|
|
(25 intermediate revisions by 13 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-02-11 19:29:03 UTC</tt>.<br>
| |
| : The original revision id was <tt>540681262</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This pattern, with a generator between 2\11 (218.__18__ cents) and 1\5 (240), has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6 cents flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root.
| |
|
| |
|
| || 1\5 || || || || || || || || || 240 ||= ||
| | This pattern has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6{{c}} flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root. The name for this MOS pattern is '''p-chro machinoid''', although the alternative name '''mothroid''' was given by {{u|CompactStar}} as part of their temperament-centric MOS naming system (TCMNAMS). It has also been named '''slentonic''' by {{u|Inthar}}, after [[slendric]] temperament. |
| || || || || || || || || 9\46 || || 234.783 ||= ||
| |
| || || || || || || || || || 17\87 || 234.483 ||= Rodan is around here ||
| |
| || || || || || || || 8\41 || || || 234.146 ||= ||
| |
| || || || || || || || || 15\77 || || 233.766 ||= Slendric is around here ||
| |
| || || || || || || 7\36 || || || || 233.333 ||= ||
| |
| || || || || || || || 13\67 || || || 232.836 ||= ||
| |
| || || || || || 6\31 || || || || || 232.258 ||= Cynder/mothra is around here ||
| |
| || || || || || || 11\57 || || || || 231.579 ||= ||
| |
| || || || || 5\26 || || || || || || 230.769 ||= ||
| |
| || || || || || 9\47 || || || || || 229.787 ||= ||
| |
| || || || || || || || || || || 228.647 || ||
| |
| || || || 4\21 || || || || || || || 228.571 ||= ||
| |
| || || || || || || || || || || 228.496 || ||
| |
| || || || || 7\37 || || || || || || 227.027 ||= ||
| |
| || || 3\16 || || || || || || || || 225 ||= Boundary of propriety
| |
| (smaller generators are proper) ||
| |
| || || || || 8\43 || || || || || || 223.256 ||= ||
| |
| || || || || || || 21\113 || || || || 223.009 || ||
| |
| || || || || || || || || 55\296 || || 222.973 || ||
| |
| || || || || || || || || || 89\479 || 222.9645 || ||
| |
| || || || || || || || 34\183 || || || 222.951 || ||
| |
| || || || || || 13\70 || || || || || 222.857 || ||
| |
| || || || 5\27 || || || || || || || 222.222 ||= ||
| |
| || || || || 7\38 || || || || || || 221.035 ||= ||
| |
| || || || || || 9\49 || || || || || 220.408 ||= ||
| |
| || || || || || || 11\60 || || || || 220 || ||
| |
| || || || || || || || 13\71 || || || 219.718 || ||
| |
| || || || || || || || || 15\82 || || 219.512 || ||
| |
| || || || || || || || || || 17\93 || 219.355 || ||
| |
| || 2\11 || || || || || || || || || 218.182 ||= Machine is around here ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>5L 6s</title></head><body>This pattern, with a generator between 2\11 (218.<u>18</u> cents) and 1\5 (240), has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6 cents flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root.<br />
| |
| <br />
| |
|
| |
|
| | == Scale properties == |
|
| |
|
| <table class="wiki_table">
| | === Intervals === |
| <tr>
| | {{MOS intervals}} |
| <td>1\5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>234.783<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17\87<br />
| |
| </td>
| |
| <td>234.483<br />
| |
| </td>
| |
| <td style="text-align: center;">Rodan is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>234.146<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15\77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>233.766<br />
| |
| </td>
| |
| <td style="text-align: center;">Slendric is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\36<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>233.333<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\67<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>232.836<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>232.258<br />
| |
| </td>
| |
| <td style="text-align: center;">Cynder/mothra is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\57<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>231.579<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\26<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>230.769<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\47<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>229.787<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>228.647<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>228.571<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>228.496<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>227.027<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>3\16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>225<br />
| |
| </td>
| |
| <td style="text-align: center;">Boundary of propriety<br />
| |
| (smaller generators are proper)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\43<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>223.256<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21\113<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>223.009<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>55\296<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>222.973<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>89\479<br />
| |
| </td>
| |
| <td>222.9645<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>34\183<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>222.951<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\70<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>222.857<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>222.222<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>221.035<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\49<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>220.408<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\60<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>220<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\71<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>219.718<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15\82<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>219.512<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17\93<br />
| |
| </td>
| |
| <td>219.355<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2\11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>218.182<br />
| |
| </td>
| |
| <td style="text-align: center;">Machine is around here<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 6/1 = [[Slendric]], [[Rodan]] ↓ |
| | | 5/1 = [[Mosura]] |
| | | 9/2 = [[Mothra]] |
| | | 5/2 = [[Shoe]] |
| | | 8/5 = [[Kumonga]] |
| | }} |
| | |
| | [[Category:11-tone scales]] |
5L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 6 small steps, repeating every octave. 5L 6s is a child scale of 5L 1s, expanding it by 5 tones. Generators that produce this scale range from 218.2 ¢ to 240 ¢, or from 960 ¢ to 981.8 ¢.
