# Amity family

(Redirected from Hamity)

The amity family tempers out the 5-limit amity comma, 1600000/1594323. The generator for the amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. If you are looking for a different kind of neutral third this could be the temperament for you.

## Amity

Main article: Amity

In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives a pure classical major third. Mos scales of 11, 18, 25, 32, 39, 46 or 53 notes are available.

Subgroup: 2.3.5

Comma list: 1600000/1594323

Mapping: [1 3 6], 0 -5 -13]]

Mapping generators: ~2, ~243/200

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.519

### Overview to extensions

The second comma to extend the 5-limit amity include 4375/4374 for amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, 2401/2400 for amicable, and 16875/16807 for familia.

Temperaments discussed elsewhere include:

## Septimal amity

Main article: Amity

Septimal amity can be described as the 46 & 53 temperament, which tempers out 4375/4374 and 5120/5103 in the 7-limit. 99edo is a good tuning, with generator 28\99.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 5120/5103

Mapping: [1 3 6 -2], 0 -5 -13 17]]

Wedgie⟨⟨5 13 -17 9 -41 -76]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.432

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 5120/5103

Mapping: [1 3 6 -2 21], 0 -5 -13 17 -62]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464

Optimal GPV sequence: 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 625/624, 847/845

Mapping: [1 3 6 -2 21 17], 0 -5 -13 17 -62 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481

Optimal GPV sequence: 46ef, 53, 99ef, 152f *

* optimal patent val: 205

### Hitchcock

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 2200/2187

Mapping: [1 3 6 -2 6], 0 -5 -13 17 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390

Optimal GPV sequence: 7, 39, 46, 53, 99

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 325/324

Mapping: [1 3 6 -2 6 2], 0 -5 -13 17 -9 6]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419

Optimal GPV sequence: 7, 39, 46, 53, 99

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 169/168, 176/175, 273/272

Mapping: [1 3 6 -2 6 2 -1], 0 -5 -13 17 -9 6 18]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366

Optimal GPV sequence: 7, 39, 46, 53, 99

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189

Mapping: [1 3 6 -2 6 2 -1 0], 0 -5 -13 17 -9 6 18 15]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407

Optimal GPV sequence: 7, 39h, 46, 53, 99h

### Catamite

The catamite temperament (46 & 99ef) tempers out 441/440 (werckisma) and 896/891 (pentacircle) in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit. The word "catamite" itself is a term for male homosexual, but also a play on the words "cata-" (down) and "amity."

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891, 4375/4374

Mapping: [1 3 6 -2 -7], 0 -5 -13 17 37]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340

Optimal GPV sequence: 46, 99e, 145, 244e

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363, 4375/4374

Mapping: [1 3 6 -2 -7 -11], 0 -5 -13 17 37 52]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313

Optimal GPV sequence: 46, 99ef, 145

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155

Mapping: [1 3 6 -2 -7 -11 -1], 0 -5 -13 17 37 52 18]]

Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313

Optimal GPV sequence: 46, 99ef, 145

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475

Mapping: [1 3 6 -2 -7 -11 -1 -13], 0 -5 -13 17 37 52 18 61]]

Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325

Optimal GPV sequence: 46, 99ef, 145

### Hemiamity

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 5120/5103

Mapping: [2 1 -1 13 13], 0 5 13 -17 -14]]

Mapping generators: ~99/70, ~64/55

Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561

Optimal GPV sequence: 14cde, 46, 106, 152, 350, 502d

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845, 1716/1715, 3025/3024

Mapping: [2 1 -1 13 13 20], 0 5 13 -17 -14 -29]]

Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583

Optimal GPV sequence: 46, 106f, 152f, 198, 350f, 548cdff

## Accord

Subgroup: 2.3.5.7

Comma list: 126/125, 100352/98415

Mapping: [1 3 6 11], 0 -5 -13 -29]]

Wedgie⟨⟨5 13 29 9 32 31]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 338.993

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 126/125, 896/891

Mapping: [1 3 6 11 6], 0 -5 -13 -29 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047

Optimal GPV sequence: 7d, 39d, 46, 177c, 223bc, 269bce

## Houborizic

The houborizic temperament (53&113) tempers out the marvel comma, 225/224. It is so named because it is closely related to the houboriz tuning (generator: 339.774971 cents).

Subgroup: 2.3.5.7

Comma list: 225/224, 1250000/1240029

Mapping: [1 3 6 13], 0 -5 -13 -36]]

Wedgie⟨⟨5 13 36 9 43 47]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 1250000/1240029

Mapping: [1 3 6 13 -9], 0 -5 -13 -36 44]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763

Optimal GPV sequence: 53, 113, 166

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 325/324, 385/384, 2200/2197

Mapping: [1 3 6 13 -9 2], 0 -5 -13 -36 44 6]]

Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764

Optimal GPV sequence: 53, 113, 166

### Houbor

Subgroup: 2.3.5.7.11

Comma list: 121/120, 225/224, 2200/2187

Mapping: [1 3 6 13 6], 0 -5 -13 -36 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.814

Optimal GPV sequence: 7d, 46d, 53, 60e, 113e

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 225/224, 275/273, 325/324

Mapping: [1 3 6 13 6 2], 0 -5 -13 -36 -9 6]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.784

Optimal GPV sequence: 7d, 46d, 53, 60e, 113e

## Paramity

The paramity temperament (53 & 311) tempers out the horwell comma (65625/65536) and garischisma (33554432/33480783).

