3L 5s
↖ 2L 4s | ↑ 3L 4s | 4L 4s ↗ |
← 2L 5s | 3L 5s | 4L 5s → |
↙ 2L 6s | ↓ 3L 6s | 4L 6s ↘ |
┌╥┬╥┬┬╥┬┬┐ │║│║││║│││ ││││││││││ └┴┴┴┴┴┴┴┴┘
ssLssLsL
3L 5s, named checkertonic in TAMNAMS (also known as anti-oneirotonic), is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 5 small steps, repeating every octave. Generators that produce this scale range from 750¢ to 800¢, or from 400¢ to 450¢.
Name
TAMNAMS suggests the temperament-agnostic name checkertonic for this scale.
Intervals
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for diatonic interval categories.
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-checkstep | Perfect 0-checkstep | P0chks | 0 | 0.0¢ |
1-checkstep | Minor 1-checkstep | m1chks | s | 0.0¢ to 150.0¢ |
Major 1-checkstep | M1chks | L | 150.0¢ to 400.0¢ | |
2-checkstep | Minor 2-checkstep | m2chks | 2s | 0.0¢ to 300.0¢ |
Major 2-checkstep | M2chks | L + s | 300.0¢ to 400.0¢ | |
3-checkstep | Perfect 3-checkstep | P3chks | L + 2s | 400.0¢ to 450.0¢ |
Augmented 3-checkstep | A3chks | 2L + s | 450.0¢ to 800.0¢ | |
4-checkstep | Minor 4-checkstep | m4chks | L + 3s | 400.0¢ to 600.0¢ |
Major 4-checkstep | M4chks | 2L + 2s | 600.0¢ to 800.0¢ | |
5-checkstep | Diminished 5-checkstep | d5chks | L + 4s | 400.0¢ to 750.0¢ |
Perfect 5-checkstep | P5chks | 2L + 3s | 750.0¢ to 800.0¢ | |
6-checkstep | Minor 6-checkstep | m6chks | 2L + 4s | 800.0¢ to 900.0¢ |
Major 6-checkstep | M6chks | 3L + 3s | 900.0¢ to 1200.0¢ | |
7-checkstep | Minor 7-checkstep | m7chks | 2L + 5s | 800.0¢ to 1050.0¢ |
Major 7-checkstep | M7chks | 3L + 4s | 1050.0¢ to 1200.0¢ | |
8-checkstep | Perfect 8-checkstep | P8chks | 3L + 5s | 1200.0¢ |
Notation
The TAMNAMS system is used in this article to refer to 3L 5s step size ratios and step ratio ranges.
The notation used in this article is JKLMNOPQJ = sLssLsLs (Anti-Ultharian), &/@ = up/down by chroma.
Theory
In contrast to oneirotonic (5L 3s), which often require the usage of completely new chords to have consonant-sounding music, some checkertonic scales contain approximations to a perfect fifth (3/2, usually as a dim. chk6th or maj. chk5th), and thus can be used for traditional root-3rd-P5 harmony.
Low harmonic entropy scales
There are two significant harmonic entropy minima with this MOS pattern:
- Sensi, in which the generator is a 9/7, two of them make a 5/3, and seven of them make a 3/2, which is proper.
- Squares, in which the generator is also a 9/7, but two of them make an 18/11 and four of them make a 4/3, which is improper.
