × 10-3
  • Dirichlet: 1.084

Inanna

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 121/120, 275/273

Mapping: [1 0 1 3 2 1], 0 1 1 0 1 2], 0 0 -4 -3 -2 -7]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.7754, ~21/20 = 79.6096

Optimal ET sequence14cf, 15, 29, 31, 45ef, 60e

Badness: 1.077 × 10-3

Ishtar

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 441/440

Mapping: [1 0 1 3 2 -1], 0 1 1 0 1 3], 0 0 -4 -3 -2 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.3952, ~21/20 = 78.9578

Optimal ET sequence14cf, 15, 17c, 29, 31f, 46, 106deff, 121def

Badness: 1.151 × 10-3

Notes