Hemimean family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Update keys
 
(26 intermediate revisions by 5 users not shown)
Line 1: Line 1:
The '''hemimean family''' of temperaments are rank-3 temperaments tempering out [[3136/3125]].  
{{Technical data page}}
The '''hemimean family''' of [[temperament]]s are [[rank-3 temperament]]s which [[temper out]] [[3136/3125]].  


The hemimean comma, 3136/3125, is the ratio between the diesis and the tritonic diesis, or jubilisma; that is, (128/125)/(50/49).  
The hemimean comma, 3136/3125, is the ratio between the [[126/125|septimal semicomma (126/125)]] and the [[225/224|septimal kleisma (225/224)]]. This fact alone makes hemimean a very notable rank-3 temperament, as any non-meantone tuning of hemimean will split the [[81/80|syntonic comma (81/80)]] into two equal parts, each representing 126/125~225/224.
 
Other equivalences characteristic to hemimean are [[128/125]]~[[50/49]] and [[49/45]]~([[25/24]])<sup>2</sup>.  


== Hemimean ==
== Hemimean ==
Line 8: Line 11:
[[Comma list]]: 3136/3125 (hemimean)
[[Comma list]]: 3136/3125 (hemimean)


[[Mapping]]: [{{val| 1 0 0 -3 }}, {{val| 0 1 0 0 }}, {{val| 0 0 2 5 }}]
{{Mapping|legend=1| 1 0 0 -3 | 0 1 0 0 | 0 0 2 5 }}


Mapping generators: ~2, ~3, ~56/25
: mapping generators: ~2, ~3, ~56/25


[[Mapping to lattice]]: [{{val| 0 0 2 5 }}, {{val| 0 1 0 0 }}]
[[Mapping to lattice]]: {{mapping| 0 0 2 5 | 0 1 0 0 }}


Lattice basis:  
Lattice basis:  
: 28/25 length = 0.5055, 3/2 length = 1.5849
: 28/25 length = 0.5055, 3/2 length = 1.5849
: Angle (28/25, 3/2) = 90 degrees
: Angle (28/25, 3/2) = 90 degrees
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 701.9550, ~28/25 = 193.6499


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* 7- and [[9-odd-limit]]
* [[7-odd-limit|7-]] and [[9-odd-limit]]
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 6/5 0 0 2/5 }}, {{monzo| 0 0 0 1 }}]
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 6/5 0 0 2/5 }}, {{monzo| 0 0 0 1 }}]
: [[Eigenmonzo basis]]: 2.3.7
: [[eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.3.7


{{Val list|legend=1| 12, 19, 31, 68, 80, 87, 99, 217, 229, 328, 347, 446, 545c, 675c }}
{{Optimal ET sequence|legend=1| 12, 19, 31, 68, 80, 87, 99, 217, 229, 328, 347, 446, 675c }}


[[Badness]]: 0.160 × 10<sup>-3</sup>
[[Badness]]: 0.160 × 10<sup>-3</sup>
Line 30: Line 35:


