Gallery of 3-SN scales
See SN scale and Rank-3 scale.
For more concise summary that's better for viewing on mobile devices, see Gallery of 3-SN scales mobile.
Scales are grouped by their germinations, the sequence of introduction of generators until 3 are reached, at which point the primitive 3-SN scale is developed (the first listed under each germination), from which all others of that germination evolve. The germination of Pythagorean, Meantone, Superpyth, Mavila, and Father MOS (2-SN) scales is (2/1, 3/2). Germinations are grouped by their subgroup, and within that, by the first comma tempered out in scales evolved from the germination.
Commas tempered out are shown in their simplest basis set, as per SN labeling conventions.
Tempered scales are shown in JI as their simplest symmetric pre-image.
Scales are written in JI and as step patterns in their symmetric mode (scales of odd cardinality) or, for scales of even cardinality, mostly in the even-symmetric mode: the mode symmetric without 2/1, otherwise in the inverse of the even-symmetric mode (the mode symmetric without 1/1).
2.3.5; Marvel
(2/1, 3/2, 5/4)
(2/1, 3/2, 5/4)[4]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
2L 1M 1s | (5/4, 6/5, 16/15) | (386.3137c, 315.6413c, 111.7313c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-2 | 16/15 4/3 8/5 2/1 | sLML | -.2092 |
-1 | 5/4 4/3 5/3 2/1 | LsLM | -.0174 |
1 | 6/5 3/2 8/5 2/1 | MLsL | .0174 |
2 | 5/4 3/2 15/8 2/1 | LMLs | .2092 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LLLs | Dicot[4] | 25/24 |
M = s | LsLs | Antitonic[4] | 9/8 |
L - M = M - s | LsLd | Bug[4] MODMOS | 27/25 |
s = 0 | LsL | Father[3] | 16/15 |
(2/1, 3/2, 5/4)[7]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
2L 1M 4s | (75/64, 9/8, 16/15) | (274.5824c, 203.9100c, 111.7313c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-3 | 16/15 256/225 4/3 64/45 8/5 128/75 2/1 | ssLsMsL | -.1161 |
-2 | 16/15 6/5 32/25 3/2 8/5 128/75 2/1 | sMsLssL | -.0845 |
-1 | 16/15 5/4 4/3 64/45 5/3 16/9 2/1 | sLssLsM | -.0316 |
0 | 16/15 5/4 4/3 3/2 8/5 15/8 2/1 | sLsMsLs | 0 |
1 | 9/8 6/5 45/32 3/2 8/5 15/8 2/1 | MsLssLs | .0316 |
2 | 75/64 5/4 4/3 25/16 5/3 15/8 2/1 | LssLsMs | .0845 |
3 | 75/64 5/4 45/32 3/2 225/128 15/8 2/1 | LsMsLss | .1161 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | sLsLsLs | Dicot[7] | 25/24 |
M = s | sLsssLs | Mavila[7] | 135/128 |
L = s | LLLsLLL | Enipucrop[7] | 1125/1024 |
L - M = M - s | sAsLsAs | Meantone[7] MODMOS | 81/80 |
s = 0 | LsL | Father[3] | 16/15 |
(2/1, 3/2, 5/4: 225/224)[7] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
2L 1M 4s | (75/64~7/6, ~9/8, 16/15~15/14) | (267.8165c, 200.9152c, 116.0124c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-3 | ~ 16/15 8/7 4/3 10/7 8/5 12/7 2/1 | ssLsMsL | -.1079 |
-2 | ~ 16/15 6/5 9/7 3/2 8/5 12/7 2/1 | sMsLssL | -.0793 |
-1 | ~ 16/15 5/4 4/3 10/7 5/3 16/9 2/1 | sLssLsM | -.0286 |
0 | ~ 16/15 5/4 4/3 3/2 8/5 15/8 2/1 | sLsMsLs | 0 |
1 | ~ 9/8 6/5 7/5 3/2 8/5 15/8 2/1 | MsLssLs | .0286 |
2 | ~ 7/6 5/4 4/3 14/9 5/3 15/8 2/1 | LssLsMs | .0793 |
3 | ~ 7/6 5/4 7/5 3/2 7/4 15/8 2/1 | LsMsLss | .1079 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | sLsLsLs | Sharp[7] | 25/24, 28/27 |
M = s | sLsssLs | Pelogic[7] | 135/128, 21/20 |
L= s | LLLsLLL | Enipucrop[7] | 35/32, 49/45 |
L - M = M - s | sAsLsAs | Meantone[7] MODMOS | 81/80, 126/125 |
ET | 9 | 10 | 12 | 19 | 22 | 29 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 1) | (4, 3, 2) | (5, 4, 2) | (6, 5, 3) | (7, 5, 3) | (9, 7, 4) | (11, 8, 5) | (12, 9, 5) | (16, 12, 7) |
(2/1, 3/2, 5/4)[10]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
2L 7m 1s | (1125/1024, 16/15, 135/128) | (162.8511c, 111.7313c, 92.1787c) |
Mode number | Mode in JI | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Negri[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | 16/15 256/225 6/5 32/25 512/375 3/2 8/5 128/75 2048/1125 2/1 | mmsmmLmmmL | sssssLsssL | Dark minor | LLsLLLLLLL | 2|7 | -.0564 |
-4 | 16/15 9/8 6/5 32/25 45/32 3/2 8/5 128/75 15/8 2/1 | msmmLmmmLm | ssssLsssLs | Alternate minor | LsLLLLLLLL | 1|8 | -.0411 |
-3 | 135/128 9/8 6/5 675/512 45/32 3/2 8/5 225/128 15/8 2/1 | smmLmmmLmm | sssLsssLss | Bright minor | sLLLLLLLLL | 0|9 | -.0258 |
-2 | 16/15 256/225 4096/3375 4/3 64/45 1024/675 8/5 128/75 2048/1125 2/1 | mmmLmmsmmL | sssLsssssL | Standard minor | LLLLLLsLLL | 6|3 | -.0230 |
-1 | 16/15 256/225 5/4 4/3 64/45 3/2 8/5 128/75 15/8 2/1 | mmLmmsmmLm | ssLsssssLs | Dark major | LLLLLsLLLL | 5|4 | -.0077 |
1 | 16/15 75/64 5/4 4/3 45/32 3/2 8/5 225/128 15/8 2/1 | mLmmsmmLmm | sLsssssLss | Alternate major | LLLLsLLLLL | 4|5 | .0077 |
2 | 1125/1024 75/64 5/4 675/512 45/32 3/2 3375/2048 225/128 15/8 2/1 | LmmsmmLmmm | LsssssLsss | Bright major | LLLsLLLLLL | 3|6 | .0239 |
3 | 16/15 256/225 5/4 4/3 64/45 1024/675 5/3 16/9 256/135 2/1 | mmLmmmLmms | ssLsssLsss | Standard major | LLLLLLLLLs | 9|0 | .0258 |
4 | 16/15 75/64 5/4 4/3 64/45 25/16 5/3 16/9 15/8 2/1 | mLmmmLmmsm | sLsssLssss | Dark Augmented | LLLLLLLLsL | 8|1 | .0411 |
5 | 1125/1024 75/64 5/4 4/3 375/256 25/16 5/3 225/128 15/8 2/1 | LmmmLmmsmm | LsssLsssss | Bright Augmented | LLLLLLLsLL | 7|2 | .0564 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLsssssLss | Srutal[10] 4M (pentachordal decatonic) | 2048/2025 |
L = m | LLLLsLLLLL | Negri[10] | 16875/16384 |
L = s | LsLLsLLsLL | Dicot[10] | 25/24 |
L - m = m - s | sLssdssLss | Ampersand[10] MODMOS | 34171875/33554432 |
s = 0 | sLssssLss | Mavila[9] | 135/128 |
m = 0 | LsL | Father[3] | 16/15 |
L = 0 | LLLsLLLL | Enipucrop[8] | 1125/1024 |
(2/1, 3/2, 5/4: 225/224)[10] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
2L 7m 1s | (35/32~49/45, 16/15~15/14, 135/128~21/20) | (151.8041c, 116.0124c, 84.9028c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Negri[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | ~ 16/15 8/7 6/5 9/7 48/35 3/2 8/5 12/7 64/35 2/1 | mmsmmLmmmL | sssssLsssL | Dark minor | LLsLLLLLLL | 2|7 | -.0475 |
-4 | ~ 16/15 9/8 6/5 9/7 7/5 3/2 8/5 12/7 15/8 2/1 | msmmLmmmLm | ssssLsssLs | Alternate minor | LsLLLLLLLL | 1|8 | -.0400 |
-3 | ~ 21/20 9/8 6/5 21/16 7/5 3/2 8/5 7/4 15/8 2/1 | smmLmmmLmm | sssLsssLss | Bright minor | sLLLLLLLLL | 0|9 | -.0325 |
-2 | ~ 16/15 8/7 60/49 4/3 10/7 32/21 8/5 12/7 64/35 2/1 | mmmLmmsmmL | sssLsssssL | Standard minor | LLLLLLsLLL | 6|3 | -.0112 |
-1 | ~ 16/15 8/7 5/4 4/3 10/7 3/2 8/5 12/7 15/8 2/1 | mmLmmsmmLm | ssLsssssLs | Dark major | LLLLLsLLLL | 5|4 | -.0037 |
1 | ~ 16/15 7/6 5/4 4/3 7/5 3/2 8/5 7/4 15/8 2/1 | mLmmsmmLmm | sLsssssLss | Alternate major | LLLLsLLLLL | 4|5 | .0037 |
2 | ~ 35/32 7/6 5/4 21/16 7/5 3/2 49/30 7/4 15/8 2/1 | LmmsmmLmmm | LsssssLsss | Bright major | LLLsLLLLLL | 3|6 | .0112 |
3 | ~ 16/15 8/7 5/4 4/3 10/7 32/21 5/3 16/9 40/21 2/1 | mmLmmmLmms | ssLsssLsss | Standard major | LLLLLLLLLs | 9|0 | .0325 |
4 | ~ 16/15 7/6 5/4 4/3 10/7 14/9 5/3 16/9 15/8 2/1 | mLmmmLmmsm | sLsssLssss | Dark Augmented | LLLLLLLLsL | 8|1 | .0400 |
5 | ~ 35/32 7/6 5/4 4/3 35/24 14/9 5/3 7/4 15/8 2/1 | LmmmLmmsmm | LsssLsssss | Bright Augmented | LLLLLLLsLL | 7|2 | .0475 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLsssssLss | Pajara[10] 4M (pentachordal decatonic) | 50/49, 64/63 |
L = m | LLLLsLLLLL | Negri[10] | 49/48, 225/224 |
L = s | LsLLsLLsLL | Sharp[10] | 25/24, 28/27 |
L - m = m - s | sLssdssLss | Miracle[10] MODMOS | 225/224, 1029/1024 |
s = 0 | sLssssLss | Pelogic[9] | 21/20, 135/128 |
ET | 12 | 19 | 22 | 29 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (3, 3, 2) | (4, 3, 2) | (5, 4, 3) | (6, 5, 3) | (7, 5, 4) | (9, 7, 5) |
(2/1, 3/2, 5/4: 225/224, 385/384)[10] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
2L 7m 1s | (35/32~49/45~12/11, 16/15~15/14, 135/128~21/20) | (151.4797c, 116.1327c, 84.7519c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Negri[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | ~ 16/15 8/7 6/5 9/7 11/8 3/2 8/5 12/7 11/6 2/1 | mmsmmLmmmL | sssssLsssL | Dark minor | LLsLLLLLLL | 2|7 | -.0472 |
-4 | ~ 16/15 9/8 6/5 9/7 7/5 3/2 8/5 12/7 15/8 2/1 | msmmLmmmLm | ssssLsssLs | Alternate minor | LsLLLLLLLL | 1|8 | -.0400 |
-3 | ~ 21/20 9/8 6/5 21/16 7/5 3/2 8/5 7/4 15/8 2/1 | smmLmmmLmm | sssLsssLss | Bright minor | sLLLLLLLLL | 0|9 | -.0327 |
-2 | ~ 16/15 8/7 11/9 4/3 10/7 32/21 8/5 12/7 11/6 2/1 | mmmLmmsmmL | sssLsssssL | Standard minor | LLLLLLsLLL | 6|3 | -.0109 |
-1 | ~ 16/15 8/7 5/4 4/3 10/7 3/2 8/5 12/7 15/8 2/1 | mmLmmsmmLm | ssLsssssLs | Dark major | LLLLLsLLLL | 5|4 | -.0036 |
1 | ~ 16/15 7/6 5/4 4/3 7/5 3/2 8/5 7/4 15/8 2/1 | mLmmsmmLmm | sLsssssLss | Alternate major | LLLLsLLLLL | 4|5 | .0036 |
2 | ~ 12/11 7/6 5/4 21/16 7/5 3/2 18/11 7/4 15/8 2/1 | LmmsmmLmmm | LsssssLsss | Bright major | LLLsLLLLLL | 3|6 | .0109 |
3 | ~ 16/15 8/7 5/4 4/3 10/7 32/21 5/3 16/9 40/21 2/1 | mmLmmmLmms | ssLsssLsss | Standard major | LLLLLLLLLs | 9|0 | .0327 |
4 | ~ 16/15 7/6 5/4 4/3 10/7 14/9 5/3 16/9 15/8 2/1 | mLmmmLmmsm | sLsssLssss | Dark Augmented | LLLLLLLLsL | 8|1 | .0400 |
5 | ~ 12/11 7/6 5/4 4/3 16/11 14/9 5/3 7/4 15/8 2/1 | LmmmLmmsmm | LsssLsssss | Bright Augmented | LLLLLLLsLL | 7|2 | .0472 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLsssssLss | Pajarous[10] 4M (pentachordal decatonic) | 50/49, 55/54, 64/63 |
L = m | LLLLsLLLLL | Negri[10] | 45/44, 49/48, 56/55 |
L - m = m - s | sLssdssLss | Miracle[10] MODMOS | 225/224, 243/242, 385/384 |
ET | 12e | 19 | 22 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (4, 3, 2) | (5, 4, 3) | (6, 5, 3) | (7, 5, 4) | (9, 7, 5) |
(2/1, 3/2, 5/4: 225/224, 441/440)[10] (Prodigy)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
2L 7m 1s | (35/32~49/45, 16/15~15/14, 135/128~21/20~22/21) | (150.229c, 116.7669c, 82.9601c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Negroni[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | ~ 16/15 8/7 6/5 9/7 48/35 3/2 8/5 12/7 64/35 2/1 | mmsmmLmmmL | sssssLsssL | Dark minor | LLsLLLLLLL | 2|7 | -.0466 |
-4 | ~ 16/15 9/8 6/5 9/7 7/5 3/2 8/5 12/7 15/8 2/1 | msmmLmmmLm | ssssLsssLs | Alternate minor | LsLLLLLLLL | 1|8 | -.0404 |