Subgroup: 2.3.5.7

Comma list: 65625/65536, 1600000/1594323

Mapping: [1 3 6 -17], 0 -5 -13 70]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.553

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 6250/6237, 19712/19683, 41503/41472

Mapping: [1 3 6 -17 36], 0 -5 -13 70 -115]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554

Optimal GPV sequence: 53, 205de, 258, 311, 675, 986

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683

Mapping: [1 3 6 -17 36 17], 0 -5 -13 70 -115 -47]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554

Optimal GPV sequence: 53, 205de, 258, 311, 675, 986, 1661cf

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430

Mapping: [1 3 6 -17 36 17 -31], 0 -5 -13 70 -115 -47 124]]

Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555

Optimal GPV sequence: 53, 205deg, 258g, 311, 675, 1661cf, 2336bccf, 3011bccf

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197

Mapping: [1 3 6 -17 36 17 -31 15], 0 -5 -13 70 -115 -47 124 -38]]

Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555

Optimal GPV sequence: 53, 205deg, 258g, 311, 675, 986, 1661cfh

## Bamity

Bamity has a period of half octave and tempers out the sensamagic comma, 245/243. The name bamity is a play on the words bi- and amity.

Subgroup: 2.3.5.7

Comma list: 245/243, 64827/64000

Mapping: [2 1 -1 3], 0 5 13 6]]

Mapping generators: ~343/240, ~7/6

Wedgie⟨⟨10 26 12 18 -9 -45]]

Optimal tuning (POTE): ~343/240 = 1\2, ~7/6 = 260.402

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 245/243, 441/440

Mapping: [2 1 -1 3 3], 0 5 13 6 9]]

Optimal tuning (POTE): ~99/70 = 1\2, ~7/6 = 260.393

Optimal GPV sequence: 14c, 32c, 46, 60e, 106de

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 245/243, 441/440

Mapping: [2 1 -1 3 3 0], 0 5 13 6 9 17]]

Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 260.618

Optimal GPV sequence: 14cf, 32cf, 46, 106def, 152def

## Hamity

Hamity has a generator of about 430 cents which represents 9/7. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a play on the words half and amity.

Subgroup: 2.3.5.7

Comma list: 2430/2401, 4000/3969

Mapping: [1 -2 -7 -4], 0 10 26 19]]

Wedgie⟨⟨10 26 19 18 2 -29]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.219

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 121/120, 2200/2187

Mapping: [1 -2 -7 -4 -3], 0 10 26 19 18]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192

Optimal GPV sequence: 14c, 39d, 53

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 121/120, 275/273, 572/567

Mapping: [1 -2 -7 -4 -3 -11], 0 10 26 19 18 41]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216

Optimal GPV sequence: 14cf, 39df, 53

## Gamity

The gamity temperament (46 & 113) tempers out the gamelisma, 1029/1024. It splits the interval of grave major sixth (~400/243, an octave minus acute minor third) in three.

Subgroup: 2.3.5.7

Comma list: 1029/1024, 1071875/1062882

Mapping: [1 -2 -7 4], 0 15 39 -5]]

Wedgie⟨⟨15 39 -5 27 -50 -121]]

Optimal tuning (POTE): ~2 = 1\1, ~189/160 = 286.787

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440, 1071875/1062882

Mapping: [1 -2 -7 4 8], 0 15 39 -5 -19]]

Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797

Optimal GPV sequence: 46, 113, 159

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 364/363, 385/384, 10985/10976

Mapping: [1 -2 -7 4 8 8], 0 15 39 -5 -19 -18]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789

Optimal GPV sequence: 46, 113, 159

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757

Mapping: [1 -2 -7 4 8 8 6], 0 15 39 -5 -19 -18 -8]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795

Optimal GPV sequence: 46, 113, 159

## Trinity

The trinity temperament (152 & 159) tempers out the meter, 703125/702464. It splits the interval of acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.