Tuning ranges
Simple tunings
Scale degree | Abbrev. | Basic (2:1) 11edo |
Hard (3:1) 14edo |
Soft (3:2) 19edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-checkdegree | P0chkd | 0\11 | 0.0 | 0\14 | 0.0 | 0\19 | 0.0 | 1/1 |
Minor 1-checkdegree | m1chkd | 1\11 | 109.1 | 1\14 | 85.7 | 2\19 | 126.3 | 16/15, 14/13 |
Major 1-checkdegree | M1chkd | 2\11 | 218.2 | 3\14 | 257.1 | 3\19 | 189.5 | 9/8, 8/7 |
Minor 2-checkdegree | m2chkd | 2\11 | 218.2 | 2\14 | 171.4 | 4\19 | 252.6 | 9/8, 8/7 |
Major 2-checkdegree | M2chkd | 3\11 | 327.3 | 4\14 | 342.9 | 5\19 | 315.8 | 6/5, 11/9 |
Perfect 3-checkdegree | P3chkd | 4\11 | 436.4 | 5\14 | 428.6 | 7\19 | 442.1 | 14/11, 9/7 |
Augmented 3-checkdegree | A3chkd | 5\11 | 545.5 | 7\14 | 600.0 | 8\19 | 505.3 | 11/8, 18/13 |
Minor 4-checkdegree | m4chkd | 5\11 | 545.5 | 6\14 | 514.3 | 9\19 | 568.4 | 11/8, 18/13 |
Major 4-checkdegree | M4chkd | 6\11 | 654.5 | 8\14 | 685.7 | 10\19 | 631.6 | 13/9, 16/11 |
Diminished 5-checkdegree | d5chkd | 6\11 | 654.5 | 7\14 | 600.0 | 11\19 | 694.7 | 13/9, 16/11 |
Perfect 5-checkdegree | P5chkd | 7\11 | 763.6 | 9\14 | 771.4 | 12\19 | 757.9 | 14/9, 11/7 |
Minor 6-checkdegree | m6chkd | 8\11 | 872.7 | 10\14 | 857.1 | 14\19 | 884.2 | 18/11, 5/3 |
Major 6-checkdegree | M6chkd | 9\11 | 981.8 | 12\14 | 1028.6 | 15\19 | 947.4 | 7/4, 16/9 |
Minor 7-checkdegree | m7chkd | 9\11 | 981.8 | 11\14 | 942.9 | 16\19 | 1010.5 | 7/4, 16/9 |
Major 7-checkdegree | M7chkd | 10\11 | 1090.9 | 13\14 | 1114.3 | 17\19 | 1073.7 | 13/7, 15/8 |
Perfect 8-checkdegree | P8chkd | 11\11 | 1200.0 | 14\14 | 1200.0 | 19\19 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Parasoft tunings
Parasoft tunings (step ratios 4:3 to 3:2) are associated with sensi tempermament.
Scale degree | Abbrev. | Supersoft (4:3) 27edo |
7:5 46edo |
Soft (3:2) 19edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-checkdegree | P0chkd | 0\27 | 0.0 | 0\46 | 0.0 | 0\19 | 0.0 | 1/1 |
Minor 1-checkdegree | m1chkd | 3\27 | 133.3 | 5\46 | 130.4 | 2\19 | 126.3 | 14/13 |
Major 1-checkdegree | M1chkd | 4\27 | 177.8 | 7\46 | 182.6 | 3\19 | 189.5 | 10/9 |
Minor 2-checkdegree | m2chkd | 6\27 | 266.7 | 10\46 | 260.9 | 4\19 | 252.6 | 7/6 |
Major 2-checkdegree | M2chkd | 7\27 | 311.1 | 12\46 | 313.0 | 5\19 | 315.8 | 6/5 |
Perfect 3-checkdegree | P3chkd | 10\27 | 444.4 | 17\46 | 443.5 | 7\19 | 442.1 | 9/7 |
Augmented 3-checkdegree | A3chkd | 11\27 | 488.9 | 19\46 | 495.7 | 8\19 | 505.3 | 4/3 |
Minor 4-checkdegree | m4chkd | 13\27 | 577.8 | 22\46 | 573.9 | 9\19 | 568.4 | 7/5 |
Major 4-checkdegree | M4chkd | 14\27 | 622.2 | 24\46 | 626.1 | 10\19 | 631.6 | 10/7 |
Diminished 5-checkdegree | d5chkd | 16\27 | 711.1 | 27\46 | 704.3 | 11\19 | 694.7 | 3/2 |
Perfect 5-checkdegree | P5chkd | 17\27 | 755.6 | 29\46 | 756.5 | 12\19 | 757.9 | 14/9 |
Minor 6-checkdegree | m6chkd | 20\27 | 888.9 | 34\46 | 887.0 | 14\19 | 884.2 | 5/3 |
Major 6-checkdegree | M6chkd | 21\27 | 933.3 | 36\46 | 939.1 | 15\19 | 947.4 | 12/7 |
Minor 7-checkdegree | m7chkd | 23\27 | 1022.2 | 39\46 | 1017.4 | 16\19 | 1010.5 | 9/5 |
Major 7-checkdegree | M7chkd | 24\27 | 1066.7 | 41\46 | 1069.6 | 17\19 | 1073.7 | 13/7 |
Perfect 8-checkdegree | P8chkd | 27\27 | 1200.0 | 46\46 | 1200.0 | 19\19 | 1200.0 | 2/1 |
* Ratios shown are within the 2.3.5.7.13 subgroup. Automatic search may be inexact. Other interpretations are possible.