-3 | ~ 21/20 9/8 6/5 21/16 7/5 3/2 8/5 7/4 15/8 2/1 | smmLmmmLmm | sssLsssLss | Bright minor | sLLLLLLLLL | 0|9 | -.0343 |
-2 | ~ 16/15 8/7 27/22 4/3 10/7 32/21 8/5 12/7 64/35 2/1 | mmmLmmsmmL | sssLsssssL | Standard minor | LLLLLLsLLL | 6|3 | -.0092 |
-1 | ~ 16/15 8/7 5/4 4/3 10/7 3/2 8/5 12/7 15/8 2/1 | mmLmmsmmLm | ssLsssssLs | Dark major | LLLLLsLLLL | 5|4 | -.0031 |
1 | ~ 16/15 7/6 5/4 4/3 7/5 3/2 8/5 7/4 15/8 2/1 | mLmmsmmLmm | sLsssssLss | Alternate major | LLLLsLLLLL | 4|5 | .0031 |
2 | ~ 35/32 7/6 5/4 21/16 7/5 3/2 44/27 7/4 15/8 2/1 | LmmsmmLmmm | LsssssLsss | Bright major | LLLsLLLLLL | 3|6 | .0092 |
3 | ~ 16/15 8/7 5/4 4/3 10/7 32/21 5/3 16/9 40/21 2/1 | mmLmmmLmms | ssLsssLsss | Standard major | LLLLLLLLLs | 9|0 | .0343 |
4 | ~ 16/15 7/6 5/4 4/3 10/7 14/9 5/3 16/9 15/8 2/1 | mLmmmLmmsm | sLsssLssss | Dark Augmented | LLLLLLLLsL | 8|1 | .0404 |
5 | ~ 35/32 7/6 5/4 4/3 35/24 14/9 5/3 7/4 15/8 2/1 | LmmmLmmsmm | LsssLsssss | Bright Augmented | LLLLLLLsLL | 7|2 | .0466 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLsssssLss | Pajaric[10] 4M (pentachordal decatonic) | 45/44, 50/49, 56/55 |
L = m | LLLLsLLLLL | Negroni[10] | 49/48, 55/54, 225/224 |
L - m = m - s | sLssdssLss | Miracle[10] MODMOS | 225/224, 243/242, 385/384 |
ET | 12 | 19e | 29 | 31 | 41 | 53e | 72 |
---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 3, 2) | (4, 3, 2) | (5, 4, 3) | (7, 5, 4) | (9, 7, 5) |
(2/1, 3/2, 5/4: 225/224)[19] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
10L 2M 7s | (135/128~21/20, 25/24~28/27, 64/63~50/49) | (84.9028c, 66.9013c, 31.1096c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-9 | ~ 50/49 16/15 160/147 8/7 512/441 60/49 80/63 4/3 256/189 10/7 640/441 32/21 8/5 80/49 12/7 256/147 64/35 40/21 2/1 | sLsLsLMLsLsLLsLsLML | -.0464 |
0 | ~ 21/20 16/15 9/8 8/7 6/5 5/4 21/16 4/3 7/5 10/7 3/2 32/21 8/5 5/3 7/4 16/9 15/8 40/21 2/1 | LsLsLMLsLsLsLMLsLsL | 0 |
9 | ~ 21/20 35/32 147/128 7/6 49/40 5/4 21/16 441/320 7/5 189/128 3/2 63/40 49/30 441/256 7/4 147/80 15/8 49/25 2/1 | LMLsLsLLsLsLMLsLsLs | .0464 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLsLLLsLsLsLLLsLsL | Meantone[19] MODMOS | 81/80, 126/125 |
M = s | LsLsLsLsLsLsLsLsLsL | Negri[19] | 49/48, 225/224 |
L - M = M - s | LdLdLsLdLdLdLsLdLdL | Magic[19] MODMOS | 225/224, 245/243 |
s = 0 | LLLsLLLLsLLL | Pajara[12] 4M (hexachordal dodecatonic) | 50/49, 64/63 |
m = 0 | LsLsLLsLsLsLLsLsL | Sharp[17] | 25/24, 28/27 |
ET | 22 | 29 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (2, 2, 1) | (3, 2, 1) | (3, 3, 2) | (4, 3, 1) | (5, 4, 2) |
(2/1, 3/2, 5/4: 225/224, 385/384)[19] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
10L 2M 7s | (135/128~21/20, 25/24~28/27, 64/63~50/49~55/54) | (84.7519c, 66.7278c, 31.3808c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-9 | ~ 50/49 16/15 88/81 8/7 220/189 11/9 80/63 4/3 110/81 10/7 352/243 32/21 8/5 44/27 12/7 110/63 11/6 40/21 2/1 | sLsLsLMLsLsLLsLsLML | -.0460 |
0 | ~ 21/20 16/15 9/8 8/7 6/5 5/4 21/16 4/3 7/5 10/7 3/2 32/21 8/5 5/3 7/4 16/9 15/8 40/21 2/1 | LsLsLMLsLsLsLMLsLsL | 0 |
9 | ~ 21/20 12/11 63/55 7/6 27/22 5/4 21/16 243/176 7/5 81/55 3/2 63/40 18/11 189/110 7/4 81/44 15/8 49/25 2/1 | LMLsLsLLsLsLMLsLsLs | .0460 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLsLLLsLsLsLLLsLsL | Meanpop[19] MODMOS | 81/80, 126/125, 385/384 |
M = s | LsLsLsLsLsLsLsLsLsL | Negri[19] | 45/44, 49/48, 56/55 |
L - M = M - s | LdLdLsLdLdLdLsLdLdL | Magic[19] MODMOS | 100/99, 225/224, 245/243 |
s = 0 | LLLsLLLLsLLL | Pajarous[12] 4M (hexachordal dodecatonic) | 50/49, 55/54, 64/63 |
ET | 22 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 2, 1) | (3, 2, 1) | (3, 3, 2) | (4, 3, 1) | (5, 4, 2) |
(2/1, 3/2, 5/4: 225/224, 441/440)[19] (Prodigy)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
10L 2M 7s | (135/128~21/20~22/21, 25/24~28/27, 64/63~50/49~45/44~56/55) | (82.9601c, 67.2689c, 33.8068c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-9 | ~ 50/49 16/15 12/11 8/7 64/55 27/22 14/11 4/3 15/11 10/7 16/11 32/21 8/5 18/11 12/7 96/55 64/35 40/21 2/1 | sLsLsLMLsLsLLsLsLML | -.0428 |
0 | ~ 21/20 16/15 9/8 8/7 6/5 5/4 21/16 4/3 7/5 10/7 3/2 32/21 8/5 5/3 7/4 16/9 15/8 40/21 2/1 | LsLsLMLsLsLsLMLsLsL | 0 |
9 | ~ 21/20 35/32 55/48 7/6 11/9 5/4 21/16 11/8 7/5 22/15 3/2 11/7 44/27 55/32 7/4 11/6 15/8 49/25 2/1 | LMLsLsLLsLsLMLsLsLs | .0428 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLsLLLsLsLsLLLsLsL | Meantone[19] MODMOS | 81/80, 99/98, 126/125 |
M = s | LsLsLsLsLsLsLsLsLsL | Negroni[19] | 49/48, 55/54, 225/224 |
L - M = M - s | LdLdLsLdLdLdLsLdLdL | Witchcraft[19] MODMOS | 225/224, 245/243, 441/440 |
s = 0 | LLLsLLLLsLLL | Pajaric[12] 4M (hexachordal dodecatonic) | 45/44, 50/49, 56/55 |
ET | 29 | 31 | 41 | 53e | 72 |
---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 1) | (4, 3, 1) | (5, 4, 2) |
(2/1, 3/2, 5/4: 225/224, 441/440)[31] (Prodigy)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
10L 19M 2s | (~33/32, 64/63~50/49~45/44~56/55, 49/48~55/54) | (49.1533c, 33.8068c, 33.4621c) |
Mode 0: ~ 50/49 22/21 16/15 12/11 9/8 8/7 7/6 6/5 27/22 5/4 14/11 21/16 4/3 15/11 7/5 10/7 22/15 3/2 32/21 11/7 8/5 44/27 5/3 12/7 7/4 16/9 11/6 15/8 21/11 49/25 2/1
as mLmmLmsmLmmLmmLmLmmLmmLmsmLmmLm
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLssLsssLssLssLsLssLssLsssLssLs | Miracle[31] MODMOS | 225/224, 243/242, 385/384 |
L = m | LLLLLLLsLLLLLLLLLLLLLLLLLsLLLLLL | Tritonic[31] MODMOS | 121/120, 225/224, 441/440 |
L = s | sLssLsLsLssLssLsLssLssLsLsLssLs | Meantone[31] MODMOS | 81/80, 99/98, 126/125 |
s = 0 | mLmmLmmLmmLmmLmLmmLmmLmmLmmLm | Negroni[29] | 49/48, 55/54, 225/224 |
m = 0 | LLsLLLLLLsLL | Pajaric[12] 4M (hexachordal dodecatonic) | 45/44, 50/49, 56/55 |
ET | 41 | 53e | 72 |
---|---|---|---|
Step sizes in ET | (2, 1, 1) | (3, 1, 2) | (3, 2, 2) |
((2/1, 5/4)[3], 16/15)
((2/1, 5/4)[3], 16/15)[6]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
1L 2M 4s | (6/5, 75/64, 16/15) | (315.6413c, 267.8165c, 111.7313c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-3 | 16/15 5/4 4/3 25/16 5/3 2/1 | sMsMsL | -0.1156 |
-2 | 16/15 5/4 4/3 8/5 128/75 2/1 | sMsLsM | -0.0883 |
-1 | 16/15 32/25 512/375 8/5 128/75 2/1 | sLsMsM | -0.0609 |
1 | 75/64 5/4 375/256 25/16 15/8 2/1 | MsMsLs | 0.0609 |
2 | 75/64 5/4 3/2 8/5 15/8 2/1 | MsLsMs | 0.0883 |
3 | 6/5 32/25 3/2 8/5 15/8 2/1 | LsMsMs | 0.1156 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLsLs | Augmented[6] | 128/125 |
M = s | ssLsss | Enipucrop[6] | 1125/1024 |
L = s | LsssLs | Antitonic[6] 4M | 9/8 |
s = 0 | LsL | Father[3] | 16/15 |
((2/1, 5/4)[3], 16/15: 225/224)[6] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
1L 2M 4s | 6/5, 75/64~7/6, 16/15~15/14 | (316.9276c, 267.8165c, 116.0124c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-3 | ~ 15/14 5/4 4/3 14/9 5/3 2/1 | sMsMsL | -0.1168 |
-2 | ~ 15/14 5/4 4/3 8/5 12/7 2/1 | sMsLsM | -0.0840 |
-1 | ~ 15/14 9/7 48/35 8/5 12/7 2/1 | sLsMsM | -0.0513 |
1 | ~ 7/6 5/4 35/28 14/9 15/8 2/1 | MsMsLs | 0.0513 |
2 | ~ 7/6 5/4 3/2 8/5 15/8 2/1 | MsLsMs | 0.0840 |
3 | ~ 6/5 9/7 3/2 8/5 15/8 2/1 | LsMsMs | 0.1168 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLsLs | August[6] | 128/125 |
ET | 7 | 9 | 10 | 12 | 19 | 22 | 29 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 1) | (3, 3, 1) | (5, 4, 2) | (6, 5, 2) | (8, 6, 3) | (8, 7, 3) | (11, 9, 4) | (13, 11, 5) | (14, 12, 5) | (19, 16, 7) |
((2/1, 5/4)[3], 16/15)[9]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
1L 2M 6s | (9/8, 1125/1024, 16/15) | (203.9100c, 162.8511c, 111.7313c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-4 | 16/15 256/225 5/4 4/3 64/45 25/16 5/3 16/9 2/1 | ssMssMssL | -0.0662 |
-3 | 16/15 256/225 5/4 4/3 64/45 8/5 128/75 2048/1125 2/1 | ssMssLssM | -0.0405 |
-2 | 16/15 75/64 5/4 4/3 375/256 25/16 5/3 15/8 2/1 | sMssMssLs | -0.0257 |
-1 | 16/15 256/225 32/25 512/375 8192/5625 8/5 128/75 2048/1125 2/1 | ssLssMssM | -0.0148 |
0 | 16/15 75/64 5/4 4/3 3/2 8/5 128/75 15/8 2/1 | sMssLssMs | 0 |
1 | 1125/1024 75/64 5/4 5625/4096 375/256 25/16 225/128 15/8 2/1 | MssMssLss | 0.0148 |
2 | 16/15 6/5 32/25 512/375 3/2 8/5 128/75 15/8 2/1 | sLssMssMs | 0.0257 |
3 | 1125/1024 75/64 5/4 45/32 3/2 8/5 225/128 15/8 2/1 | MssLssMss | 0.0405 |
4 | 9/8 6/5 32/25 45/32 3/2 8/5 225/128 15/8 2/1 | LssMssMss | 0.0662 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | sLssLssLs | Augmented[9] | 128/125 |
M = s | ssssLssss | Negri[9] | 16875/16384 |
L = s | sLsssssLs | Mavila[9] MODMOS | 135/128 |
L - M = M - s | sLssAssLs | Orson[9] MODMOS | 2109375/2097152 |
s = 0 | LsL | Father[3] | 16/15 |
m = 0 | sssLsss | Enipucrop[7] | 1125/1024 |
((2/1, 5/4)[3], 16/15: 225/224)[9] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
1L 2M 6s | (9/8~28/25, 35/32~49/45, 16/15~15/14) | (203.9100c, 162.8511c, 111.7313c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-4 | ~ 15/14 8/7 5/4 4/3 10/7 14/9 5/3 16/9 2/1 | ssMssMssL | -0.0633 |
-3 | ~ 15/14 8/7 5/4 4/3 10/7 8/5 12/7 64/35 2/1 | ssMssLssM | -0.0326 |
-2 | ~ 15/14 7/6 5/4 4/3 35/24 14/9 5/3 15/8 2/1 | sMssMssLs | -0.0307 |
-1 | ~ 15/14 8/7 9/7 48/35 72/49 8/5 12/7 64/35 2/1 | ssLssMssM | -0.0019 |
0 | ~ 15/14 7/6 5/4 4/3 3/2 8/5 12/7 15/8 2/1 | sMssLssMs | 0 |
1 | ~ 35/32 7/6 5/4 49/36 35/24 14/9 7/4 15/8 2/1 | MssMssLss | 0.0019 |
2 | ~ 15/14 6/5 9/7 48/35 3/2 8/5 12/7 15/8 2/1 | sLssMssMs | 0.0307 |
3 | ~ 35/32 7/6 5/4 7/5 3/2 8/5 7/4 15/8 2/1 | MssLssMss | 0.0326 |
4 | ~ 9/8 6/5 9/7 7/5 3/2 8/5 7/4 15/8 2/1 | LssMssMss | 0.0633 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | sLssLssLs | August[9] | 36/35, 128/125 |
M = s | ssssLssss | Negri[9] | 49/48, 225/224 |
L = s | sLsssssLs | Pelogic[9] MODMOS | 21/20, 135/128 |
L - M = M - s | sLssAssLs | Orwell[9] MODMOS | 225/224, 1728/1715 |
ET | 10 | 12 | 19 | 22 | 29 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (4, 3, 2) | (5, 3, 3) | (5, 4, 3) | (7, 5, 4) | (8, 6, 5) | (9, 8, 5) | (12, 9, 7) |
((2/1, 5/4)[3], 16/15: 225/224, 385/384)[9] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