This pattern has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6 ¢ flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root. The name for this MOS pattern is p-chro machinoid, although the alternative name mothroid was given by CompactStar as part of their temperament-centric MOS naming system (TCMNAMS). It has also been named slentonic by Inthar, after slendric temperament.
Scale properties
Intervals
Intervals of 5L 6s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 109.1 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
109.1 ¢ to 240.0 ¢
|
2-mosstep
|
Diminished 2-mosstep
|
d2ms
|
2s
|
0.0 ¢ to 218.2 ¢
|
Perfect 2-mosstep
|
P2ms
|
L + s
|
218.2 ¢ to 240.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
L + 2s
|
240.0 ¢ to 327.3 ¢
|
Major 3-mosstep
|
M3ms
|
2L + s
|
327.3 ¢ to 480.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
L + 3s
|
240.0 ¢ to 436.4 ¢
|
Major 4-mosstep
|
M4ms
|
2L + 2s
|
436.4 ¢ to 480.0 ¢
|
5-mosstep
|
Minor 5-mosstep
|
m5ms
|
2L + 3s
|
480.0 ¢ to 545.5 ¢
|
Major 5-mosstep
|
M5ms
|
3L + 2s
|
545.5 ¢ to 720.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
2L + 4s
|
480.0 ¢ to 654.5 ¢
|
Major 6-mosstep
|
M6ms
|
3L + 3s
|
654.5 ¢ to 720.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
3L + 4s
|
720.0 ¢ to 763.6 ¢
|
Major 7-mosstep
|
M7ms
|
4L + 3s
|
763.6 ¢ to 960.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
3L + 5s
|
720.0 ¢ to 872.7 ¢
|
Major 8-mosstep
|
M8ms
|
4L + 4s
|
872.7 ¢ to 960.0 ¢
|
9-mosstep
|
Perfect 9-mosstep
|
P9ms
|
4L + 5s
|
960.0 ¢ to 981.8 ¢
|
Augmented 9-mosstep
|
A9ms
|
5L + 4s
|
981.8 ¢ to 1200.0 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
4L + 6s
|
960.0 ¢ to 1090.9 ¢
|
Major 10-mosstep
|
M10ms
|
5L + 5s
|
1090.9 ¢ to 1200.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
5L + 6s
|
1200.0 ¢
|
Generator chain
Generator chain of 5L 6s
Bright gens |
Scale degree |
Abbrev.
|
15 |
Augmented 8-mosdegree |
A8md
|
14 |
Augmented 6-mosdegree |
A6md
|
13 |
Augmented 4-mosdegree |
A4md
|
12 |
Augmented 2-mosdegree |
A2md
|
11 |
Augmented 0-mosdegree |
A0md
|
10 |
Augmented 9-mosdegree |
A9md
|
9 |
Major 7-mosdegree |
M7md
|
8 |
Major 5-mosdegree |
M5md
|
7 |
Major 3-mosdegree |
M3md
|
6 |
Major 1-mosdegree |
M1md
|
5 |
Major 10-mosdegree |
M10md
|
4 |
Major 8-mosdegree |
M8md
|
3 |
Major 6-mosdegree |
M6md
|
2 |
Major 4-mosdegree |
M4md
|
1 |
Perfect 2-mosdegree |
P2md
|
0 |
Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md
|
−1 |
Perfect 9-mosdegree |
P9md
|
−2 |
Minor 7-mosdegree |
m7md
|
−3 |
Minor 5-mosdegree |
m5md
|
−4 |
Minor 3-mosdegree |
m3md
|
−5 |
Minor 1-mosdegree |
m1md
|
−6 |
Minor 10-mosdegree |
m10md
|
−7 |
Minor 8-mosdegree |
m8md
|
−8 |
Minor 6-mosdegree |
m6md
|
−9 |
Minor 4-mosdegree |
m4md
|
−10 |
Diminished 2-mosdegree |
d2md
|
−11 |
Diminished 11-mosdegree |
d11md
|
−12 |
Diminished 9-mosdegree |
d9md
|
−13 |
Diminished 7-mosdegree |
d7md
|
−14 |
Diminished 5-mosdegree |
d5md
|
−15 |
Diminished 3-mosdegree |
d3md
|
Modes
Scale degrees of the modes of 5L 6s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (mosdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
10|0
|
1
|
LsLsLsLsLss
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Maj.