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (checkdegree) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
7|0 | 1 | LsLssLss | Perf. | Maj. | Maj. | Aug. | Maj. | Perf. | Maj. | Maj. | Perf. |
6|1 | 6 | LssLsLss | Perf. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Perf. |
5|2 | 3 | LssLssLs | Perf. | Maj. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Perf. |
4|3 | 8 | sLsLssLs | Perf. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Perf. |
3|4 | 5 | sLssLsLs | Perf. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Perf. |
2|5 | 2 | sLssLssL | Perf. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Min. | Perf. |
1|6 | 7 | ssLsLssL | Perf. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Perf. |
0|7 | 4 | ssLssLsL | Perf. | Min. | Min. | Perf. | Min. | Dim. | Min. | Min. | Perf. |
Proposed names
The modes of checkertonic can be named after its sister MOS 5L 3s (oneirotonic). R-4981 has also proposed names based on grand chess pieces.
UDP | Cyclic order |
Step pattern |
Anti-modes of 5L 3s | Grand chess names[proposed] |
---|---|---|---|---|
7|0 | 1 | LsLssLss | Anti-Sarnathian (sar-NA(H)TH-iən) | King |
6|1 | 6 | LssLsLss | Anti-Hlanithian (lə-NITH-iən) | Queen |
5|2 | 3 | LssLssLs | Anti-Kadathian (kə-DA(H)TH-iən) | Marshall |
4|3 | 8 | sLsLssLs | Anti-Mnarian (mə-NA(I)R-iən) | Cardinal |
3|4 | 5 | sLssLsLs | Anti-Ultharian (ul-THA(I)R-iən) | Rook |
2|5 | 2 | sLssLssL | Anti-Celephaïsian (kel-ə-FAY-zhən) | Bishop |
1|6 | 7 | ssLsLssL | Anti-Illarnekian (ill-ar-NEK-iən) | Knight |
0|7 | 4 | ssLssLsL | Anti-Dylathian (də-LA(H)TH-iən) | Pawn |
The order of modes on the white keys JKLMNOPQ are:
- J Anti-Ultharian, Rook
- K Anti-Hlanithian, Queen
- L Anti-Illarnekian, Knight
- M Anti-Mnarian, Cardinal
- N Anti-Sarnathian, King
- O Anti-Celephaïsian, Bishop
- P Anti-Kadathian, Marshall
- Q Anti-Dylathian, Pawn
UDP | Anti-modes of 5L 3s | Chess-based names | Step pattern | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | (9) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7|0 | Anti-Sarnathian | King | LsLssLss | J | K& | L | M& | N& | O | P& | Q | (J) |
6|1 | Anti-Hlanithian | Queen | LssLsLss | J | K& | L | M | N& | O | P& | Q | (J) |
5|2 | Anti-Kadathian | Marshall | LssLssLs | J | K& | L | M | N& | O | P | Q | (J) |
4|3 | Anti-Mnarian | Cardinal | sLsLssLs | J | K | L | M | N& | O | P | Q | (J) |
3|4 | Anti-Ultharian | Rook | sLssLsLs | J | K | L | M | N | O | P | Q | (J) |