1L 2M 6s | (9/8~28/25, 35/32~49/45~12/11, 16/15~15/14) | (200.8846c, 151.4797c, 116.1327c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-4 | ~ 15/14 8/7 5/4 4/3 10/7 14/9 5/3 16/9 2/1 | ssMssMssL | -0.0632 |
-3 | ~ 15/14 8/7 5/4 4/3 10/7 8/5 12/7 11/6 2/1 | ssMssLssM | -0.0324 |
-2 | ~ 15/14 7/6 5/4 4/3 16/11 14/9 5/3 15/8 2/1 | sMssMssLs | -0.0309 |
-1 | ~ 15/14 8/7 9/7 11/8 22/15 8/5 12/7 11/6 2/1 | ssLssMssM | -0.0015 |
0 | ~ 15/14 7/6 5/4 4/3 3/2 8/5 12/7 15/8 2/1 | sMssLssMs | 0 |
1 | ~ 12/11 7/6 5/4 15/11 16/11 14/9 7/4 15/8 2/1 | MssMssLss | 0.0015 |
2 | ~ 15/14 6/5 9/7 11/8 3/2 8/5 12/7 15/8 2/1 | sLssMssMs | 0.0309 |
3 | ~ 12/11 7/6 5/4 7/5 3/2 8/5 7/4 15/8 2/1 | MssLssMss | 0.0324 |
4 | ~ 9/8 6/5 9/7 7/5 3/2 8/5 7/4 15/8 2/1 | LssMssMss | 0.0632 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | sLssLssLs | August[9] | 36/35, 45/44, 56/55 |
M = s | ssssLssss | Negri[9] | 45/44, 49/48, 56/55 |
L - M = M - s | sLssAssLs | Orwell[9] MODMOS | 99/88, 121/120, 176/175 |
ET | 10 | 12e | 19 | 22 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (4, 3, 2) | (5, 4, 3) | (7, 5, 4) | (8, 6, 5) | (9, 8, 5) | (12, 9, 7) |
((2/1, 5/4)[3], 16/15: 225/224)[12] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
9L 1M 2s | (16/15~15/14, 135/128~21/20, ~49/48) | (116.0124c, 84.9028c, 35.7917c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-6 | ~ 49/48 35/32 7/6 5/4 245/192 49/36 35/24 14/9 49/30 7/4 15/8 2/1 | sLLLsLLLMLLL | -0.0733 |
-5 | ~ 15/14 35/32 7/6 5/4 4/3 49/36 35/24 14/9 5/3 7/4 15/8 2/1 | LsLLLsLLLMLL | -0.0433 |
-4 | ~ 49/48 35/32 7/6 5/4 12/16 7/5 3/2 8/5 49/30 7/4 15/8 2/1 | sLLLMLLLsLLL | -0.0435 |
-3 | ~ 15/14 8/7 7/6 5/4 4/3 10/7 35/24 14/9 5/3 16/9 15/8 2/1 | LLsLLLsLLLML | -0.0152 |
-2 | ~ 15/14 35/32 7/6 5/4 4/3 7/5 3/2 8/5 12/7 7/4 15/8 2/1 | LsLLLMLLLsLL | -0.0145 |
-1 | ~ 21/20 9/8 6/5 9/7 21/16 7/5 3/2 8/5 49/30 7/4 15/8 2/1 | MLLLsLLLsLLL | -0.0138 |
1 | ~ 15/14 8/7 60/49 5/4 4/3 10/7 32/21 14/9 5/3 16/9 40/21 2/1 | LLLsLLLsLLLM | 0.0138 |
2 | ~ 15/14 8/7 7/6 5/4 4/3 10/7 3/2 8/5 12/7 64/35 15/8 2/1 | LLsLLLMLLLsL | 0.0145 |
3 | ~ 15/14 9/8 6/5 9/7 48/35 7/5 3/2 8/5 12/7 7/4 15/8 2/1 | LMLLLsLLLsLL | 0.0152 |
4 | ~ 15/14 8/7 60/49 5/4 4/3 10/7 32/21 8/5 12/7 64/35 96/49 2/1 | LLLsLLLMLLLs | 0.0435 |
5 | ~ 15/14 8/7 6/5 9/7 48/35 72/49 3/2 8/5 12/7 64/35 15/8 2/1 | LLMLLLsLLLsL | 0.0443 |
6 | ~ 15/14 8/7 60/49 9/7 48/35 72/49 384/245 8/5 12/7 64/35 96/49 2/1 | LLLMLLLsLLLs | 0.0733 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLLLLLLLsLL | Pajara[12] MODMOS | 50/49, 64/63 |
M = s | LsLLLsLLLsLLs | August[12] | 36/35, 128/125 |
L = s | sssssLssssss | Passion[12] | 64/63, 3125/3087 |
L - M = M - s | LdLLLsLLLdLL | Meantone[12] MODMOS | 81/80, 126/125 |
s = 0 | LLLLsLLLLL | Negri[10] | 49/48, 225/224 |
M = 0 | LsLLLLLLsLL | Pelogic[11] MODMOS | 21/20, 135/128 |
ET | 19 | 22 | 29 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 2, 1) | (3, 2, 0) | (3, 2, 1) | (4, 3, 1) | (5, 3, 1) | (5, 4, 2) | (7, 5, 2) |
((2/1, 5/4)[3], 16/15: 225/224, 385/384)[12] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
9L 1M 2s | (16/15~15/14, 135/128~21/20, 49/48~45/44~56/55) | (116.1327c, 84.7519c, 35.347c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-6 | ~ 45/44 12/11 7/6 5/4 14/11 15/11 16/11 14/9 18/11 7/4 15/8 2/1 | sLLLsLLLMLLL | -0.0738 |
-5 | ~ 15/14 12/11 7/6 5/4 4/3 15/11 16/11 14/9 5/3 7/4 15/8 2/1 | LsLLLsLLLMLL | -0.0445 |
-4 | ~ 45/44 12/11 7/6 5/4 12/16 7/5 3/2 8/5 18/11 7/4 15/8 2/1 | sLLLMLLLsLLL | -0.0438 |
-3 | ~ 15/14 8/7 7/6 5/4 4/3 10/7 16/11 14/9 5/3 16/9 15/8 2/1 | LLsLLLsLLLML | -0.0153 |
-2 | ~ 15/14 12/11 7/6 5/4 4/3 7/5 3/2 8/5 12/7 7/4 15/8 2/1 | LsLLLMLLLsLL | -0.0146 |
-1 | ~ 21/20 9/8 6/5 9/7 21/16 7/5 3/2 8/5 18/11 7/4 15/8 2/1 | MLLLsLLLsLLL | -0.0139 |
1 | ~ 15/14 8/7 11/9 5/4 4/3 10/7 32/21 14/9 5/3 16/9 40/21 2/1 | LLLsLLLsLLLM | 0.0139 |
2 | ~ 15/14 8/7 7/6 5/4 4/3 10/7 3/2 8/5 12/7 11/6 15/8 2/1 | LLsLLLMLLLsL | 0.0146 |
3 | ~ 15/14 9/8 6/5 9/7 11/8 7/5 3/2 8/5 12/7 7/4 15/8 2/1 | LMLLLsLLLsLL | 0.0153 |
4 | ~ 15/14 8/7 11/9 5/4 4/3 10/7 32/21 8/5 12/7 11/6 55/28 2/1 | LLLsLLLMLLLs | 0.0438 |
5 | ~ 15/14 8/7 6/5 9/7 11/8 22/15 3/2 8/5 12/7 11/6 15/8 2/1 | LLMLLLsLLLsL | 0.0445 |
6 | ~ 15/14 8/7 11/9 9/7 11/8 22/15 11/7 8/5 12/7 11/6 55/28 2/1 | LLLMLLLsLLLs | 0.0738 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLLLLLLLsLL | Pajarous[12] MODMOS | 50/49, 55/54, 64/63 |
M = s | LsLLLsLLLsLL | August[12] | 36/35, 45/44, 56/55 |
L = s | sssssLssssss | Passion[12] | 64/63, 100/99, 1375/1372 |
L - M = M - s | LdLLLsLLLdLL | Meanpop[12] MODMOS | 81/80, 126/125, 385/384 |
s = 0 | LLLLsLLLLL | Negri[10] | 45/44, 49/48, 56/55 |
ET | 19 | 22 | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 2, 1) | (3, 2, 1) | (4, 3, 1) | (5, 3, 1) | (5, 4, 2) | (7, 5, 2) |
(2/1, 5/4)[3], 16/15: 225/224, 385/384)[22] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
9L 1m 12s | (~22/21, 36/35~33/32, 49/48~45/44~56/55) | (80.7857c, 49.4049c, 35.347c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Mode height |
---|---|---|---|
-7 | ~ 45/44 16/15 12/11 49/44 7/6 105/88 5/4 14/11 4/3 15/11 7/5 63/44 3/2 49/32 8/5 18/11 12/7 7/4 98/55 15/8 21/11 2/1 | sLssLsLsLsmsLsLsLssLsL | -.0229 |
7 | ~ 22/21 16/15 55/49 8/7 7/6 11/9 5/4 64/49 4/3 88/63 10/7 22/11 3/2 11/7 8/5 176/105 12/7 88/49 11/6 15/8 55/28 2/1 | LsLssLsLsLsmsLsLsLssLs | .0229 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLssLsLsLsssLsLsLssLsL | Orwell[22] MODMOS | 99/98, 121/120, 176/175 |
L = m | sLssLsLsLsLsLsLsLssLsL | Pajarous[22] MODMOS | 50/49, 55/54, 64/63 |
L = s | LLLLLLLLLLsLLLLLLLLLLL | Escapade[22] | 99/98, 176/175, 2560/2541 |
L - m = m - s | sAssAsAsAsLsAsAsAssAsA | Magic[22] MODMOS | 100/99, 225/224, 245/243 |
s = 0 | LLLLsLLLLL | Negri[10] | 45/44, 49/48, 56/55 |
ET | 31 | 41 | 50 | 53 | 72 |
---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (3, 2, 1) | (4, 2, 1) | (3, 2, 2) | (5, 3, 2) |
((2/1, 3/2)[5], 16/15)
((2/1, 3/2)[5], 16/15)[10]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
2L 5m 3s | (10/9, 16/15, 135/128) | (182.4037c, 111.7313c, 92.1787c) |
Mode number | Mode in JI | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Blackwood[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | 16/15 9/8 6/5 81/64 27/20 3/2 8/5 27/16 9/5 2/1 | msmsmLmsmL | sssssLsssL | Dark minor | sLsLsLsLsL | 0|1 (5) | -.0745 |
-4 | 135/128 9/8 1215/1024 81/64 45/32 3/2 405/256 27/16 15/8 2/1 | smsmLmsmLm | ssssLsssLs | Alternate minor | LsLsLsLsLs | 1|0 (5) | -.0592 |
-3 | 16/15 9/8 6/5 4/3 64/45 3/2 8/5 27/16 9/5 2/1 | msmLmsmsmL | sssLsssssL | Standard minor | sLsLsLsLsL | 0|1 (5) | -.0411 |
-2 | 135/128 9/8 5/4 4/3 45/32 3/2 405/256 27/16 15/8 2/1 | smLmsmsmLm | ssLsssssLs | Dark major | LsLsLsLsLs | 1|0 (5) | -.0258 |
-1 | 16/15 9/8 6/5 4/3 64/45 3/2 8/5 16/9 256/135 2/1 | msmLmsmLms | sssLsssLss | Bright minor | sLsLsLsLsL | 0|1 (5) | -.0077 |
1 | 135/128 9/8 5/4 4/3 45/32 3/2 5/3 16/9 15/8 2/1 | smLmsmLmsm | ssLsssLsss | Standard major | LsLsLsLsLs | 1|0 (5) | .0077 |
2 | 16/15 32/27 512/405 4/3 64/45 3/2 8/5 16/9 256/135 2/1 | mLmsmsmLms | sLsssssLss | Alternate major | sLsLsLsLsL | 0|1 (5) | .0258 |
3 | 10/9 32/27 5/4 4/3 45/32 3/2 5/3 16/9 15/8 2/1 | LmsmsmLmsm | LsssssLsss | Bright major | LsLsLsLsLs | 1|0 (5) | .0411 |
4 | 16/15 32/27 512/405 4/3 64/45 128/81 2048/1215 16/9 256/135 2/1 | mLmsmLmsms | sLsssLssss | Dark Augmented | sLsLsLsLsL | 0|1 (5) | .0592 |
5 | 10/9 32/27 5/4 4/3 40/27 128/81 5/3 16/9 15/8 2/1 | LmsmLmsmsm | LsssLsssss | Bright Augmented | LsLsLsLsLs | 1|0 (5) | .0745 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | ssLsssLsss | Srutal[10] 4M (pentachordal decatonic) | 2048/2025 |
L = m | sLLLsLLLsL | Dicot[10] MODMOS | 25/24 |
L = s | LsLsLsLsLs | Blackwood[10] | 256/243 |
L - m = m - s | sLALsLALsL | Negri[10] MODMOS | 16875/16384 |
s = 0 | sLssLss | Mavila[7] | 135/128 |
m = 0 | sLsLs | Father[5] | 16/15 |
((2/1, 3/2)[5], 16/15: 225/224)[10] (Marvel)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
2L 5m 3s | (10/9, 16/15~15/14, 135/128~21/20) | (182.9137c, 116.0124c, 84.9028c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Blackwood[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | ~ 15/14 9/8 6/5 81/64 27/20 3/2 8/5 27/16 9/5 2/1 | msmsmLmsmL | sssssLsssL | Dark minor | sLsLsLsLsL | 0|1 (5) | -.0763 |
-4 | ~ 21/20 9/8 189/160 81/64 7/5 3/2 63/40 27/16 15/8 2/1 | smsmLmsmLm | ssssLsssLs | Alternate minor | LsLsLsLsLs | 1|0 (5) | -.0688 |
-3 | ~ 15/14 9/8 6/5 4/3 10/7 3/2 8/5 27/16 9/5 2/1 | msmLmsmsmL | sssLsssssL | Standard minor | sLsLsLsLsL | 0|1 (5) | -.0400 |
-2 | ~ 21/20 9/8 5/4 4/3 7/5 3/2 63/40 27/16 15/8 2/1 | smLmsmsmLm | ssLsssssLs | Dark major | LsLsLsLsLs | 1|0 (5) | -.0326 |
-1 | ~ 15/14 9/8 6/5 4/3 10/7 3/2 8/5 16/9 40/21 2/1 | msmLmsmLms | sssLsssLss | Bright minor | sLsLsLsLsL | 0|1 (5) | -.0037 |
1 | ~ 21/20 9/8 5/4 4/3 7/5 3/2 5/3 16/9 15/8 2/1 | smLmsmLmsm | ssLsssLsss | Standard major | LsLsLsLsLs | 1|0 (5) | .0037 |
2 | ~ 15/14 32/27 80/63 4/3 10/7 3/2 8/5 16/9 40/21 2/1 | mLmsmsmLms | sLsssssLss | Alternate major | sLsLsLsLsL | 0|1 (5) | .0326 |
3 | ~ 10/9 32/27 5/4 4/3 7/5 3/2 5/3 16/9 15/8 2/1 | LmsmsmLmsm | LsssssLsss | Bright major | LsLsLsLsLs | 1|0 (5) | .0400 |
4 | ~ 15/14 32/27 80/63 4/3 10/7 128/81 320/189 16/9 40/21 2/1 | mLmsmLmsms | sLsssLssss | Dark Augmented | sLsLsLsLsL | 0|1 (5) | .0688 |
5 | ~ 10/9 32/27 5/4 4/3 40/27 128/81 5/3 16/9 15/8 2/1 | LmsmLmsmsm | LsssLsssss | Bright Augmented | LsLsLsLsLs | 1|0 (5) | .0763 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | ssLsssLsss | Pajara[10] 4M (pentachordal decatonic) | 50/49, 64/63 |
L = m | sLLLsLLLsL | Sharp[10] MODMOS | 25/24, 28/27 |
L - m = m - s | sLALsLALsL | Negri[10] MODMOS | 49/48, 225/224 |
s = 0 | sLssLss | Pelogic[7] | 21/20, 135/128 |
((2/1, 3/2)[5], 16/15: 225/224, 441/440)[10] (Prodigy)
Step signature | Steps in JI | Step sizes in cents (TE tuning) |
---|---|---|
2L 5m 3s | (10/9, 16/15~15/14, 135/128~21/20~22/21) | (184.0358c, 116.7669c, 82.9601c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Pentachordal
Decatonic |
Pent. Dec.