[[Projection pair]]s: 5 3136/625 7 68841472/9765625 to 2.3.25/7
[[Projection pair]]s: 5 3136/625 7 68841472/9765625 to 2.3.25/7
=== Hemimean orion ===
As the second generator of hemimean, [[28/25]], is close to [[19/17]], and as the latter is the [[mediant]] of [[10/9]] and [[9/8]], it is natural to extend hemimean to the 2.3.5.7.17.19 subgroup by tempering out ([[28/25]])/([[19/17]]) = [[476/475]], or equivalently stated, the [[semiparticular]] (5/4)/(19/17)<sup>2</sup> = [[1445/1444]]. Notice 3136/3125 = (476/475)([[2128/2125]]) and that 2128/2125 = ([[1216/1215]])([[1701/1700]]), so it makes sense to temper out 1216/1215 and/or 1701/1700 as well. An interesting tuning not in the optimal ET sequence is [[111edo]]. This temperament finds the harmonic 17 and 19 at (+5, +1) and (+5, +2), respectively, with virtually no additional error.
The [[S-expression]]-based comma list for the 2.3.5.7.17.19 subgroup extension is {[[1216/1215|S16/S18]], [[1445/1444|S17/S19]], [[1701/1700|S18/S20]](, ([[136/135|S16*S17]])/([[190/189|S19*S20]]) = [[476/475|S16/S18 * S17/S19 * S18/S20]])}.
Subgroup: 2.3.5.7.17
Comma list: 1701/1700, 3136/3125
Sval mapping: {{mapping| 1 0 0 -3 -5 | 0 1 0 0 5 | 0 0 2 5 1 }}
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.1960, ~28/25 = 193.6548
{{Optimal ET sequence|legend=1| 12, 19g, 31g, …, 87, 99, 217, 229, 316, 328h, 446, 545c, 873cg }}
Badness: 0.573
==== 2.3.5.7.17.19 subgroup ====
Subgroup: 2.3.5.7.17.19
Comma list: 476/475, 1216/1215, 1445/1444
Sval mapping: {{mapping| 1 0 0 -3 -5 -6 | 0 1 0 0 5 5 | 0 0 2 5 1 2 }}
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.132, ~19/17 = 193.647
{{Optimal ET sequence|legend=1| 12, 19gh, 31gh, …, 87, 99, 118, 210gh, 217, 229, 328h, 446 }}
Badness: 0.456
=== Semiorion ===
Semiorion is an alternative subgroup extension of lower complexity, which splits the octave into two. The [[S-expression]]-based comma list for the 2.3.5.7.17.19 subgroup extension is {[[289/288|S17]], [[361/360|S19]], [[1216/1215|S16/S18]](, [[1701/1700|S18/S20]], [[476/475]] = [[2128/2125|S16/S20]] * [[1445/1444|S17/S19]])}.
Subgroup: 2.3.5.7.17
Comma list: 289/288, 3136/3125
Sval mapping: {{mapping| 2 0 0 -6 5 | 0 1 0 0 1 | 0 0 2 5 0 }}
: sval mapping generators: ~17/12, ~3, ~56/25
Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.3471, ~28/25 = 193.6499
{{Optimal ET sequence|legend=1| 12, 30d, 38d, 50, 62, 68, 106d, 118, 248g, 316g }}
Badness: 1.095
==== 2.3.5.7.17.19 subgroup ====
Subgroup: 2.3.5.7.17.19
Comma list: 289/288, 361/360, 476/475
Mapping: {{mapping| 2 0 0 -6 5 3 | 0 1 0 0 1 1 | 0 0 2 5 0 1 }}
Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.509, ~28/25 = 193.669
{{Optimal ET sequence|legend=1| 12, …, 50, 68, 106d, 118, 248g, 316g }}
Badness: 0.569


== Belobog ==
== Belobog ==
Line 36: Line 101:
[[Comma list]]: 441/440, 3136/3125
[[Comma list]]: 441/440, 3136/3125


[[Mapping]]: [{{val| 1 0 0 -3 -9 }}, {{val| 0 1 0 0 2 }}, {{val| 0 0 2 5 8 }}]
{{Mapping|legend=1| 1 0 0 -3 -9 | 0 1 0 0 2 | 0 0 2 5 8 }}


Mapping generators: ~2, ~3, ~56/25
: mapping generators: ~2, ~3, ~56/25


Mapping to lattice: [{{val| 0 -2 2 5 4 }}, {{val| 0 -1 0 0 -2 }}]
Mapping to lattice: {{mapping| 0 -2 2 5 4 | 0 -1 0 0 -2 }}


Lattice basis:  
Lattice basis:  
: 28/25 length = 0.3829, 16/15 length = 1.1705
: 28/25 length = 0.3829, 16/15 length = 1.1705
: Angle (28/25, 16/15) = 93.2696
: Angle (28/25, 16/15) = 93.2696
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 701.7205, ~28/25 = 193.5545


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 27/22 6/11 -5/22 -3/11 5/22 }}, {{monzo| 24/11 -4/11 -2/11 2/11 2/11 }}, {{monzo| 27/11 -10/11 -5/11 5/11 5/11 }}, {{monzo| 24/11 -4/11 -13/11 2/11 13/11 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 27/22 6/11 -5/22 -3/11 5/22 }}, {{monzo| 24/11 -4/11 -2/11 2/11 2/11 }}, {{monzo| 27/11 -10/11 -5/11 5/11 5/11 }}, {{monzo| 24/11 -4/11 -13/11 2/11 13/11 }}]
: [[Eigenmonzo basis]]: 2.9/7.11/5
: [[Eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.9/7.11/5


