7L 5s
↖ 6L 4s | ↑ 7L 4s | 8L 4s ↗ |
← 6L 5s | 7L 5s | 8L 5s → |
↙ 6L 6s | ↓ 7L 6s | 8L 6s ↘ |
┌╥╥┬╥┬╥╥┬╥┬╥┬┐ │║║│║│║║│║│║││ ││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLLsLsLL
7L 5s, also called m-chromatic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 5 small steps, repeating every octave. 7L 5s is a child scale of 5L 2s, expanding it by 5 tones. Generators that produce this scale range from 500¢ to 514.3¢, or from 685.7¢ to 700¢. 7L 5s represents the chromatic scale of meantone, or meantone chromatic scale. Such scales are characterized by having a small step (diatonic semitone) that is larger than the chroma (chromatic semitone), the reverse of 5L 7s.
Meantone is the only notable harmonic entropy minimum.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 100.0¢ |
Major 1-mosstep | M1ms | L | 100.0¢ to 171.4¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 171.4¢ to 200.0¢ |
Major 2-mosstep | M2ms | 2L | 200.0¢ to 342.9¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 171.4¢ to 300.0¢ |
Major 3-mosstep | M3ms | 2L + s | 300.0¢ to 342.9¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 342.9¢ to 400.0¢ |
Major 4-mosstep | M4ms | 3L + s | 400.0¢ to 514.3¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | 2L + 3s | 342.9¢ to 500.0¢ |
Perfect 5-mosstep | P5ms | 3L + 2s | 500.0¢ to 514.3¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 514.3¢ to 600.0¢ |
Major 6-mosstep | M6ms | 4L + 2s | 600.0¢ to 685.7¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 4L + 3s | 685.7¢ to 700.0¢ |
Augmented 7-mosstep | A7ms | 5L + 2s | 700.0¢ to 857.1¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 685.7¢ to 800.0¢ |
Major 8-mosstep | M8ms | 5L + 3s | 800.0¢ to 857.1¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 857.1¢ to 900.0¢ |
Major 9-mosstep | M9ms | 6L + 3s | 900.0¢ to 1028.6¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 857.1¢ to 1000.0¢ |
Major 10-mosstep | M10ms | 6L + 4s | 1000.0¢ to 1028.6¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 1028.6¢ to 1100.0¢ |
Major 11-mosstep | M11ms | 7L + 4s | 1100.0¢ to 1200.0¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 7L + 5s | 1200.0¢ |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
11|0 | 1 | LLsLsLLsLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Perf. |
10|1 | 6 | LLsLsLsLLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
9|2 | 11 | LsLLsLsLLsLs | Perf. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
8|3 | 4 | LsLLsLsLsLLs | Perf. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Perf. |
7|4 | 9 | LsLsLLsLsLLs | Perf. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Perf. |
6|5 | 2 | LsLsLLsLsLsL | Perf. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Perf. |
5|6 | 7 | LsLsLsLLsLsL | Perf. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Perf. |
4|7 | 12 | sLLsLsLLsLsL | Perf. | Min. | Min. | Maj. | Min. | Perf. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Perf. |
3|8 | 5 | sLLsLsLsLLsL | Perf. | Min. | Min. | Maj. | Min. | Perf. | Min. | Perf. | Min. | Min. | Maj. | Min. | Perf. |
2|9 | 10 | sLsLLsLsLLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Maj. | Min. | Perf. |
1|10 | 3 | sLsLLsLsLsLL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
0|11 | 8 | sLsLsLLsLsLL | Perf. | Min. | Min. | Min. | Min. | Dim. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
Proposed Names
Both Eliora and Ganaram have independently proposed mode names based on names of the months. The former scheme uses mode names from the Gregorian calendar using cyclic order, starting with January assigned to the step pattern LsLsLsLLsLsL due to positioning of 31-day and 30-day months, with successive rotations assigned to successive months. The latter scheme is based on month names from the Roman calendar, starting with Mensis Martius as the brightest mode, with successive month names for each mode by descending brightness.