Mode name |
Blackwood[10] | UDP | Mode height |
---|---|---|---|---|---|---|---|
-5 | ~ 15/14 9/8 6/5 44/35 27/20 3/2 8/5 27/16 9/5 2/1 | msmsmLmsmL | sssssLsssL | Dark minor | sLsLsLsLsL | 0|1 (5) | -.0779 |
-4 | ~ 21/20 9/8 33/28 44/35 7/5 3/2 11/7 27/16 15/8 2/1 | smsmLmsmLm | ssssLsssLs | Alternate minor | LsLsLsLsLs | 1|0 (5) | -.0718 |
-3 | ~ 15/14 9/8 6/5 4/3 10/7 3/2 8/5 27/16 9/5 2/1 | msmLmsmsmL | sssLsssssL | Standard minor | sLsLsLsLsL | 0|1 (5) | -.0405 |
-2 | ~ 21/20 9/8 5/4 4/3 7/5 3/2 11/7 27/16 15/8 2/1 | smLmsmsmLm | ssLsssssLs | Dark major | LsLsLsLsLs | 1|0 (5) | -.0343 |
-1 | ~ 15/14 9/8 6/5 4/3 10/7 3/2 8/5 16/9 21/11 2/1 | msmLmsmLms | sssLsssLss | Bright minor | sLsLsLsLsL | 0|1 (5) | .0031 |
1 | ~ 21/20 9/8 5/4 4/3 7/5 3/2 5/3 16/9 15/8 2/1 | smLmsmLmsm | ssLsssLsss | Standard major | LsLsLsLsLs | 1|0 (5) | .0031 |
2 | ~ 15/14 32/27 15/11 4/3 10/7 3/2 8/5 16/9 21/11 2/1 | mLmsmsmLms | sLsssssLss | Alternate major | sLsLsLsLsL | 0|1 (5) | .0343 |
3 | ~ 10/9 32/27 5/4 4/3 7/5 3/2 5/3 16/9 15/8 2/1 | LmsmsmLmsm | LsssssLsss | Bright major | LsLsLsLsLs | 1|0 (5) | .0405 |
4 | ~ 15/14 32/27 14/11 4/3 10/7 35/22 56/33 16/9 40/21 2/1 | mLmsmLmsms | sLsssLssss | Dark Augmented | sLsLsLsLsL | 0|1 (5) | .0718 |
5 | ~ 10/9 32/27 5/4 4/3 40/27 35/22 5/3 16/9 15/8 2/1 | LmsmLmsmsm | LsssLsssss | Bright Augmented | LsLsLsLsLs | 1|0 (5) | .0779 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | ssLsssLsss | Pajaric[10] 4M (pentachordal decatonic) | 45/44, 50/49, 56/55 |
L - m = m - s | sLALsLALsL | Negroni[10] MODMOS | 49/48, 55/54, 225/224 |
((2/1, 3/2)[5], 16/15)[17]
10L 2M 5s = (135/128, 256/243, 2048/2025) = (92.1787c, 90.2250c, 19.5526c)
135/128 16/15 9/8 32/27 5/4 81/64 4/3 45/32 64/45 3/2 128/81 8/5 27/16 16/9 15/8 256/135 2/1 as LsLMLsLLsLLsLMLsL
L = M -> LsLLLsLLsLLsLLLsL Helmholtz[17]; M = s -> LsLsLsLLsLLsLsLsL Dicot[17] MODMOS; s = 0 -> LLsLLLLLLsLL Srutal[12] 4M (Hexachordal Dodecatonic); M = 0 -> LsLLsLLsLLsLLsL Blackwood[15]
((2/1, 3/2)[5], 16/15: 225/224)[17] (Marvel)
2L 10M 5s = (256/243, 135/128~21/20, 2048/2025~50/49~64/63) = (98.0109c, 84.9028c, 31.1096) TE
~ 21/20 16/15 9/8 32/27 5/4 81/64 4/3 7/5 10/7 3/2 128/81 8/5 27/16 16/9 15/8 40/21 2/1 as MsMLMsMMsMMsMLMsM
L = M -> LsLLLsLLsLLsLLLsL Garibaldi[17]; M = s -> LsLsLsLLsLLsLsLsL Dicot[17] MODMOS;
s = 0 -> LLsLLLLLLsLL Pajara[12] 4M (Hexachordal Dodecatonic)
((2/1, 3/2)[5], 16/15: 225/224, 441/440)[17] (Prodigy)
2L 10M 5s = (256/243~35/33, 135/128~21/20~22/21, 2048/2025~50/49~64/63~45/44~56/55) = (101.0757c, 82.9601c, 33.8068c) TE
~ 22/21 16/15 9/8 32/27 5/4 81/64 4/3 7/5 10/7 3/2 128/81 8/5 27/16 16/9 15/8 21/11 2/1 as LsLmLsLLsLLsLmLsL
L = M -> LsLLLsLLsLLsLLLsL Andromeda[17]; s = 0 -> s = 0 -> LLsLLLLLLsLL Pajaric[12] 4M (Hexachordal Dodecatonic)
((2/1, 3/2)[5], 16/15: 225/224, 441/440)[29] (Prodigy)
2L 10m 17s = (25/24~28/27, ~33/32, 2048/2025~50/49~64/63~45/44~56/55) = (67.2689c, 49.1533c, 33.8068c) TE
~ 50/49 22/21 16/15 11/10 9/8 8/7 33/28 6/5 5/4 14/11 21/16 4/3 15/11 7/5 10/7 22/15 3/2 32/21 11/7 8/5 5/3 56/33 7/4 16/9 20/11 15/8 21/11 49/25 2/1 as smsmssmsLsmssmsmssmsLsmssmsms
m = s -> ssssssssLsssssssssssLssssssss Tritonic[29] MODMOS; L = m -> sLsLssLsLsLssLsLssLsLsLssLsLs Andromeda[29];
L = s -> LsLsLLsLLLsLLsLsLLsLLLsLLsLsL Negroni[29] MODMOS; L - m = m - s -> Marvolo[29] MODMOS;
s = 0 -> LLLsLLLLsLLL Pajaric[12] 4M (Hexachordal Dodecatonic)
((2/1, 3/2)[5], 16/15: 225/224, 441/440)[41] (Prodigy)
29L 2M 10s = (2048/2025~50/49~64/63~45/44~56/55, 49/48~55/54, ~121/120) = (33.8068c, 33.4621c, 15.3465c) TE
~ 50/49 33/32 22/21 16/15 12/11 11/10 9/8 8/7 7/6 32/27 40/33 11/9 5/4 14/11 128/99 21/16 4/3 15/11 11/8 7/5 10/7 16/11 22/15 3/2 32/16 99/64 11/7 8/5 18/11 33/20 27/16 12/7 7/4 16/9 20/11 11/6 15/8 21/11 64/33 49/25 2/1 as LsLLLsLLMLLsLLLsLLsLLLsLLsLLLsLLMLLsLLLsL
L = M -> LsLLLsLLLLLsLLLsLLsLLLsLLsLLLsLLLLLsLLLsL Miracle[31] MODMOS; M = s -> LsLLLsLLsLLsLLLsLLsLLLsLLsLLLsLLsLLsLLLsL Andromeda[31];
L - M = M - s -> Witchcraft[41] MODMOS
s = 0 -> LLLLLLsLLLLLLLLLLLLLLLLLsLLLLLL Tritonic[31] MODMOS; m = 0 -> LsLLLsLLLLsLLLsLLsLLLsLLsLLLsLLLLLsLLLsL Negroni[39] MODMOS
((2/1, 3/2)[5], 16/15: 225/224, 441/440)[72] (Prodigy)
29L 2M 41s = (1344/1331~1350/1331, 100/99~245/242~896/891, ~121/120) = (18.4603c, 18.1156c, 15.3465c) TE
as LssLsLsLssLsLsMsLsLssLsLsLssLsLssLsLsLssLsLssLsLsLssLsLsMsLsLssLsLsLssLs
L = M -> LssLsLsLssLsLsLsLsLssLsLsLssLsLssLsLsLssLsLssLsLsLssLsLsLsLsLssLsLsLssLs Marvolo[72] MODMOS;
M = s -> LssLsLsLssLsLsssLsLssLsLsLssLsLssLsLsLssLsLssLsLsLssLsLsssLsLssLsLsLssLs Miracle[72] MODMOS;
L - M = M - s -> Compton MODMOS
s = 0 -> LLLLLLsLLLLLLLLLLLLLLLLLsLLLLLL Tritonic[31] MODMOS;
m = 0 -> LssLsLsLssLsLssLsLssLsLsLssLsLssLsLsLssLsLssLsLsLssLsLsssLsLssLsLsLssLs Andromeda[70] MODMOS
2.3.5; Starling, No-7 Ptolemismic, and Ragismic
(2/1, 3/2, 6/5)
(2/1, 3/2, 6/5)[4]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
1L 2M 1s | (5/4, 6/5, 10/9) | (386.3137c, 315.6413c, 182.4037c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-2 | 10/9 4/3 5/3 2/1 | sMLM | -0.1307 |
-1 | 6/5 4/3 8/5 2/1 | MsML | -0.0959 |
1 | 5/4 3/2 5/3 2/1 | LMsM | 0.0959 |
2 | 6/5 3/2 9/5 2/1 | MLMs | 0.1307 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LLLs | Dicot[4] | 25/24 |
M = s | sLss | Bug[4] | 27/25 |
L = s | LsLs | Antitonic[4] | 9/8 |
(2/1, 3/2, 6/5)[7]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
1L 4M 2s | (9/8, 10/9, 27/25) | (203.9100c, 182.4037c, 133.2376c) |
Mode number | Mode in JI | Step pattern | Meantone[7] | UDP | Diatonic mode | Porcupine[7] | UDP | Porcupine mode | Mode height |
---|---|---|---|---|---|---|---|---|---|
-3 | 27/25 6/5 4/3 36/25 8/5 9/5 2/1 | sMMsMLM | sLLsLLL | 0|6 | Lochrian | sssssLs | 1|5 | Dark diminished | -0.0529 |
-2 | 10/9 6/5 4/3 40/27 8/5 16/9 2/1 | MsMMsML | LsLLsLL | 2|4 | Aeolian | ssssssL | 0|6 | Magical seventh | -0.0316 |
-1 | 27/25 6/5 27/20 3/2 81/50 9/5 2/1 | sMLMsMM | sLLLsLL | 1|5 | Phrygian | ssLssss | 4|2 | Bright minor | -0.0213 |
0 | 10/9 6/5 4/3 3/2 5/3 9/5 2/1 | MsMLMsM | LsLLLsL | 3|3 | Dorian | sssLsss | 3|3 | Dark minor | 0 |
1 | 10/9 100/81 4/3 40/27 5/3 50/27 2/1 | MMsMLMs | LLsLLLs | 5|1 | Ionian | ssssLss | 2|4 | Bright diminished | 0.0213 |
2 | 9/8 5/4 27/20 3/2 5/3 9/5 2/1 | LMsMMsM | LLsLLsL | 4|2 | Mixolydian | Lssssss | 6|0 | Bright major | 0.0316 |
3 | 10/9 5/4 25/18 3/2 5/3 50/27 2/1 | MLMsMMs | LLLsLLs | 6|0 | Lydian | sLsssss | 5|1 | Dark major | 0.0529 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLLLsL | Meantone[7] | 81/80 |
M = s | sssLsss | Porcupine[7] | 250/243 |
L = s | LsLsLsL | Dicot[7] | 25/24 |
L - M = M - s | LsLALsL | Tetracot[7] MODMOS | 20000/19683 |
s = 0 | ssLss | Bug[5] | 27/25 |
(2/1, 3/2, 6/5: 126/125)[7] (Starling)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
1L 4M 2s | (~9/8, ~10/9, 27/25~15/14) | (202.4685c, 187.562c, 123.5395c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[7] | UDP | Diatonic mode | Porcupine[7] | UDP | Porcupine mode | Mode height |
---|---|---|---|---|---|---|---|---|---|
-3 | ~ 15/14 6/5 4/3 10/7 8/5 9/5 2/1 | sMMsMLM | sLLsLLL | 0|6 | Lochrian | sssssLs | 1|5 | Dark diminished | -0.0616 |
-2 | ~ 15/14 6/5 27/20 3/2 45/28 9/5 2/1 | sMLMsMM | sLLLsLL | 1|5 | Phrygian | ssLssss | 4|2 | Bright minor | -0.0314 |
-1 | ~ 10/9 6/5 4/3 40/27 8/5 16/9 2/1 | MsMMsML | LsLLsLL | 2|4 | Aeolian | ssssssL | 0|6 | Magical seventh | -0.0302 |
0 | ~ 10/9 6/5 4/3 3/2 5/3 9/5 2/1 | MsMLMsM | LsLLLsL | 3|3 | Dorian | sssLsss | 3|3 | Dark minor | 0 |
1 | ~ 9/8 5/4 27/20 3/2 5/3 9/5 2/1 | LMsMMsM | LLsLLsL | 4|2 | Mixolydian | Lssssss | 6|0 | Bright major | 0.0302 |
2 | ~ 10/9 56/45 4/3 40/27 5/3 28/15 2/1 | MMsMLMs | LLsLLLs | 5|1 | Ionian | ssssLss | 2|4 | Bright diminished | 0.0314 |
3 | ~ 10/9 5/4 7/5 3/2 5/3 28/15 2/1 | MLMsMMs | LLLsLLs | 6|0 | Lydian | sLsssss | 5|1 | Dark major | 0.0616 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLLLsL | Meantone[7] | 81/80, 126/125 |
M = s | sssLsss | Opossum[7] | 28/27, 126/125 |
L = s | LsLsLsL | Flat[7] | 21/20, 25/24 |
ET | 8d | 12 | 15 | 16 | 19 | 27 | 31 | 46 | 50 | 58 | 77 |
---|---|---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (2, 3, 1) | (3, 3, 2) | (5, 4, 3) | (5, 5, 3) | (8, 7, 5) | (8, 8, 5) | (10, 9, 6) | (13, 12, 8) |
(2/1, 3/2, 6/5: 100/99)[7] (No-7 Ptolemismic)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
1L 4m 2s | (9/8~25/22, 10/9~11/10, 27/25~12/11) | (209.7786c, 174.0549c, 146.6352c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[7] | UDP | Diatonic mode | Porcupine[7] | UDP | Porcupine mode | Mode height |
---|---|---|---|---|---|---|---|---|---|
-3 | ~ 12/11 6/5 4/3 16/11 8/5 9/5 2/1 | smmsmLm | sLLsLLL | 0|6 | Lochrian | sssssLs | 1|5 | Dark diminished | -0.0427 |
-2 | ~ 10/9 6/5 4/3 22/15 8/5 16/9 2/1 | msmmsmL | LsLLsLL | 2|4 | Aeolian | ssssssL | 0|6 | Magical seventh | -0.0374 |
-1 | ~ 12/11 6/5 15/11 3/2 18/11 9/5 2/1 | smLmsmm | sLLLsLL | 1|5 | Phrygian | ssLssss | 4|2 | Bright minor | -0.0053 |
0 | ~ 10/9 6/5 4/3 3/2 5/3 9/5 2/1 | msmLmsm | LsLLLsL | 3|3 | Dorian | sssLsss | 3|3 | Dark minor | 0 |
1 | ~ 10/9 11/9 4/3 22/15 5/3 11/6 2/1 | mmsmLms | LLsLLLs | 5|1 | Ionian | ssssLss | 2|4 | Bright diminished | 0.0053 |
2 | ~ 9/8 5/4 15/11 3/2 5/3 9/5 2/1 | Lmsmmsm | LLsLLsL | 4|2 | Mixolydian | Lssssss | 6|0 | Bright major | 0.0374 |
3 | ~ 10/9 5/4 11/8 3/2 5/3 11/6 2/1 | mLmsmms | LLLsLLs | 6|0 | Lydian | sLsssss | 5|1 | Dark major | 0.0427 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sssLsss | Porkypine[7] | 55/54, 100/99 |
L = m | LsLLLsL | Meanenneadecal[7] or Flattone[7] | 45/44, 81/80 |
L = s | LsLsLsL | Flat[7] | 25/24, 33/32 |
L - m = m - s | LsLALsL | Tetracot[7] MODMOS | 100/99, 243/242 |
ET | 8 | 12 | 15 | 19 | 22 | 26 | 27e | 29 | 34 | 37 | 41 |
---|---|---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (3, 3, 2) | (4, 3, 3) | (4, 4, 3) | (5, 4, 3) | (5, 4, 4) | (6, 5, 4) | (7, 5, 5) | (7, 6, 5) |
(2/1, 3/2, 6/5: 56/55, 100/99)[7] (Thrasher)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
1L 4M 2s | (9/8~25/22, 10/9~11/10, 27/25~15/14~12/11) | (215.4452c, 179.0856c, 132.5782c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[7] | UDP | Porcupine[7] | UDP | Porcupine mode | Diatonic mode | Mode height |
---|---|---|---|---|---|---|---|---|---|
-3 | ~ 12/11 6/5 4/3 10/7 8/5 9/5 2/1 | sMMsMLM | sLLsLLL | 0|6 | sssssLs | 1|5 | Dark diminished | Lochrian | -0.0591 |
-2 | ~ 10/9 6/5 4/3 22/15 8/5 16/9 2/1 | MsMMsML | LsLLsLL | 2|4 | ssssssL | 0|6 | Magical seventh | Aeolian | -0.0433 |
-1 | ~ 12/11 6/5 15/11 3/2 18/11 9/5 2/1 | sMLMsMM | sLLLsLL | 1|5 | ssLssss | 4|2 | Bright minor | Phrygian | -0.0158 |