{{Val list|legend=1| 12, 19e, 31, 87, 99e, 118, 130, 217, 248, 378, 626, 961cd }}
{{Optimal ET sequence|legend=1| 12, 19e, 31, 68e, 87, 99e, 118, 130, 217, 248 }}


[[Badness]]: 0.609 × 10<sup>-3</sup>
[[Badness]]: 0.609 × 10<sup>-3</sup>
Line 64: Line 131:
Comma list: 441/440, 1001/1000, 3136/3125
Comma list: 441/440, 1001/1000, 3136/3125


Mapping: [{{val| 1 0 0 -3 -9 15 }}, {{val| 0 1 0 0 2 -2 }}, {{val| 0 0 2 5 8 -7 }}]
Mapping: {{mapping| 1 0 0 -3 -9 15 | 0 1 0 0 2 -2 | 0 0 2 5 8 -7 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.8219, ~28/25 = 193.5816


Optimal GPV sequence: {{Val list| 31, 43, 56, 74, 87, 118, 130, 217, 248, 347e, 378, 465, 595e }}
{{Optimal ET sequence|legend=1| 31, 43, 56, 74, 87, 118, 130, 217, 248, 347e, 378, 465, 595e }}


Badness: 1.11 × 10<sup>-3</sup>
Badness: 1.11 × 10<sup>-3</sup>
Line 75: Line 144:
Comma list: 196/195, 352/351, 625/624
Comma list: 196/195, 352/351, 625/624


Mapping: [{{val| 0 0 -3 -9 -4 }}, {{val| 0 1 0 0 2 -1 }}, {{val| 0 0 2 5 8 8 }}]
Mapping: {{mapping| 1 0 0 -3 -9 -4 | 0 1 0 0 2 -1 | 0 0 2 5 8 8 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.5667, ~28/25 = 193.2493


Optimal GPV sequence: {{Val list| 12f, 19e, 31, 56, 68e, 87, 118, 205d, 263f, 304f, 391df, 509df }}
{{Optimal ET sequence|legend=1| 12f, 19e, 31, 56, 68e, 87, 118, 186ef, 205d }}


Badness: 1.26 × 10<sup>-3</sup>
Badness: 1.26 × 10<sup>-3</sup>
Line 86: Line 157:
[[Comma list]]: 540/539, 3136/3125
[[Comma list]]: 540/539, 3136/3125


[[Mapping]]: [{{val| 1 0 0 -3 8 }}, {{val| 0 1 0 0 3 }}, {{val| 0 0 2 5 -8 }}]
{{Mapping|legend=1| 1 0 0 -3 8 | 0 1 0 0 3 | 0 0 2 5 -8 }}
 
: mapping generators: ~2, ~3, ~56/25


Mapping generators: ~2, ~3, ~768/343
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 701.1636, ~28/25 = 193.8645


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 0 1 0 0 0 }}, {{monzo| 8/5 3/5 1/5 0 -1/5 }}, {{monzo| 1 3/2 1/2 0 -1/2 }}, {{monzo| 8/5 3/5 -4/5 0 4/5 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 0 1 0 0 0 }}, {{monzo| 8/5 3/5 1/5 0 -1/5 }}, {{monzo| 1 3/2 1/2 0 -1/2 }}, {{monzo| 8/5 3/5 -4/5 0 4/5 }}]
: [[Eigenmonzo basis]]: 2.3.11/10
: [[Eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.3.11/5


{{Val list|legend=1| 12e, 19, 31, 68e, 80, 99e, 130, 241, 340ce, 371ce, 470cde, 711cde }}
{{Optimal ET sequence|legend=1| 12e, 18e, 19, 31, 68e, 80, 99e, 130, 210e, 241, 340ce, 371ce, 470cdee, 501cde, 581cdee, 711ccdee }}


[[Badness]]: 0.870 × 10<sup>-3</sup>
[[Badness]]: 0.870 × 10<sup>-3</sup>
Line 104: Line 177:
[[Comma list]]: 3025/3024, 3136/3125
[[Comma list]]: 3025/3024, 3136/3125