|
Perf.
|
9|1
|
3
|
LsLsLsLssLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
8|2
|
5
|
LsLsLssLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
7|3
|
7
|
LsLssLsLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
6|4
|
9
|
LssLsLsLsLs
|
Perf.
|
Maj.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
5|5
|
11
|
sLsLsLsLsLs
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
4|6
|
2
|
sLsLsLsLssL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Perf.
|
Min.
|
Perf.
|
3|7
|
4
|
sLsLsLssLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
2|8
|
6
|
sLsLssLsLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Maj.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
1|9
|
8
|
sLssLsLsLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
0|10
|
10
|
ssLsLsLsLsL
|
Perf.
|
Min.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 5L 6s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
2\11
|
|
|
|
|
|
218.182
|
981.818
|
1:1
|
1.000
|
Equalized 5L 6s
|
|
|
|
|
|
11\60
|
220.000
|
980.000
|
6:5
|
1.200
|
|
|
|
|
|
9\49
|
|
220.408
|
979.592
|
5:4
|
1.250
|
|
|
|
|
|
|
16\87
|
220.690
|
979.310
|
9:7
|
1.286
|
|
|
|
|
7\38
|
|
|
221.053
|
978.947
|
4:3
|
1.333
|
Supersoft 5L 6s
|
|
|
|
|
|
19\103
|
221.359
|
978.641
|
11:8
|
1.375
|
|
|
|
|
|
12\65
|
|
221.538
|
978.462
|
7:5
|
1.400
|
|
|
|
|
|
|
17\92
|
221.739
|
978.261
|
10:7
|
1.429
|
|
|
|
5\27
|
|
|
|
222.222
|
977.778
|
3:2
|
1.500
|
Soft 5L 6s
|
|
|
|
|
|
18\97
|
222.680
|
977.320
|
11:7
|
1.571
|
|
|
|
|
|
13\70
|
|
222.857
|
977.143
|
8:5
|
1.600
|
Kumonga
|
|
|
|
|
|
21\113
|
223.009
|
976.991
|
13:8
|
1.625
|
|
|
|
|
8\43
|
|
|
223.256
|
976.744
|
5:3
|
1.667
|
Semisoft 5L 6s
|
|
|
|
|
|
19\102
|
223.529
|
976.471
|
12:7
|
1.714
|
|
|
|
|
|
11\59
|
|
223.729
|
976.271
|
7:4
|
1.750
|
|
|
|
|
|
|
14\75
|
224.000
|
976.000
|
9:5
|
1.800
|
|
|
3\16
|
|
|
|
|
225.000
|
975.000
|
2:1
|
2.000
|
Basic 5L 6s Scales with tunings softer than this are proper
|
|
|
|
|
|
13\69
|
226.087
|
973.913
|
9:4
|
2.250
|
|
|
|
|
|
10\53
|
|
226.415
|
973.585
|
7:3
|
2.333
|
|
|
|
|
|
|
17\90
|
226.667
|
973.333
|
12:5
|
2.400
|
|
|
|
|
7\37
|
|
|
227.027
|
972.973
|
5:2
|
2.500
|
Semihard 5L 6s Shoe
|
|
|
|
|
|
18\95
|
227.368
|
972.632
|
13:5
|
2.600
|
|
|
|
|
|
11\58
|
|
227.586
|
972.414
|
8:3
|
2.667
|
|
|
|
|
|
|
15\79
|
227.848
|
972.152
|
11:4
|
2.750
|
|
|
|
4\21
|
|
|
|
228.571
|
971.429
|
3:1
|
3.000
|
Hard 5L 6s
|
|
|
|
|
|
13\68
|
229.412
|
970.588
|
10:3
|
3.333
|
|
|
|
|
|
9\47
|
|
229.787
|
970.213
|
7:2
|
3.500
|
|
|
|
|
|
|
14\73
|
230.137
|
969.863
|
11:3
|
3.667
|
|
|
|
|
5\26
|
|
|
230.769
|
969.231
|
4:1
|
4.000
|
Superhard 5L 6s
|
|
|
|
|
|
11\57
|
231.579
|
968.421
|
9:2
|
4.500
|
Mothra
|
|
|
|
|
6\31
|
|
232.258
|
967.742
|
5:1
|
5.000
|
Mosura
|
|
|
|
|
|
7\36
|
233.333
|
966.667
|
6:1
|
6.000
|
Slendric, Rodan ↓
|
1\5
|
|
|
|
|
|
240.000
|
960.000
|
1:0
|
→ ∞
|
Collapsed 5L 6s
|