0 | ~ 10/9 6/5 4/3 3/2 5/3 9/5 2/1 | MsMLMsM | LsLLLsL | 3|3 | sssLsss | 3|3 | Dark minor | Dorian | 0 |
1 | ~ 10/9 11/9 4/3 22/15 5/3 11/6 2/1 | MMsMLMs | LLsLLLs | 5|1 | ssssLss | 2|4 | Bright diminished | Ionian | 0.0158 |
2 | ~ 9/8 5/4 15/11 3/2 5/3 9/5 2/1 | LMsMMsM | LLsLLsL | 4|2 | Lssssss | 6|0 | Bright major | Mixolydian | 0.0433 |
3 | ~ 10/9 5/4 7/5 3/2 5/3 11/6 2/1 | MLMsMMs | LLLsLLs | 6|0 | sLsssss | 5|1 | Dark major | Lydian | 0.0591 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
L = M | LsLLLsL | Meanenneadecal[7] | 45/44, 56/55, 81/80 |
M = s | sssLsss | Opossum[7] | 28/27, 55/54, 77/75 |
L = s | LsLsLsL | Flat[7] | 21/20, 25/24, 33/32 |
ET | 8d | 12 | 15 | 19 | 27e | 34 |
---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (3, 3, 2) | (5, 4, 3) | (6, 5, 4) |
(2/1, 3/2, 6/5: 100/99, 144/143)[7] (No-7 Ptolemismic)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
1L 4m 2s | (9/8~25/22, 10/9~11/10, 27/25~12/11~13/12) | (209.5416c, 175.8918c, 142.7754c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[7] | UDP | Diatonic mode | Porcupine[7] | UDP | Porcupine mode | Mode height |
---|---|---|---|---|---|---|---|---|---|
-3 | ~ 12/11 6/5 4/3 13/9 8/5 9/5 2/1 | smmsmLm | sLLsLLL | 0|6 | Lochrian | sssssLs | 1|5 | Dark diminished | |
-2 | ~ 10/9 6/5 4/3 22/15 8/5 16/9 2/1 | msmmsmL | LsLLsLL | 2|4 | Aeolian | ssssssL | 0|6 | Magical seventh | |
-1 | ~ 12/11 6/5 15/11 3/2 13/8 9/5 2/1 | smLmsmm | sLLLsLL | 1|5 | Phrygian | ssLssss | 4|2 | Bright minor | |
0 | ~ 10/9 6/5 4/3 3/2 5/3 9/5 2/1 | msmLmsm | LsLLLsL | 3|3 | Dorian | sssLsss | 3|3 | Dark minor | |
1 | ~ 10/9 11/9 4/3 22/15 5/3 11/6 2/1 | mmsmLms | LLsLLLs | 5|1 | Ionian | ssssLss | 2|4 | Bright diminished | |
2 | ~ 9/8 5/4 15/11 3/2 5/3 9/5 2/1 | Lmsmmsm | LLsLLsL | 4|2 | Mixolydian | Lssssss | 6|0 | Bright major | |
3 | ~ 10/9 5/4 11/8 3/2 5/3 11/6 2/1 | mLmsmms | LLLsLLs | 6|0 | Lydian | sLsssss | 5|1 | Dark major |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sssLsss | Porcupine[7] | 40/39, 55/54, 66/65 |
L = m | LsLLLsL | Flattone[7] | 45/44, 65/64, 81/80 |
L - m = m - s | LsLALsL | Tetracot[7] MODMOS | 100/99, 144/143, 243/242 |
ET | 8 | 12 | 15 | 19 | 22f | 26 | 27e | 34 | 41 |
---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 1) | (2, 2, 1) | (3, 2, 2) | (3, 3, 2) | (4, 3, 3) | (4, 4, 3) | (5, 4, 3) | (6, 5, 4) | (7, 6, 5) |
(2/1, 3/2, 6/5)[12]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
7L 1m 4s | (27/25, 25/24, 250/243) | (133.2376c, 70.6724c, 49.1661c) |
Mode number | Mode in JI | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | 250/243 10/9 2500/2187 100/81 4/3 1000/729 40/27 125/81 5/3 1250/729 50/27 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | -0.0622 |
-5 | 250/243 10/9 125/108 5/4 625/486 25/18 3/2 125/81 5/3 1250/729 50/27 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | -0.0587 |
-4 | 250/243 10/9 6/5 100/81 4/3 1000/729 40/27 8/5 400/243 16/9 50/27 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | -0.0338 |
-3 | 250/243 10/9 6/5 100/81 4/3 25/18 3/2 125/81 5/3 9/5 50/27 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | -0.0302 |
-2 | 25/24 9/8 125/108 5/4 27/20 25/18 3/2 125/81 5/3 9/5 50/27 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | -0.0267 |
-1 | 27/25 10/9 6/5 100/81 4/3 36/25 40/27 8/5 5/3 9/5 50/27 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | -0.0018 |
1 | 27/25 10/9 6/5 5/4 27/20 25/18 3/2 81/50 5/3 9/5 50/27 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | 0.0018 |
2 | 27/25 10/9 6/5 162/125 4/3 36/25 40/27 8/5 216/125 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | 0.0267 |
3 | 27/25 10/9 6/5 162/125 4/3 36/25 3/2 81/50 5/3 9/5 243/125 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | 0.0302 |
4 | 27/25 9/8 243/200 5/4 27/20 729/500 3/2 81/50 5/3 9/5 243/125 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | 0.0338 |
5 | 27/25 729/625 6/5 162/125 4/3 36/25 972/625 8/5 216/125 9/5 243/125 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | 0.0587 |
6 | 27/25 729/625 6/5 162/125 27/20 729/500 3/2 81/50 2187/1250 9/5 243/125 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 | 0.0622 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Meantone[12] | 81/80 |
L = m | sLLsLLLsLLsL | Diminished[12] MODMOS | 648/625 |
L = s | LLLLLsLLLLLL | Ripple[12] | 6561/6250 |
L - m = m - s | dLLdLsLdLLdL | Augmented[12] MODMOS | 128/125 |
s = 0 | LLLsLLLL | Porcupine[8] | 250/243 |
(2/1, 3/2, 6/5: 126/125)[12] (Starling)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~15/14, 25/24~21/20, 250/243~28/27) | (123.5395c, 78.929c, 64.0225c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 28/27 10/9 280/243 56/45 4/3 112/81 40/27 14/9 5/3 140/81 28/15 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | -0.0440 |
-5 | ~ 28/27 10/9 7/6 5/4 35/27 7/5 3/2 14/9 5/3 140/81 28/15 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | -0.0417 |
-4 | ~ 28/27 10/9 6/5 56/45 4/3 112/81 40/27 8/5 224/135 16/9 28/15 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | -0.0237 |
-3 | ~ 28/27 10/9 6/5 56/45 4/3 7/5 3/2 14/9 5/3 9/5 28/15 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | -0.0214 |
-2 | ~ 21/20 9/8 7/6 5/4 27/20 7/5 3/2 14/9 5/3 9/5 28/15 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | -0.0191 |
-1 | ~ 15/14 10/9 6/5 56/45 4/3 10/7 40/27 8/5 5/3 9/5 28/15 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | -0.0011 |
1 | ~ 15/14 10/9 6/5 5/4 27/20 7/5 3/2 45/28 5/3 9/5 28/15 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | 0.0011 |
2 | ~ 15/14 10/9 6/5 9/7 4/3 10/7 40/27 8/5 12/7 16/9 40/21 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | 0.0191 |
3 | ~ 15/14 10/9 6/5 9/7 4/3 10/7 3/2 45/28 5/3 9/5 27/14 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | 0.0214 |
4 | ~ 15/14 9/8 135/112 5/4 27/20 81/56 3/2 45/28 5/3 9/5 27/14 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | 0.0237 |
5 | ~ 15/14 81/70 6/5 9/7 4/3 10/7 54/35 8/5 12/7 9/5 27/14 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | 0.0417 |
6 | ~ 15/14 81/70 6/5 9/7 27/20 81/56 3/2 45/28 243/140 9/5 27/14 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 | 0.0440 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Meantone[12] | 81/80, 126/125 |
L = m | sLLsLLLsLLsL | Diminished[12] MODMOS | 36/35, 50/49 |
L - m = m - s | dLLdLsLdLLdL | Augene[12] MODMOS | 64/63, 126/125 |
s = 0 | LLLsLLLL | Opossum[8] | 28/27, 126/125 |
ET | 15 | 16 | 19 | 27 | 31 | 46 | 50 | 58 | 77 |
---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (1, 1, 2) | (2, 1, 1) | (3, 2, 1) | (3, 2, 2) | (5, 3, 2) | (5, 3, 3) | (6, 4, 3) | (8, 5, 4) |
(2/1, 3/2, 6/5: 126/125, 196/195)[12]
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~15/14~14/13, 25/24~21/20, 250/243~28/27~65/63) | (123.5395c, 78.929c, 64.0225c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 28/27 10/9 52/45 26/21 4/3 104/75 40/27 14/9 5/3 26/15 13/7 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | -0.0465 |
-5 | ~ 28/27 10/9 7/6 5/4 13/10 7/5 3/2 14/9 5/3 26/15 13/7 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | -0.0433 |
-4 | ~ 28/27 10/9 6/5 26/21 4/3 104/75 40/27 8/5 104/63 16/9 13/7 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | -0.0256 |
-3 | ~ 28/27 10/9 6/5 26/21 4/3 7/5 3/2 14/9 5/3 9/5 13/7 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | -0.0225 |
-2 | ~ 21/20 9/8 7/6 5/4 27/20 7/5 3/2 14/9 5/3 9/5 13/7 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | -0.0193 |
-1 | ~ 14/13 10/9 6/5 26/21 4/3 10/7 40/27 8/5 5/3 9/5 13/7 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | -0.0016 |
1 | ~ 14/13 10/9 6/5 5/4 27/20 7/5 3/2 21/13 5/3 9/5 13/7 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | 0.0016 |
2 | ~ 14/13 10/9 6/5 9/7 4/3 10/7 40/27 8/5 12/7 16/9 40/21 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | 0.0193 |
3 | ~ 14/13 10/9 6/5 9/7 4/3 10/7 3/2 21/13 5/3 9/5 27/14 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | 0.0225 |
4 | ~ 14/13 9/8 63/52 5/4 27/20 75/52 3/2 21/13 5/3 9/5 27/14 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | 0.0256 |
5 | ~ 14/13 15/13 6/5 9/7 4/3 10/7 20/13 8/5 12/7 9/5 27/14 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | 0.0433 |
6 | ~ 14/13 15/13 6/5 9/7 27/20 75/52 3/2 21/13 45/26 9/5 27/14 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 | 0.0465 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Meanpop[12] | 81/80, 105/104, 126/125 |
ET | 15f | 19 | 27 | 31 | 46 | 50 | 58 | 77 |
---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 2, 1) | (3, 2, 2) | (5, 3, 2) | (5, 3, 3) | (6, 4, 3) | (8, 5, 4) |
(2/1, 3/2, 6/5: 100/99)[12] (No-7 Ptolemismic)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~12/11, 25/24~33/32, 250/243~55/54~121/120) | (146.6352c, 63.1434c, 27.4197c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 55/54 10/9 121/108 11/9 4/3 110/81 22/15 55/36 5/3 121/72 11/6 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | -0.0899 |
-5 | ~ 55/54 10/9 55/48 5/4 121/96 11/8 3/2 55/36 5/3 121/72 11/6 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | -0.0819 |
-4 | ~ 55/54 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | -0.0510 |
-3 | ~ 55/54 10/9 6/5 11/9 4/3 11/8 3/2 55/36 5/3 9/5 11/6 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | -0.0430 |
-2 | ~ 25/24 9/8 55/48 5/4 15/11 11/8 3/2 55/36 5/3 9/5 11/6 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | -0.0349 |
-1 | ~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | -0.0040 |
1 | ~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 18/11 5/3 9/5 11/6 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | 0.0040 |
2 | ~ 12/11 10/9 6/5 72/55 4/3 16/11 22/15 8/5 96/55 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | 0.0349 |
3 | ~ 12/11 10/9 6/5 72/55 4/3 16/11 3/2 18/11 5/3 9/5 108/55 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | 0.0430 |
4 | ~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 108/55 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | 0.0510 |
5 | ~ 12/11 144/121 6/5 72/55 4/3 16/11 192/121 8/5 96/55 9/5 108/55 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | 0.0819 |
6 | ~ 12/11 144/121 6/5 72/55 15/11 81/55 3/2 18/11 216/121 9/5 108/55 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 | 0.0899 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Meanenneadecal[12] or Flattone[12] | 45/44, 81/80 |
L = m | sLLsLLLsLLsL | Diminished[12] MODMOS | 100/99, 128/121 |
L - m = m - s | dLLdLsLdLLdL | Augene[12] MODMOS | 100/99, 128/125 |
s = 0 | LLLsLLLL | Porkypine[8] | 55/54, 100/99 |
ET | 15 | 19 | 22 | 26 | 27e | 29 | 34 | 37 | 41 |
---|---|---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 1, 0) | (3, 1, 1) | (3, 2, 1) | (4, 1, 0) | (4, 2, 1) | (5, 2, 0) | (5, 2, 1) |