UDP | Cyclic order |
Step pattern |
Mode names (by Eliora) |
Mode names (by Ganaram) |
---|---|---|---|---|
11|0 | 1 | LLsLsLLsLsLs | July | Martian |
10|1 | 6 | LLsLsLsLLsLs | December | Aprilian |
9|2 | 11 | LsLLsLsLLsLs | May | Maian |
8|3 | 4 | LsLLsLsLsLLs | October | Junian |
7|4 | 9 | LsLsLLsLsLLs | March | Quintillian Julian |
6|5 | 2 | LsLsLLsLsLsL | August | Sextilian Augustan |
5|6 | 7 | LsLsLsLLsLsL | January | Septembian |
4|7 | 12 | sLLsLsLLsLsL | June | Octobian |
3|8 | 5 | sLLsLsLsLLsL | November | Novembian |
2|9 | 10 | sLsLLsLsLLsL | April | Decembian |
1|10 | 3 | sLsLLsLsLsLL | September | Janian |
0|11 | 8 | sLsLsLLsLsLL | February | Februan |
Scales
- Meaneb471a – an equal beating tuning of meantone
- Meantone12 – 31edo tuning
- Ratwolf – 20/13 wolf fifth tuning of meantone
- Meaneb471 – the other equal beating tuning of meantone
- Flattone12 – 13-limit POTE tuning of flattone
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
5\12 | 500.000 | 700.000 | 1:1 | 1.000 | Equalized 7L 5s | |||||
28\67 | 501.493 | 698.507 | 6:5 | 1.200 | ||||||
23\55 | 501.818 | 698.182 | 5:4 | 1.250 | ||||||
41\98 | 502.041 | 697.959 | 9:7 | 1.286 | ||||||
18\43 | 502.326 | 697.674 | 4:3 | 1.333 | Supersoft 7L 5s Meantone / meridetone | |||||
49\117 | 502.564 | 697.436 | 11:8 | 1.375 | ||||||
31\74 | 502.703 | 697.297 | 7:5 | 1.400 | Meantone / huygens / grosstone | |||||
44\105 | 502.857 | 697.143 | 10:7 | 1.429 | ||||||
13\31 | 503.226 | 696.774 | 3:2 | 1.500 | Soft 7L 5s | |||||
47\112 | 503.571 | 696.429 | 11:7 | 1.571 | ||||||
34\81 | 503.704 | 696.296 | 8:5 | 1.600 | Meantone | |||||
55\131 | 503.817 | 696.183 | 13:8 | 1.625 | Golden meantone (503.7855¢) | |||||
21\50 | 504.000 | 696.000 | 5:3 | 1.667 | Semisoft 7L 5s Meantone / meanpop | |||||
50\119 | 504.202 | 695.798 | 12:7 | 1.714 | ||||||
29\69 | 504.348 | 695.652 | 7:4 | 1.750 | ||||||
37\88 | 504.545 | 695.455 | 9:5 | 1.800 | ||||||
8\19 | 505.263 | 694.737 | 2:1 | 2.000 | Basic 7L 5s Scales with tunings softer than this are proper | |||||
35\83 | 506.024 | 693.976 | 9:4 | 2.250 | ||||||
27\64 | 506.250 | 693.750 | 7:3 | 2.333 | ||||||
46\109 | 506.422 | 693.578 | 12:5 | 2.400 | ||||||
19\45 | 506.667 | 693.333 | 5:2 | 2.500 | Semihard 7L 5s ↕ Flattone | |||||
49\116 | 506.897 | 693.103 | 13:5 | 2.600 | Golden flattone (506.9365¢) | |||||
30\71 | 507.042 | 692.958 | 8:3 | 2.667 | ||||||
41\97 | 507.216 | 692.784 | 11:4 | 2.750 | ||||||
11\26 | 507.692 | 692.308 | 3:1 | 3.000 | Hard 7L 5s | |||||
36\85 | 508.235 | 691.765 | 10:3 | 3.333 | ||||||
25\59 | 508.475 | 691.525 | 7:2 | 3.500 | ||||||
39\92 | 508.696 | 691.304 | 11:3 | 3.667 | ||||||
14\33 | 509.091 | 690.909 | 4:1 | 4.000 | Superhard 7L 5s | |||||
31\73 | 509.589 | 690.411 | 9:2 | 4.500 | ||||||
17\40 | 510.000 | 690.000 | 5:1 | 5.000 | ||||||
20\47 | 510.638 | 689.362 | 6:1 | 6.000 | ||||||
3\7 | 514.286 | 685.714 | 1:0 | → ∞ | Collapsed 7L 5s |