[[Mapping]]: [{{val| 1 0 2 2 1 }}, {{val| 0 1 2 5 2 }}, {{val| 0 0 -4 -10 -1 }}]
{{Mapping|legend=1| 1 0 2 2 1 | 0 1 2 5 2 | 0 0 -4 -10 -1 }}
 
: mapping generators: ~2, ~3, ~18/11


Mapping generators: ~2, ~3, ~18/11
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.2875, ~18/11 = 854.3132


{{Val list|legend=1| 31, 80, 87, 111, 118, 198, 316, 545c, 861ce }}
{{Optimal ET sequence|legend=1| 24d, 31, 80, 87, 111, 118, 198, 316, 514c, 545c }}


[[Badness]]: 0.819 × 10<sup>-3</sup>
[[Badness]]: 0.819 × 10<sup>-3</sup>


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Hemimean family| ]] <!-- main article -->
[[Category:Hemimean family| ]] <!-- main article -->
[[Category:Hemimean]]
[[Category:Hemimean]]
[[Category:Rank 3]]
[[Category:Rank 3]]

Latest revision as of 00:39, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The hemimean family of temperaments are rank-3 temperaments which temper out 3136/3125.

The hemimean comma, 3136/3125, is the ratio between the septimal semicomma (126/125) and the septimal kleisma (225/224). This fact alone makes hemimean a very notable rank-3 temperament, as any non-meantone tuning of hemimean will split the syntonic comma (81/80) into two equal parts, each representing 126/125~225/224.

Other equivalences characteristic to hemimean are 128/125~50/49 and 49/45~(25/24)2.

Hemimean

Subgroup: 2.3.5.7

Comma list: 3136/3125 (hemimean)

Mapping[1 0 0 -3], 0 1 0 0], 0 0 2 5]]

mapping generators: ~2, ~3, ~56/25

Mapping to lattice: [0 0 2 5], 0 1 0 0]]

Lattice basis:

28/25 length = 0.5055, 3/2 length = 1.5849
Angle (28/25, 3/2) = 90 degrees

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9550, ~28/25 = 193.6499

Minimax tuning:

[[1 0 0 0, [0 1 0 0, [6/5 0 0 2/5, [0 0 0 1]
Unchanged-interval (eigenmonzo) basis: 2.3.7

Optimal ET sequence12, 19, 31, 68, 80, 87, 99, 217, 229, 328, 347, 446, 675c

Badness: 0.160 × 10-3

Complexity spectrum: 5/4, 7/5, 4/3, 6/5, 8/7, 7/6, 9/8, 10/9, 9/7

Projection pairs: 5 3136/625 7 68841472/9765625 to 2.3.25/7

Hemimean orion

As the second generator of hemimean, 28/25, is close to 19/17, and as the latter is the mediant of 10/9 and 9/8, it is natural to extend hemimean to the 2.3.5.7.17.19 subgroup by tempering out (28/25)/(19/17) = 476/475, or equivalently stated, the semiparticular (5/4)/(19/17)2 = 1445/1444. Notice 3136/3125 = (476/475)(2128/2125) and that 2128/2125 = (1216/1215)(1701/1700), so it makes sense to temper out 1216/1215 and/or 1701/1700 as well. An interesting tuning not in the optimal ET sequence is 111edo. This temperament finds the harmonic 17 and 19 at (+5, +1) and (+5, +2), respectively, with virtually no additional error.

The S-expression-based comma list for the 2.3.5.7.17.19 subgroup extension is {S16/S18, S17/S19, S18/S20(, (S16*S17)/(S19*S20) = S16/S18 * S17/S19 * S18/S20)}.

Subgroup: 2.3.5.7.17

Comma list: 1701/1700, 3136/3125

Sval mapping: [1 0 0 -3 -5], 0 1 0 0 5], 0 0 2 5 1]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.1960, ~28/25 = 193.6548

Optimal ET sequence12, 19g, 31g, …, 87, 99, 217, 229, 316, 328h, 446, 545c, 873cg

Badness: 0.573

2.3.5.7.17.19 subgroup

Subgroup: 2.3.5.7.17.19

Comma list: 476/475, 1216/1215, 1445/1444

Sval mapping: [1 0 0 -3 -5 -6], 0 1 0 0 5 5], 0 0 2 5 1 2]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.132, ~19/17 = 193.647

Optimal ET sequence12, 19gh, 31gh, …, 87, 99, 118, 210gh, 217, 229, 328h, 446

Badness: 0.456

Semiorion

Semiorion is an alternative subgroup extension of lower complexity, which splits the octave into two. The S-expression-based comma list for the 2.3.5.7.17.19 subgroup extension is {S17, S19, S16/S18(, S18/S20, 476/475 = S16/S20 * S17/S19)}.