(2/1, 3/2, 6/5: 100/99, 144/143)[12] (No-7 Ptolemismic)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~12/11~13/12, 25/24~33/32~27/26, 250/243~55/54~121/120~40/39) | (142.77537c, 66.76626c, 33.11646c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 40/39 10/9 44/39 11/9 4/3 110/81 22/15 20/13 5/3 22/13 11/6 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | |
-5 | ~ 40/39 10/9 15/13 5/4 33/26 11/8 3/2 20/13 5/3 22/13 11/6 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | |
-4 | ~ 40/39 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | |
-3 | ~ 40/39 10/9 6/5 11/9 4/3 11/8 3/2 20/13 5/3 9/5 11/6 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | |
-2 | ~ 25/24 9/8 15/13 5/4 15/11 11/8 3/2 20/13 5/3 9/5 11/6 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | |
-1 | ~ 12/11 10/9 6/5 11/9 4/3 13/9 22/15 8/5 5/3 9/5 11/6 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | |
1 | ~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 13/8 5/3 9/5 11/6 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | |
2 | ~ 12/11 10/9 6/5 13/10 4/3 13/9 22/15 8/5 26/15 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | |
3 | ~ 12/11 10/9 6/5 13/10 4/3 13/9 3/2 13/8 5/3 9/5 39/20 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | |
4 | ~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 13/8 5/3 9/5 39/20 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | |
5 | ~ 12/11 13/11 6/5 13/10 4/3 13/9 52/33 8/5 26/15 9/5 39/20 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | |
6 | ~ 12/11 13/11 6/5 13/10 15/11 81/55 3/2 13/8 39/22 9/5 39/20 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Flattone[12] | 45/44, 65/64, 81/80 |
s = 0 | LLLsLLLL | Porcupine[8] | 40/39, 55/54, 66/65 |
ET | 15 | 19 | 22f | 26 | 27e | 34 | 41 |
---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 1, 0) | (3, 1, 1) | (3, 2, 1) | (4, 2, 1) | (5, 2, 1) |
(2/1, 3/2, 6/5: 100/99, 385/384)[12] (Supermagic)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~12/11~35/32, 25/24~33/32, 250/243~55/54~64/63~121/120) | (149.51592c, 58.8799c, 23.6254c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 55/54 10/9 121/108 11/9 4/3 110/81 22/15 32/21 5/3 121/72 11/6 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | |
-5 | ~ 55/54 10/9 8/7 5/4 121/96 11/8 3/2 32/21 5/3 121/72 11/6 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | |
-4 | ~ 55/54 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | |
-3 | ~ 55/54 10/9 6/5 11/9 4/3 11/8 3/2 32/21 5/3 9/5 11/6 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | |
-2 | ~ 25/24 9/8 8/7 5/4 15/11 11/8 3/2 32/21 5/3 9/5 11/6 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | |
-1 | ~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | |
1 | ~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 18/11 5/3 9/5 11/6 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | |
2 | ~ 12/11 10/9 6/5 21/16 4/3 16/11 22/15 8/5 7/4 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | |
3 | ~ 12/11 10/9 6/5 21/16 4/3 16/11 3/2 18/11 5/3 9/5 63/32 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | |
4 | ~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 63/ 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | |
5 | ~ 12/11 144/121 6/5 21/16 4/3 16/11 192/121 8/5 7/4 9/5 63/32 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | |
6 | ~ 12/11 144/121 6/5 21/16 15/11 81/55 3/2 18/11 216/121 9/5 63/32 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Flattone[12] | 45/44, 81/80, 385/384 |
s = 0 | LLLsLLLL | Porcupine[8] | 55/54, 64/63, 100/99 |
ET | 15 | 19 | 22 | 26 | 34 | 41 | 104 |
---|---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 1, 0) | (3, 1, 1) | (4, 2, 1) | (5, 2, 1) | (13, 5, 2) |
(2/1, 3/2, 6/5: 100/99, 105/104, 144/143)[12] (Supermagic)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~12/11~13/12~35/32, 25/24~27/26~33/32, 250/243~40/39~55/54~64/63~121/120) | (145.47082c, 58.39270c, 30.85183c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 40/39 10/9 44/39 11/9 4/3 110/81 22/15 20/13 5/3 22/13 11/6 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | |
-5 | ~ 40/39 10/9 8/7 5/4 33/26 11/8 3/2 20/13 5/3 22/13 11/6 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | |
-4 | ~ 40/39 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | |
-3 | ~ 40/39 10/9 6/5 11/9 4/3 11/8 3/2 20/13 5/3 9/5 11/6 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | |
-2 | ~ 25/24 9/8 8/7 5/4 15/11 11/8 3/2 20/13 5/3 9/5 11/6 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | |
-1 | ~ 12/11 10/9 6/5 11/9 4/3 13/9 22/15 8/5 5/3 9/5 11/6 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | |
1 | ~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 13/8 5/3 9/5 11/6 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | |
2 | ~ 12/11 10/9 6/5 13/10 4/3 13/9 22/15 8/5 7/4 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | |
3 | ~ 12/11 10/9 6/5 13/10 4/3 13/9 3/2 13/8 5/3 9/5 39/20 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | |
4 | ~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 13/8 5/3 9/5 39/20 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | |
5 | ~ 12/11 13/11 6/5 13/10 4/3 13/9 52/33 8/5 7/4 9/5 39/20 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | |
6 | ~ 12/11 13/11 6/5 13/10 15/11 81/55 3/2 13/8 39/22 9/5 39/20 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Flattone[12] | 45/44, 65/64, 78/77, 81/80 |
s = 0 | LLLsLLLL | Porcupine[8] | 40/39, 55/54, 64/63, 66/65 |
ET | 15 | 19 | 22f | 26 | 34 | 41 |
---|---|---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 1, 0) | (3, 1, 1) | (4, 2, 1) | (5, 2, 1) |
(2/1, 3/2, 6/5: 56/55, 100/99)[12] (Thrasher)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~15/14~12/11, 25/24~21/20~33/32, 250/243~28/27~55/54) | (132.5782c, 82.867c, 46.5074c) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 28/27 10/9 121/108 11/9 4/3 110/81 22/15 14/9 5/3 121/72 11/6 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | -0.0671 |
-5 | ~ 28/27 10/9 7/6 5/4 121/96 11/8 3/2 14/9 5/3 121/72 11/6 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | -0.0526 |
-4 | ~ 28/27 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | -0.0445 |
-3 | ~ 28/27 10/9 6/5 11/9 4/3 11/8 3/2 14/9 5/3 9/5 11/6 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | -0.0299 |
-2 | ~ 21/20 9/8 7/6 5/4 15/11 11/8 3/2 14/9 5/3 9/5 11/6 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | -0.0154 |
-1 | ~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | -0.0073 |
1 | ~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 81/50 5/3 9/5 11/6 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | 0.0073 |
2 | ~ 12/11 10/9 6/5 9/7 4/3 16/11 22/15 8/5 12/7 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | 0.0154 |
3 | ~ 12/11 10/9 6/5 9/7 4/3 16/11 3/2 18/11 5/3 9/5 27/14 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | 0.0299 |
4 | ~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 27/14 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | 0.0445 |
5 | ~ 12/11 144/121 6/5 9/7 4/3 16/11 192/121 8/5 12/7 9/5 27/14 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | 0.0526 |
6 | ~ 12/11 144/121 6/5 9/7 15/11 81/55 3/2 81/50 216/121 9/5 27/14 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 | 0.0671 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Meanenneadecal[12] | 45/44, 56/55, 81/80 |
L = m | sLLsLLLsLLsL | Diminished[12] MODMOS | 36/35, 50/49, 56/55 |
s = 0 | LLLsLLLL | Opossum[8] | 28/27, 55/54, 77/75 |
ET | 15 | 19 | 27e | 34 |
---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 2, 1) | (4, 2, 1) |
(2/1, 3/2, 6/5: 56/55, 91/90, 100/99)[12] (Thrasher)
Step signature | Steps in JI | Step sizes in cents (TE) |
---|---|---|
7L 1m 4s | (27/25~15/14~12/11~13/12, 25/24~21/20~33/32~27/26, 250/243~28/27~55/54~40/39) |
Mode number | Mode as simplest JI pre-image | Step pattern | Meantone[12] | UDP | Mode height |
---|---|---|---|---|---|
-6 | ~ 28/27 10/9 44/39 11/9 4/3 110/81 22/15 14/9 5/3 22/13 11/6 2/1 | sLsLLsLmLsLL | sLsLLsLsLsLL | 1|10 | |
-5 | ~ 28/27 10/9 7/6 5/4 33/26 11/8 3/2 14/9 5/3 121/72 11/6 2/1 | sLmLsLLsLsLL | sLsLsLLsLsLL | 0|11 | |
-4 | ~ 28/27 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1 | sLLsLsLLsLmL | sLLsLsLLsLsL | 4|7 | |
-3 | ~ 28/27 10/9 6/5 11/9 4/3 11/8 3/2 14/9 5/3 9/5 11/6 2/1 | sLLsLmLsLLsL | sLLsLsLsLLsL | 3|8 | |
-2 | ~ 21/20 9/8 7/6 5/4 15/11 11/8 3/2 14/9 5/3 9/5 11/6 2/1 | mLsLLsLsLLsL | sLsLLsLsLLsL | 2|9 | |
-1 | ~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1 | LsLsLLsLmLsL | LsLsLLsLsLsL | 6|5 | |
1 | ~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 81/50 5/3 9/5 11/6 2/1 | LsLmLsLLsLsL | LsLsLsLLsLsL | 5|6 | |
2 | ~ 12/11 10/9 6/5 9/7 4/3 16/11 22/15 8/5 12/7 16/9 48/25 2/1 | LsLLsLsLLsLm | LsLLsLsLLsLs | 9|2 | |
3 | ~ 12/11 10/9 6/5 9/7 4/3 16/11 3/2 18/11 5/3 9/5 27/14 2/1 | LsLLsLmLsLLs | LsLLsLsLsLLs | 8|3 | |
4 | ~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 27/14 2/1 | LmLsLLsLsLLs | LsLsLLsLsLLs | 7|4 | |
5 | ~ 12/11 13/11 6/5 9/7 4/3 16/11 192/121 8/5 12/7 9/5 27/14 2/1 | LLsLsLLsLmLs | LLsLsLLsLsLs | 11|0 | |
6 | ~ 12/11 13/11 6/5 9/7 15/11 81/55 3/2 81/50 39/22 9/5 27/14 2/1 | LLsLmLsLLsLs | LLsLsLsLLsLs | 10|1 |
Equivalence | Step pattern | Scale | Comma list |
---|---|---|---|
m = s | sLLsLsLsLLsL | Vincenzo[12] | 45/44, 56/55, 65/64, 81/80 |
s = 0 | LLLsLLLL | Opossum[8] | 28/27, 40/39, 55/54, 66/65 |
ET | 15 | 19 | 27e | 34 |
---|---|---|---|---|
Step sizes in ET | (2, 1, 0) | (2, 1, 1) | (3, 2, 1) | (4, 2, 1) |
(2/1, 3/2, 6/5: 4375/4374)[12] (Ragismic)
7L 1m 4s = (~27/25, ~25/24, 250/243~36/35) = (133.4115c, 70.5569c, 48.8911c) TE
~ 27/25 10/9 6/5 35/27 4/3 36/25 3/2 81/50 5/3 9/5 35/18 2/1 as LsLLsLmLsLLs
m = s -> LsLLsLsLsLLs Falttone[12]; L = m -> LsLLsLLLsLLs MODMOS; L = s -> LLLLLLsLLLLL; s = 0 -> LLLLsLLL Hystrix[8]
19-ET: (2, 1, 1); 53-ET: (6, 3, 2); 72-ET: (8, 4, 3); 99-ET: (11, 6, 4); 118-ET: (13, 7, 5); 152-ET: (17, 9, 6); 171-ET: (19, 10, 7); 224-ET: (25, 13, 9); 270-ET: (30, 16, 11); 441-ET: (49, 26, 18); 494-ET: (55, 29, 20); 612-ET: (68, 36, 25)
(2/1, 3/2, 6/5: 100/99, 144/143)[20] (No-7 Ptolemismic)
7L 12m 1s = (~189/176, 250/243~55/54~121/120~40/39, 81/80~45/44~65/64) =
(2/1, 3/2, 6/5: 100/99, 385/384)[20] (Supermagic)
7L 12m 1s = (~189/176, 250/243~55/54~121/120~64/63, 81/80~45/44) = (125.8905c, 35.2545c, 23.6254c) TE
40/39 12/11 10/9 32/27 6/5 11/9 13/10 4/3 11/8 22/15 3/2 20/13 13/8 5/3 16/9 9/5 11/6 39/20 2/1
(2/1, 3/2, 6/5: 4375/4374)[20] (Ragismic)
7L 12m 1s = (~21/20, 250/243~36/35, ~81/80) = (84.5204c, 48.8911c, 21.6658c) TE