Subgroup: 2.3.5.7

Comma list: 703125/702464, 1600000/1594323

Mapping: [1 8 19 46], 0 -15 -39 -101]]

Wedgie⟨⟨15 39 101 27 118 125]]

Optimal tuning (POTE): ~2 = 1\1, ~168/125 = 513.178

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 19712/19683

Mapping: [1 8 19 46 18], 0 -15 -39 -101 -34]]

POTE generator: ~121/90 = 513.177

Optimal GPV sequence: 152, 311, 463, 774, 1237e

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689

Mapping: [1 8 19 46 18 64], 0 -15 -39 -101 -34 -141]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182

Optimal GPV sequence: 152f, 311

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619

Mapping: [1 8 19 46 18 64 -22], 0 -15 -39 -101 -34 -141 61]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186

Optimal GPV sequence: 152f, 159, 311, 1092cdg, 1403cdg, 1714cdeg

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573

Mapping: [1 8 19 46 18 64 -22 53], 0 -15 -39 -101 -34 -141 61 -114]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185

Optimal GPV sequence: 152f, 159, 311, 1403cdgh, 1714cdegh, 2025cdefgghh, 2336bccdefgghh

### 23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104

Mapping: [1 8 19 46 18 64 -22 53 49], 0 -15 -39 -101 -34 -141 61 -114 -104]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185

Optimal GPV sequence: 152f, 159, 311, 1092cdgh, 1403cdgh, 1714cdeghi

### 29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044

Mapping: [1 8 19 46 18 64 -22 53 49 72], 0 -15 -39 -101 -34 -141 61 -114 -104 -157]]

Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186

Optimal GPV sequence: 152fj, 159, 311, 781dh, 1092cdgh, 1403cdgh

## Amicable

The amicable temperament tempers out the amity comma and the canousma in addition to the breedsma, and is closely associated with the canou temperament.

While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 1600000/1594323

Mapping: [1 3 6 5], 0 -20 -52 -31]]

Wedgie⟨⟨20 52 31 36 -7 -74]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.880

### Amical

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 131072/130977, 1600000/1594323

Mapping: [1 3 6 5 -8], 0 -20 -52 -31 162]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8843

Optimal GPV sequence: 99, 212e, 311, 410, 721, 1032, 1343

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206

Mapping: [1 3 6 5 -8 -5], 0 -20 -52 -31 162 123]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8838

Optimal GPV sequence: 99, 212ef, 311, 410, 721, 1032

### Amorous

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 6250/6237, 19712/19683

Mapping: [1 3 6 5 14], 0 -20 -52 -31 -149]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8896

Optimal GPV sequence: 99e, 212, 311, 1145c, 1456cd

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647

Mapping: [1 3 6 5 14 17], 0 -20 -52 -31 -149 -188]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8910

Optimal GPV sequence: 99ef, 212, 311, 834, 1145c

### Pseudoamical

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 1600000/1594323

Mapping: [1 3 6 5 -1], 0 -20 -52 -31 63]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9091

Optimal GPV sequence: 99, 113, 212, 961ccdeee

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 385/384, 1375/1372, 19773/19712

Mapping: [1 3 6 5 -1 2], 0 -20 -52 -31 63 24]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9127

Optimal GPV sequence: 99, 113, 212, 537cdeff, 749ccdeefff

### Pseudoamorous

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 980000/970299

Mapping: [1 3 6 5 7], 0 -20 -52 -31 -50]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.8917

Optimal GPV sequence: 99e, 212e

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440, 1875/1859

Mapping: [1 3 6 5 7 10], 0 -20 -52 -31 -50 -89]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 84.9164

Optimal GPV sequence: 99ef, 113, 212ef

### Floral

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 9801/9800, 14641/14580

Mapping: [2 6 12 10 13], 0 -20 -52 -31 -43]]

Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8788

Optimal GPV sequence: 198, 212, 410

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580

Mapping: [2 6 12 10 13 19], 0 -20 -52 -31 -43 -82]]

Optimal tuning (POTE): ~99/70 = 1\2, ~21/20 = 84.8750

Optimal GPV sequence: 198, 410

### Humorous

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 1600000/1594323

Mapping: [1 3 6 5 3], 0 -40 -104 -62 13]]

Optimal tuning (POTE): ~2 = 1\1, ~4096/3993 = 42.4391

Optimal GPV sequence: 85c, 113, 198, 311, 509, 820

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024

Mapping: [1 3 6 5 3 6], 0 -40 -104 -62 13 -65]]

Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 42.4391

Optimal GPV sequence: 85c, 113, 198, 311, 509, 820f

## Familia

The familia temperament (113 & 152) tempers out the mirkwai comma, 16875/16807. It splits the interval of acute minor tenth (~243/100) in five.

Subgroup: 2.3.5.7

Comma list: 16875/16807, 1600000/1594323

Mapping: [1 8 19 20], 0 -25 -65 -67]]

Wedgie⟨⟨25 65 67 45 36 -27]]

Optimal tuning (POTE): ~2 = 1\1, ~11907/10000 = 307.941

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 1375/1372, 1600000/1594323

Mapping: [1 8 19 20 5], 0 -25 -65 -67 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906

Optimal GPV sequence: 39d, 74cd, 113, 152, 417, 569de, 721de

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 729/728, 1375/1372, 2205/2197

Mapping: [1 8 19 20 5 25], 0 -25 -65 -67 -6 -83]]

Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913

Optimal GPV sequence: 39df, 74cdf, 113, 152f, 265, 417f