2|5 | Anti-Celephaïsian | Bishop | sLssLssL | J | K | L | M | N | O | P | Q@ | (J) |
1|6 | Anti-Illarnekian | Knight | ssLsLssL | J | K | L@ | M | N | O | P | Q@ | (J) |
0|7 | Anti-Dylathian | Pawn | ssLssLsL | J | K | L@ | M | N | O@ | P | Q@ | (J) |
Temperaments
The major temperaments in this area are:
Music
Scale tree
Generator ranges:
- Chroma-positive generator: 750 cents (5\8) to 800 cents (2\3)
- Chroma-negative generator: 400 cents (1\3) to 450 cents (3\8)
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
5\8 | 750.000 | 450.000 | 1:1 | 1.000 | Equalized 3L 5s | |||||
27\43 | 753.488 | 446.512 | 6:5 | 1.200 | ||||||
22\35 | 754.286 | 445.714 | 5:4 | 1.250 | ||||||
39\62 | 754.839 | 445.161 | 9:7 | 1.286 | ||||||
17\27 | 755.556 | 444.444 | 4:3 | 1.333 | Supersoft 3L 5s | |||||
46\73 | 756.164 | 443.836 | 11:8 | 1.375 | ||||||
29\46 | 756.522 | 443.478 | 7:5 | 1.400 | Sensi (optimal around here) | |||||
41\65 | 756.923 | 443.077 | 10:7 | 1.429 | ||||||
12\19 | 757.895 | 442.105 | 3:2 | 1.500 | Soft 3L 5s | |||||
43\68 | 758.824 | 441.176 | 11:7 | 1.571 | Clyde | |||||
31\49 | 759.184 | 440.816 | 8:5 | 1.600 | ||||||
50\79 | 759.494 | 440.506 | 13:8 | 1.625 | Golden sentry (759.4078¢) | |||||
19\30 | 760.000 | 440.000 | 5:3 | 1.667 | Semisoft 3L 5s | |||||
45\71 | 760.563 | 439.437 | 12:7 | 1.714 | ||||||
26\41 | 760.976 | 439.024 | 7:4 | 1.750 | ||||||
33\52 | 761.538 | 438.462 | 9:5 | 1.800 | ||||||
7\11 | 763.636 | 436.364 | 2:1 | 2.000 | Basic 3L 5s Scales with tunings softer than this are proper | |||||
30\47 | 765.957 | 434.043 | 9:4 | 2.250 | ||||||
23\36 | 766.667 | 433.333 | 7:3 | 2.333 | ||||||
39\61 | 767.213 | 432.787 | 12:5 | 2.400 | ||||||
16\25 | 768.000 | 432.000 | 5:2 | 2.500 | Semihard 3L 5s | |||||
41\64 | 768.750 | 431.250 | 13:5 | 2.600 | Unnamed golden tuning (768.8815¢) | |||||
25\39 | 769.231 | 430.769 | 8:3 | 2.667 | ||||||
34\53 | 769.811 | 430.189 | 11:4 | 2.750 | Hamity | |||||
9\14 | 771.429 | 428.571 | 3:1 | 3.000 | Hard 3L 5s | |||||
29\45 | 773.333 | 426.667 | 10:3 | 3.333 | ||||||
20\31 | 774.194 | 425.806 | 7:2 | 3.500 | Squares (optimal around here) | |||||
31\48 | 775.000 | 425.000 | 11:3 | 3.667 | ||||||
11\17 | 776.471 | 423.529 | 4:1 | 4.000 | Superhard 3L 5s | |||||
24\37 | 778.378 | 421.622 | 9:2 | 4.500 | ||||||
13\20 | 780.000 | 420.000 | 5:1 | 5.000 | ||||||
15\23 | 782.609 | 417.391 | 6:1 | 6.000 | Roman↓, hocus↓ | |||||
2\3 | 800.000 | 400.000 | 1:0 | → ∞ | Collapsed 3L 5s |