~ 21/20 27/25 10/9 7/6 6/5 63/50 35/27 4/3 7/5 36/25 35/24 3/2 63/40 81/50 5/3 7/4 9/5 189/100 35/18 2/1 as LmmLmLmmLmsmLmmLmLmm
m = s -> LssLsLssLsssLssLsLss MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL; L = s -> LssLsLssLsLsLssLsLss MODMOS;
L - m = m - s -> Unidec[20] MODMOS
s = 0 -> LmmLmLmmLmmLmmLmLmm Falttone[19]; m = 0 -> LLLLsLLL Hystrix[8]
19-ET: (1, 1, 0); 53-ET: (4, 2, 1); 72-ET: (5, 3, 1); 99-ET: (7, 4, 2); 118-ET: (8, 5, 2); 152-ET: (11, 6, 3); 171-ET: (12, 7, 3); 224-ET: (16, 9, 4); 270-ET: (19, 11, 5); 441-ET: (31, 18, 8); 494-ET: (35, 20, 9); 612-ET: (43, 25, 11)
(2/1, 3/2, 6/5: 3025/3024, 4375/4374)[20] (Thor)
7L 12m 1s = (~21/20, 250/243~36/35, 81/80~245/242) = (84.5509c, 48.8802c, 21.6019c) TE
~ 21/20 27/25 10/9 7/6 6/5 63/50 35/27 4/3 7/5 36/25 35/24 3/2 63/40 81/50 5/3 7/4 9/5 121/64 35/18 2/1 as LmmLmLmmLmsmLmmLmLmm
m = s -> LssLsLssLsssLssLsLss MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL; L = s -> LssLsLssLsLsLssLsLss MODMOS;
s = 0 -> LmmLmLmmLmmLmmLmLmm; m = 0 -> LLLLsLLL
19-ET: (1, 1, 0); 34d: (3, 1, 1); 46-ET: (3, 2, 1); 72-ET: (5, 3, 1); 80-ET: (6, 3, 2); 118-ET: (8, 5, 2); 152-ET: (11, 6, 3); 171-ET: (12, 7, 3); 224-ET: (16, 9, 4); 270-ET: (19, 11, 5); 494-ET: (35, 20, 9); 612-ET: (43, 25, 11)
(2/1, 3/2, 6/5: 3025/3024, 4375/4374)[39] (Thor)
7L 12m 20s = (~28/27, ~64/63, 81/80~245/242) = (62.949c, 27.2783c, 21.6019c) TE
~ 81/80 36/35 126/121 27/25 35/32 10/9 9/8 8/7 81/70 6/5 147/121 216/175 5/4 35/27 21/16 4/3 27/20 48/35 25/18 36/25 35/24 40/27 3/2 32/21 54/35 8/5 175/108 242/147 5/3 140/81 7/4 16/9 9/5 64/35 121/63 35/18 160/81 2/1 as smsLsmsmsLsmsLsmsmsLsmsmsLsmsLsmsmsLsms
m = s -> sssLsssssLsssLsssssLsssssLsssLsssssLsss Hemiamity[39] MODMOS; L = m -> sLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLs; s = 0 -> sLssLsLssLssLsLssLs
46-ET: (2, 1, 1); 72-ET: (4, 2, 1); 80-ET: (4, 1, 2); 118-ET: (6, 3, 2); 152-ET: (8, 3, 3); 171-ET: (9, 4, 3); 224-ET: (12, 5, 4); 270-ET: (14, 6, 5); 494-ET: (26, 11, 9); 612-ET: (32, 14, 11)
2.3.5; Hemifamity
((2/1, 3/2)[5], 10/9)
((2/1, 3/2)[5], 10/9)[10]
5L 2M 3s = (10/9, 16/15, 81/80)
81/80 9/8 6/5 4/3 27/20 3/2 8/5 16/9 9/5 2/1 as sLMLsLMLsL
L = M -> sLLLsLLLsL Dicot[10] MODMOS; M = s -> sLsLsLsLsL Blackwood[10]; L = s -> ssLsssLsss Supersharp[10] MODMOS;
L - M = M - s -> dLsLdLsLdL Srutal[10] MODMOS
s = 0 -> LsLLsLL Meantone[7]; M = 0 -> sLLsLLsL Father[8]
((2/1, 3/2)[5], 10/9: 5120/5103)[17] (Hemifamity)
5L 2m 10s = (~35/32, 256/243~21/20, 81/80~64/63) = (153.2376c, 85.8342c, 24.4931c) TE
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss;
L - m = m - s -> Garibaldi[17]; s = 0 -> LsLLLsL Dominant[7]; m = 0 -> sLssLssLssLssLs
((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[17] (Akea)
5L 2m 10s = (35/32~12/11, 256/243~21/20, 81/80~64/63~55/54) = (156.6236c, 85.7981c, 26.2356c) TE
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss; s = 0 -> LsLLLsL Arnold[7]; m = 0 -> sLssLssLssLssLs
((2/1, 3/2)[5], 10/9: 5120/5103)[24] (Hemifamity)
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63) = (132.1305c, 61.3411c, 24.4931c) TE
~ 64/63 35/32 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 35/24 40/27 3/2 32/21 105/64 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Dominant[7]
((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[24] (Akea)
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63~55/54) = (127.002c, 59.5625c, 26.2356c) TE
~ 64/63 12/11 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 16/11 40/27 3/2 32/21 18/11 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Arnold[7]
((2/1, 3/2)[5], 10/9: 5120/5103)[31] (Hemifamity)
5L 2m 24s = (~1225/1152, ~49/48, 81/80~64/63) = (107.6374c, 36.848c, 24.4931c) TE
~ 64/63 36/35 35/32 10/9 9/8 8/7 7/6 32/27 6/5 128/105 35/27 21/16 4/3 27/20 48/35 35/24 40/27 3/2 32/21 54/35 105/64 5/3 27/16 12/7 7/4 16/9 9/5 64/35 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss; L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
s = 0 -> LsLLLsL Dominant[7]; m = 0 -> ssLssssssLssssLssssLssssssLss Immunity[29] MODMOS
((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[31] (Akea)
5L 2m 24s = (~35/33, 49/48~56/55, 81/80~64/63~55/54) = (100.7664c, 33.3269c, 26.2356c) TE
~ 64/63 36/35 12/11 10/9 9/8 8/7 7/6 32/27 6/5 11/9 35/27 21/16 4/3 27/20 11/8 16/11 40/27 3/2 32/21 54/35 18/11 5/3 27/16 12/7 7/4 16/9 9/5 11/6 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss, L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
s = 0 -> LsLLLsL Arnold[7]; m = 0 -> ssLssssssLssssLssssLssssssLss
((2/1, 3/2)[12], 81/80) or ((2/1, 3/2)[12], 64/63)
((2/1, 3/2)[12], 64/63: 5120/5013)[24] (Hemifamity)
5L 7M 12s = (~135/128, ~28/27, 81/80~64/63) = (95.2825c, 61.3411c, 24.4931c) TE
~ 64/63 15/14 243/224 9/8 8/7 32/27 6/5 81/64 9/7 4/3 27/20 10/7 81/56 3/2 32/21 45/28 80/49 27/16 12/7 16/9 9/5 243/128 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
((2/1, 3/2)[12], 64/63: 441/440, 896/891)[24] (Pele)
5L 7M 12s = (135/128~35/33, 28/27~33/32, 81/80~64/63~99/98) = (97.5911c, 58.2557c, 25.3165c) TE
~ 64/63 15/14 12/11 9/8 8/7 32/27 6/5 14/11 9/7 4/3 27/20 10/7 16/11 3/2 32/21 45/28 18/11 27/16 12/7 16/9 9/5 12/11 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
((2/1, 3/2)[12], 64/63: 5120/5013)[36] (Hemifamity)
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63) = (70.7894c, 36.848c, 24.4931c) TE
~ 64/63 36/35 15/14 243/224 54/49 9/8 8/7 81/70 32/27 6/5 128/105 81/64 9/7 64/49 4/3 27/20 48/35 10/7 81/56 72/49 3/2 32/21 54/35 45/28 80/49 81/49 27/16 12/7 243/140 16/9 9/5 64/35 243/128 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
((2/1, 3/2)[12], 64/63: 441/440, 896/891)[36] (Pele)
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63~99/98) = (72.2746c, 32.9392c, 25.3165c) TE
~ 64/63 36/35 15/14 12/11 54/49 9/8 8/7 64/55 32/27 6/5 128/105 14/11 9/7 64/49 4/3 27/20 48/35 10/7 16/11 72/49 3/2 32/21 54/35 45/28 18/11 81/49 27/16 12/7 96/55 16/9 9/5 64/35 22/21 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
2.3.25
(2/1, 3/2, 100/81)
(2/1, 3/2, 100/81)[7]
(2/1, 3/2, 100/81: 4375/4374)[7] (Ragismic)
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
2L 1m 4s | (2500/2187~8/7, ~9/8, ~27/25) | (231.1884c, 203.974c, 133.4123c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-3 | ~ 9/8 175/144 25/18 3/2 81/50 50/27 2/1 | msLssLs | 0.0158 |
-2 | ~ 27/25 175/144 21/16 3/2 81/50 7/4 2/1 | smsLssL | -0.0211 |
-1 | ~ 8/7 100/81 25/18 3/2 12/7 50/27 2/1 | LsmsLss | 0.037 |
0 | ~ 27/25 100/81 4/3 3/2 81/50 50/27 2/1 | sLsmsLs | 0 |
1 | ~ 27/25 7/6 4/3 36/25 81/50 7/4 2/1 | ssLsmsL | -0.037 |
2 | ~ 8/7 100/81 4/3 32/21 288/175 50/27 2/1 | LssLsms | 0.0211 |
3 | ~ 27/25 100/81 4/3 36/25 288/175 16/9 2/1 | sLssLsm | -0.0158 |
(2/1, 3/2, 100/81: 1225/1224, 1701/1700)[7]
Step signature | Steps in JI | Step sizes in cents |
---|---|---|
2L 1m 4s | (2500/2187~8/7, ~9/8, ~27/25) | (231.5807c, 203.8094c, 133.2573c) |
Mode number | Mode in JI | Step pattern | Mode height |
---|---|---|---|
-3 | ~ 9/8 17/14 25/18 3/2 34/21 50/27 2/1 | msLssLs | 0.0157 |
-2 | ~ 27/25 17/14 21/16 3/2 34/21 7/4 2/1 | smsLssL | -0.0214 |
-1 | ~ 8/7 21/17 25/18 3/2 12/7 50/27 2/1 | LsmsLss | 0.0371 |
0 | ~ 27/25 21/17 4/3 3/2 34/21 50/27 2/1 | sLsmsLs | 0 |
1 | ~ 27/25 7/6 4/3 36/25 34/21 7/4 2/1 | ssLsmsL | -0.0371 |
2 | ~ 8/7 21/17 4/3 32/21 28/17 50/27 2/1 | LssLsms | 0.0214 |
3 | ~ 27/25 21/17 4/3 36/25 28/17 16/9 2/1 | sLssLsm | -0.0157 |
2.5.9; Marvel
((2/1, 5/4)[3], 9/8)
((2/1, 5/4)[3], 9/8)[6]
1L 3M 2s = (256/225, 9/8, 10/9)
9/8 5/4 45/32 8/5 9/5 2/1 as MsMLMs
L = M -> LsLLLs; M = s -> sssLss; L = s -> LsLsLs
((2/1, 5/4)[3], 9/8: 225/224)[6] (Marvel)
1L 3M 2s = (~8/7, 9/8~28/25, ~10/9) = (232.0248c, 200.9152c, 182.9137c) TE
~ 9/8 5/4 7/5 8/5 9/5 2/1 as MLMsMs
L = M -> LsLLLs; M = s -> sssLss; L = s -> LsLsLs
((2/1, 5/4)[3], 9/8: 100/99, 225/224)[6] (Apollo)
1L 3M 2s = (~8/7, 9/8~28/25, 10/9~11/10) = (229.792c, 206.94c, 174.6095c) TE
~ 9/8 5/4 7/5 8/5 9/5 2/1 as MLMsMs
L = M -> LsLLLs; M = s -> sssLss; L = s -> LsLsLs
((2/1, 5/4)[3], 9/8)[10]
6L 1m 3s = (10/9, 128/125, 81/80)
10/9 9/8 5/4 25/18 45/32 25/16 8/5 16/9 9/5 2/1 as LsLLsLmLsL,
m = s -> LsLLsLsLsL MODMOS; L = m -> LsLLsLLLsL; L = s -> LLLLLLsLLL; s = 0 -> LLLLsLL; m = 0 -> LsLLsLLsL
((2/1, 5/4)[3], 9/8: 225/224)[10] (Marvel)
6L 1m 3s = (~10/9, 128/125~36/35, 81/80~126/125) = (182.9137c, 49.1111c, 18.0015c) TE
~ 10/9 9/8 5/4 25/18 7/5 14/9 8/5 16/9 9/5 2/1 as LsLmLsLLsL
m = s -> LsLsLsLLsL MODMOS; L = m -> LsLLLsLLsL; L = s -> LLLsLLLLLL; s = 0 -> LLsLLLL; m = 0 -> LsLLsLLsL
((2/1, 5/4)[3], 9/8: 100/99, 225/224)[10] (Apollo)
6L 1m 3s = (10/9~11/10, 128/125~36/35~80/77, 81/80~126/125~45/44~56/55) = (174.6095c, 55.1825c, 32.3305c) TE
~10/9 9/8 5/4 11/8 7/5 14/9 8/5 16/9 9/5 2/1 as LsLmLsLLsL
m = s -> LsLsLsLLsL MODMOS; L = m -> LsLLLsLLsL; L = s -> LLLsLLLLLL; s = 0 -> LLsLLLL; m = 0 -> LsLLsLLsL
((2/1, 5/4)[3], 9/8)[17]
6L 10m 1s = (800/729, 81/80, 2048/2025)
81/80 10/9 9/8 100/81 5/4 81/64 25/18 45/32 64/45 36/18 128/81 8/5 81/50 16/9 9/5 160/81 2/1 as mLmLmmLmsmLmmLmLm
m = s -> sLsLssLsssLssLsLs MODMOS; L = m -> LLLLLLLLsLLLLLLLL; L = s -> sLsLssLsLsLssLsLs; s = 0 -> sLsLssLssLssLsLs MODMOS; m = 0 -> LLLsLLL
((2/1, 5/4)[3], 9/8: 225/224)[17] (Marvel)
6L 1m 10s = (~800/729, 2048/2025~64/63, 81/80~126/125) = (164.9122c, 31.1096c, 18.0015c) TE
~ 81/80 10/9 9/8 100/81 5/4 81/64 25/18 7/5 10/7 36/25 128/81 8/5 81/50 16/9 9/5 160/81 2/1 as sLsLssLsmsLssLsLs
m = s -> sLsLssLsssLssLsLs MODMOS; L = m -> sLsLssLsLsLssLsLs; L = s -> LLLLLLLLsLLLLLLLL; s = 0 -> LLLsLLL; m = 0 -> sLsLssLssLssLsLs MODMOS
((2/1, 5/4)[3], 9/8: 100/99, 225/224)[17] (Apollo)
6L 10m 1s = (~88/81, 81/80~126/125~45/44~56/55, 2048/2025~64/63~176/175) = (142.279c, 32.3305c, 22.852c) TE
~ 56/55 10/9 9/8 11/9 5/4 14/11 11/8 7/5 10/7 16/11 11/7 8/5 11/9 16/9 9/5 55/28 2/1 as mLmLmmLmsmLmmLmLm
m = s -> sLsLssLsssLssLsLs Machine[17] MODMOS; L = m -> LLLLLLLLsLLLLLLLL; L = s -> sLsLssLsLsLssLsLs; s = 0 -> sLsLssLssLssLsLs MODMOS; m = 0 -> LLLsLLL
2.5.9; Starling
((2/1, 5/4)[3], 10/9)
((2/1, 5/4)[3], 10/9)[6]
1L 2m 3s = (144/125, 9/8, 10/9)
9/8 5/4 36/25 8/5 9/5 2/1 as msLsms
m = s -> ssLsss; L = m -> LsLsLs; L = s -> sLLLsL
((2/1, 5/4)[3], 10/9: 126/125)[6]
1L 2m 3s = (~8/7, ~9/8, 10/9~28/25) = (232.1725c, 202.4685c, 187.562c) TE
~ 9/8 5/4 10/7 8/5 9/5 2/1 as msLsms
m = s -> ssLsss; L = m -> LsLsLs; L = s -> sLLLsL
((2/1, 5/4)[3], 10/9)[9]
6L 1m 2s = (10/9, 648/625, 81/80)
10/9 9/8 5/4 25/18 36/25 8/5 16/9 9/5 2/1 as LsLLmLLsL
m = s -> LsLLsLLsL; L = m -> LsLLLLLsL MODMOS; L = s -> LLLLsLLLL; s = 0 -> LLLsLLL; m = 0 -> LsLLLLsL MODMOS
((2/1, 5/4)[3], 10/9: 126/125)[9]
6L 1m 2s = (10/9~28/25, 648/625~36/35, 81/80~225/224) = (187.562c, 44.6105c, 14.9065c) TE
~ 10/9 9/8 5/4 7/5 10/7 8/5 16/9 9/5 2/1 as LsLLmLLsL