Subgroup: 2.3.5.7.17

Comma list: 289/288, 3136/3125

Sval mapping: [2 0 0 -6 5], 0 1 0 0 1], 0 0 2 5 0]]

sval mapping generators: ~17/12, ~3, ~56/25

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.3471, ~28/25 = 193.6499

Optimal ET sequence12, 30d, 38d, 50, 62, 68, 106d, 118, 248g, 316g

Badness: 1.095

2.3.5.7.17.19 subgroup

Subgroup: 2.3.5.7.17.19

Comma list: 289/288, 361/360, 476/475

Mapping: [2 0 0 -6 5 3], 0 1 0 0 1 1], 0 0 2 5 0 1]]

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.509, ~28/25 = 193.669

Optimal ET sequence12, …, 50, 68, 106d, 118, 248g, 316g

Badness: 0.569

Belobog

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3136/3125

Mapping[1 0 0 -3 -9], 0 1 0 0 2], 0 0 2 5 8]]

mapping generators: ~2, ~3, ~56/25

Mapping to lattice: [0 -2 2 5 4], 0 -1 0 0 -2]]

Lattice basis:

28/25 length = 0.3829, 16/15 length = 1.1705
Angle (28/25, 16/15) = 93.2696

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.7205, ~28/25 = 193.5545

Minimax tuning:

[[1 0 0 0 0, [27/22 6/11 -5/22 -3/11 5/22, [24/11 -4/11 -2/11 2/11 2/11, [27/11 -10/11 -5/11 5/11 5/11, [24/11 -4/11 -13/11 2/11 13/11]
Unchanged-interval (eigenmonzo) basis: 2.9/7.11/5

Optimal ET sequence12, 19e, 31, 68e, 87, 99e, 118, 130, 217, 248

Badness: 0.609 × 10-3

Projection pairs: 5 3136/625 7 68841472/9765625 11 1700108992512/152587890625 to 2.3.25/7

Scales: belobog31

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 441/440, 1001/1000, 3136/3125

Mapping: [1 0 0 -3 -9 15], 0 1 0 0 2 -2], 0 0 2 5 8 -7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.8219, ~28/25 = 193.5816

Optimal ET sequence31, 43, 56, 74, 87, 118, 130, 217, 248, 347e, 378, 465, 595e

Badness: 1.11 × 10-3

Bellowblog

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 625/624

Mapping: [1 0 0 -3 -9 -4], 0 1 0 0 2 -1], 0 0 2 5 8 8]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.5667, ~28/25 = 193.2493

Optimal ET sequence12f, 19e, 31, 56, 68e, 87, 118, 186ef, 205d

Badness: 1.26 × 10-3

Siebog

Subgroup: 2.3.5.7.11

Comma list: 540/539, 3136/3125

Mapping[1 0 0 -3 8], 0 1 0 0 3], 0 0 2 5 -8]]

mapping generators: ~2, ~3, ~56/25

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.1636, ~28/25 = 193.8645

Minimax tuning:

[[1 0 0 0 0, [0 1 0 0 0, [8/5 3/5 1/5 0 -1/5, [1 3/2 1/2 0 -1/2, [8/5 3/5 -4/5 0 4/5]
Unchanged-interval (eigenmonzo) basis: 2.3.11/5

Optimal ET sequence12e, 18e, 19, 31, 68e, 80, 99e, 130, 210e, 241, 340ce, 371ce, 470cdee, 501cde, 581cdee, 711ccdee

Badness: 0.870 × 10-3

Triglav

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 3136/3125

Mapping[1 0 2 2 1], 0 1 2 5 2], 0 0 -4 -10 -1]]

mapping generators: ~2, ~3, ~18/11

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2875, ~18/11 = 854.3132

Optimal ET sequence24d, 31, 80, 87, 111, 118, 198, 316, 514c, 545c

Badness: 0.819 × 10-3