m = s -> LsLLsLLsL; L = m -> LsLLLLLsL MODMOS; L = s -> LLLLsLLLL; s = 0 -> LLLsLLL; m = 0 -> LsLLLLsL MODMOS
((2/1, 5/4)[3], 10/9: 126/125, 896/891)[16]
6L 1m 9s = (~11/10, 128/125~64/63~99/98, 81/80~225/224~56/55) = (163.6623c, 24.4284c, 21.4103c) TE
~ 56/55 10/9 9/8 63/55 5/4 9/7 7/5 45/32 16/11 8/5 81/50 16/9 9/5 20/11 2/1 as sLssLsLsmsLsLssL
m = s -> sLssLsLsssLsLssL; L = m -> sLssLsLsLsLsLssL; L = s -> LLLLLLLLsLLLLLLL; s = 0 -> LLLsLLL; m = 0 -> sLssLsLssLsLssL
((2/1, 5/4)[3], 10/9: 91/90, 126/125, 896/891)[16]
6L 1m 9s = (~11/10, 128/125~64/63~99/98, 81/80~225/224~56/55~144/143) = (160.4106c, 30.0969c, 23.0825c) TE
~ 56/55 10/9 9/8 63/55 5/4 9/7 7/5 45/32 16/11 8/5 13/8 16/9 9/5 20/11 2/1 as sLssLsLsmsLsLssL
m = s -> sLssLsLsssLsLssL; L = m -> sLssLsLsLsLsLssL; L = s -> LLLLLLLLsLLLLLLL; s = 0 -> LLLsLLL; m = 0 -> sLssLsLssLsLssL
2.3.7; Orwellismic
(2/1, 3/2, 7/6)
(2/1, 3/2, 7/6)[4]
1L 2m 1s = (9/7, 7/6, 8/7)
7/6 3/2 7/4 2/1 as mLms
m = s -> sLss Sempahore[4]
(2/1, 3/2, 7/6)[7]
4L 1M 2s = (8/7, 9/8, 49/48)
8/7 7/6 4/3 3/2 12/7 7/4 2/1 as LsLMLsL
L = M -> LsLLLsL Archy[5]; s = 0 -> LLsLL Semaphore[5]
(2/1, 3/2, 7/6: 1728/1715)[7] (Orwellismic)
4L 1M 2s = (~8/7, ~9/8, 49/48~36/35) = (227.1393c, 204.1935c, 43.334c) TE
~ 8/7 7/6 4/3 3/2 12/7 7/4 2/1 as LsLMLsL
L = M -> LsLLLsL Superpyth[5]; s = 0 -> LLsLL Beep[5]
(2/1, 3/2, 7/6: 1728/1715)[12] (Orwellismic)
4L 1M 7s = (~10/9, 54/49~35/32, 49/48~36/35) = (183.8053c, 160.8595c, 43.334c) TE
~ 36/35 8/7 7/6 6/5 4/3 48/35 3/2 54/35 12/7 7/4 9/5 2/1 as sLssLsMsLssL
L = M -> sLssLsLsLssL Superpyth[12]; M = s -> sLssLsssLssL MODMOS; s = 0 -> LLsLL Beep[5]
(2/1, 3/2, 7/6: 99/98, 385/384)[12] (Orwellian)
4L 1M 7s = (~10/9, 54/49~35/32~12/11, 49/48~36/35~33/32) = (185.7619, 155.4288c, 155.4288c) TE
~ 33/32 8/7 7/6 6/5 4/3 11/8 3/2 54/35 12/7 7/4 9/5 2/1 as sLssLsMsLssL
L = M -> sLssLsLsLssL Suprapyth[12]; M = s -> sLssLsssLssL MODMOS; s = 0 -> LLsLL Pentoid[5]
(2/1, 3/2, 7/6: 176/175, 540/539)[12] (Guanyin)
4L 1M 7s = (~10/9, 54/49~35/32~11/10, 49/48~36/35~45/44) = (183.8734c, 162.5743c, 43.0239c) TE
~ 36/35 8/7 7/6 6/5 4/3 15/11 3/2 54/35 12/7 7/4 9/5 2/1 as sLssLsMsLssL
L = M -> sLssLsLsLssL Superpyth[12]; M = s -> sLssLsssLssL MODMOS
(2/1, 3/2, 7/6: 1728/1715)[17] (Orwellismic)
4L 1M 12s = (~160/147, ~15/14, 49/48~36/35) = (140.4713c, 117.5255c, 43.334c) TE
~ 36/35 10/9 8/7 7/6 6/5 35/27 4/3 48/35 35/24 3/2 54/35 5/3 12/7 7/4 9/5 35/18 2/1 as sLsssLssMssLsssLs
L = M -> sLsssLssLssLsssLs Superpyth[17]; M = s -> sLsssLsssssLsssLs; s = 0 -> LLsLL Beep[5]
(2/1, 3/2, 7/6: 99/98, 385/384)[17] (Orwellian)
4L 1M 12s = (~160/147, 15/14~35/33, 49/48~36/35~33/32) = (142.5744c, 112.2413c, 43.1875c) TE
~ 36/35 10/9 8/7 7/6 6/5 35/27 4/3 11/8 16/11 3/2 54/35 5/3 12/7 7/4 9/5 35/18 2/1 as sLsssLssMssLsssLs
L = M -> sLsssLssLssLsssLs Suprapyth[17]; M = s -> sLsssLsssssLsssLs; s = 0 -> LLsLL Pentoid[5]
(2/1, 3/2, 7/6: 176/175, 540/539)[17] (Guanyin)
4L 1M 12s = (~88/81, 15/14~77/72, 49/48~36/35~45/44) = (140.8495c, 119.5504c, 43.0239c) TE
~ 36/35 10/9 8/7 7/6 6/5 35/27 4/3 15/11 22/15 3/2 54/35 5/3 12/7 7/4 9/5 35/18 2/1 as sLsssLssMssLsssLs
L = M -> sLsssLssLssLsssLs Superpyth[17]; M = s -> sLsssLsssssLsssLs
(2/1, 3/2, 7/6: 1728/1715)[22] (Orwellismic)
4L 1m 17s = (~200/189, ~25/24, 49/48~36/35) = (97.1373c, 74.1915c, 43.334c) TE
~ 36/35 21/20 10/9 8/7 7/6 6/5 49/40 35/27 4/3 48/35 7/5 35/24 3/2 54/27 63/40 5/3 12/7 7/4 9/5 147/80 35/18 2/1 as ssLssssLsssMsssLssssLs
m = s -> ssLssssLsssssssLssssLs Doublewide[22] MODMOS; L = m -> ssLssssLsssLsssLssssLs Superpyth[17]; s = 0 -> LLsLL Beep[5]
(2/1, 3/2, 7/6: 99/98, 385/384)[22] (Orwellian)
4L 1m 17s = (~200/189, 25/24~80/77, 49/48~36/35~33/32) = (99.3869c, 69.0538c, 43.1875c) TE
~ 36/35 21/20 10/9 8/7 7/6 6/5 49/40 35/27 4/3 11/8 7/5 16/11 3/2 54/27 63/40 5/3 12/7 7/4 9/5 147/80 35/18 2/1 as ssLssssLsssMsssLssssLs
m = s -> ssLssssLsssssssLssssLs Doublewide[22] MODMOS; L = m -> ssLssssLsssLsssLssssLs Suprapyth[17]; s = 0 -> LLsLL Pentoid[5]
(2/1, 3/2, 7/6: 176/175, 540/539)[22] (Guanyin)
4L 1m 17s = (~200/189, 25/24~22/21, 49/48~36/35~45/44) = (97.8256c, 76.5265c, 43.0239c) TE
~ 36/35 21/20 10/9 8/7 7/6 6/5 27/22 35/27 4/3 15/11 7/5 22/15 3/2 54/27 63/40 5/3 12/7 7/4 9/5 81/44 35/18 2/1 as ssLssssLsssmsssLssssLs
m = s -> ssLssssLsssssssLssssLs Fleetwood[22] MODMOS; L = m -> ssLssssLsssLsssLssssLs Superpyth[17]
(2/1, 3/2, 7/6: 1728/1715)[27] (Orwellismic)
4L 22M 1s = (~250/243, 49/48~36/35, ~50/49) = (53.8033c, 43.334c, 30.8575c) TE
~ 36/35 21/20 160/147 10/9 8/7 7/6 6/5 49/40 80/63 35/27 4/3 48/35 7/5 10/7 35/24 3/2 54/27 63/40 80/49 5/3 12/7 7/4 9/5 147/80 40/21 35/18 2/1 as MMLMMMMMLMMMMsMMMMLMMMMMLMM
L = M -> LLLLLLLLLLLLLsLLLLLLLLLLLLL Quartonic[27]; M = s -> ssLsssssLsssssssssLsssssLss Myna[27] MODMOS; L = s -> ssLsssssLssssLssssLsssssLss Superpyth[27];
s = 0 -> ssLsssssLssssssssLsssssLss Doublewide[26] MODMOS; M = 0 -> LLsLL Beep[5]
(2/1, 3/2, 7/6: 99/98, 385/384)[27] (Orwellian)
4L 22M 1s = (~250/243, 49/48~36/35~33/32, 50/49~100/99) = (56.1994c, 43.1875c, 25.8663c) TE
~ 36/35 21/20 160/147 10/9 8/7 7/6 6/5 49/40 80/63 35/27 4/3 11/8 7/5 10/7 16/11 3/2 54/27 63/40 80/49 5/3 12/7 7/4 9/5 147/80 40/21 35/18 2/1 as MMLMMMMMLMMMMsMMMMLMMMMMLMM
L = M -> LLLLLLLLLLLLLsLLLLLLLLLLLLL Quartz[27]; M = s -> ssLsssssLsssssssssLsssssLss Myno[27] MODMOS; L = s -> ssLsssssLssssLssssLsssssLss Suprapyth[27];
s = 0 -> ssLsssssLssssssssLsssssLss Doublewide[26] MODMOS; M = 0 -> LLsLL Pentoid[5]
(2/1, 3/2, 7/6: 176/175, 540/539)[27] (Guanyin)
4L 22M 1s = (~250/243, 49/48~36/35~45/44, 50/49~55/54) = (54.8017c, 43.0239c, 33.5026c) TE
~ 36/35 21/20 88/81 10/9 8/7 7/6 6/5 27/22 80/63 35/27 4/3 15/11 7/5 10/7 22/15 3/2 54/27 63/40 44/27 5/3 12/7 7/4 9/5 81/44 40/21 35/18 2/1 as mmLmmmmmLmmmmsmmmmLmmmmmLmm
m = s -> ssLsssssLsssssssssLsssssLss Myna[27] MODMOS; L = m -> LLLLLLLLLLLLLsLLLLLLLLLLLLL Quartonic[27]; L = s -> ssLsssssLssssLssssLsssssLss Superpyth[27];
s = 0 -> ssLsssssLssssssssLsssssLss Fleetwood[26] MODMOS
(2/1, 3/2, 7/6: 1728/1715)[53] (Orwellismic)
27L 4M 22s = (~50/49, 64/63~245/243, 126/125~2401/2400) = (30.8575c, 22.9458c, 12.4765c) TE
~ 50/49 36/35 360/343 21/20 15/14 27/25 54/49 441/400 9/8 8/7 125/108 7/6 25/21 6/5 60/49 49/40 5/4 63/50 9/7 162/125 21/16 4/3 200/147 48/35 480/343 7/5 10/7 343/240 35/24 147/100 3/2 32/16 125/81 14/9 100/63 8/5 80/49 49/30 5/3 42/25 12/7 216/125 7/4 16/9 800/441 49/27 50/27 28/15 40/21 343/180 35/18 49/25 2/1 as LsLsLsLsLMLsLsLsLsLsLMLsLsLsLsLMLsLsLsLsLsLMLsLsLsLsL
L = M -> LsLsLsLsLLLsLsLsLsLsLLLsLsLsLsLLLsLsLsLsLsLLLsLsLsLsL Orwell[53] MODMOS;
M = s -> LsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsL Quartonic[53]; L = s -> sssssssssLsssssssssssLsssssssssLsssssssssssLsssssssss
s = 0 -> LLLLLsLLLLLLsLLLLLsLLLLLLsLLLLL Myna[31] MODMOS; M = 0 -> LsLsLsLsLLsLsLsLsLsLLsLsLsLsLLsLsLsLsLsLLsLsLsLsL Superpyth[49];
L = 0 -> ssssLsssssLssssLsssssLssss Doublewide[22] MODMOS
(2/1, 3/2, 7/6: 99/98, 385/384)[53] (Orwellian)
4L 27M 22s = (64/63~245/243~55/54, 50/49~100/99, 126/125~2401/2400) = (30.3331c, 25.8663c, 17.3212c) TE
~ 50/49 36/35 80/77 21/20 15/14 27/25 12/11 441/400 9/8 8/7 125/108 7/6 25/21 6/5 60/49 49/40 5/4 63/50 9/7 162/125 21/16 4/3 200/147 11/8 480/343 7/5 10/7 343/240 16/11 147/100 3/2 32/16 125/81 14/9 100/63 8/5 80/49 49/30 5/3 42/25 12/7 216/125 7/4 16/9 800/441 11/6 50/27 28/15 40/21 77/40 35/18 49/25 2/1 as MsMsMsMsMLMsMsMsMsMsMLMsMsMsMsMLMsMsMsMsMsMLMsMsMsMsM
L = M -> LsLsLsLsLLLsLsLsLsLsLLLsLsLsLsLLLsLsLsLsLsLLLsLsLsLsL Orwell[53] MODMOS;
M = s -> sssssssssLsssssssssssLsssssssssLsssssssssssLsssssssss; L = s -> LsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsL Quartz[53];
s = 0 -> sssssLssssssLsssssLssssssLsssss Myno[31] MODMOS; M = 0 -> ssssLsssssLssssLsssssLssss Doublewide[22] MODMOS;
L = 0 -> LsLsLsLsLLsLsLsLsLsLLsLsLsLsLLsLsLsLsLsLLsLsLsLsL Suprapyth[49]
(2/1, 3/2, 7/6: 176/175, 540/539)[53] (Guanyin)
4L 27M 22s = (64/63~245/243~100/99, 50/49~55/54, 126/125~2401/2400~441/440) = (33.5026c, 21.2991c, 9.5213c) TE
~ 50/49 36/35 22/21 21/20 15/14 27/25 11/10 243/220 9/8 8/7 125/108 7/6 25/21 6/5 11/9 27/22 5/4 63/50 9/7 162/125 21/16 4/3 110/81 15/11 88/63 7/5 10/7 63/44 22/15 81/55 3/2 32/16 125/81 14/9 100/63 8/5 44/27 18/11 5/3 42/25 12/7 216/125 7/4 16/9 440/243 20/11 50/27 40/21 21/11 35/18 49/25 2/1 as MsMsMsMsMLMsMsMsMsMsMLMsMsMsMsMLMsMsMsMsMsMLMsMsMsMsM
L = M -> LsLsLsLsLLLsLsLsLsLsLLLsLsLsLsLLLsLsLsLsLsLLLsLsLsLsL Orwell[53] MODMOS;
M = s -> sssssssssLsssssssssssLsssssssssLsssssssssssLsssssssss Kleiboh[53] MODMOS; L = s -> LsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsL Quartonic[53];
s = 0 -> sssssLssssssLsssssLssssssLsssss Myna[31] MODMOS; M = 0 -> ssssLsssssLssssLsssssLssss Fleetwood[22] MODMOS;
L = 0 -> LsLsLsLsLLsLsLsLsLsLLsLsLsLsLLsLsLsLsLsLLsLsLsLsL Superpyth[49]
((2/1, 3/2)[12], 49/48) or ((2/1, 3/2)[12], 36/35)
((2/1, 3/2)[12], 36/35: 1728/1715)[24] (Orwellian)
2.3.7 Sensamagic
(2/1, 3/2, 9/7)
(2/1, 3/2, 9/7)[4]
2L 1M 1s = (9/7, 7/6, 28/27) = (435.0841c, 266.8709c, 62.9609c)
9/7 3/2 27/14 2/1 as LMLs
L = M -> LLLs; M = s -> LsLs; s = 0 -> LsL
(2/1, 3/2, 9/7: 245/243)[7] Sensamagic
2L 1m 4s = (~5/4, ~9/8, 28/27~36/35)
~ 28/27 9/7 4/3 3/2 14/9 27/14 2/1 as sLsmsLs
m = s -> sLsssLs; s = 0 -> LsL
5-ET: (2, 1, 0); 14c-ET: (4, 2, 1); 17-ET: (5, 3, 1); 19-ET: (6, 3, 1); 22-ET: (7, 4, 1) 24-ET: (8, 4, 1); 27-ET: (9, 5, 1); 41-ET: (13, 7, 2); 46-ET: (15, 8, 2); 68-ET: (22, 12, 3); 87-ET: (28, 15, 4)
(2/1, 3/2, 9/7: 245/243)[10] Sensamagic
2L 1m 7s = (~135/112, ~35/32, 28/27~36/35)
~ 28/27 5/4 9/7 4/3 35/24 3/2 14/9 15/8 27/14 2/1 as sLssmssLss
m = s -> sLsssssLss; s = 0 -> LsL
14c-ET: (3, 1, 1); 17-ET: (4, 2, 1); 19-ET: (5, 2, 1); 22-ET: (6, 3, 1) 24-ET: (7, 3, 1); 27-ET: (8, 4, 1); 41-ET: (11, 5, 2); 46-ET: (13, 6, 2); 68-ET: (19, 9, 3); 87-ET: (24,11,4)
(2/1, 3/2, 9/7: 245/243, 385/384)[10] Sensamagic
2L 1m 7s = (~135/112, ~35/32, 28/27~36/35~33/32)
~ 28/27 5/4 9/7 4/3 16/11 3/2 14/9 15/8 27/14 2/1 as sLssmssLss
m = s -> sLsssssLss; s = 0 -> LsL
17-ET: (4, 2, 1); 19-ET: (5, 2, 1); 22-ET: (6, 3, 1) 24-ET: (7, 3, 1); 27-ET: (8, 4, 1); 41-ET: (11, 5, 2); 46-ET: (13, 6, 2); 63-ET: (18, 8, 3); 68-ET: (19, 9, 3); 87-ET: (24, 11, 4)
(2/1, 3/2, 9/7: 245/243)[13] Sensamagic
2L 1m 10s = (~75/64, ~135/128, 28/27~36/35)
~ 28/27 16/15 5/4 9/7 4/3 48/35 35/24 3/2 14/9 8/5 15/8 27/14 2/1 as ssLsssmsssLss
m = s -> ssLsssssssLss Pycnic[13] MODMOS; s = 0 -> LsL
14c-ET: (2, 0, 1); 17-ET: (3, 1, 1); 19-ET: (4, 1, 1); 22-ET: (5, 2, 1) 24-ET: (6, 2, 1); 27-ET: (7, 3, 1); 41-ET: (9, 3, 2); 46-ET: (11, 4, 2); 68-ET: (16, 6, 3); 87-ET: (20, 7,4)
(2/1, 3/2, 9/7: 245/243, 385/384)[13] Sensamagic
2L 1m 10s = (~75/64, 135/128~35/33, 28/27~36/35~33/32)
~ 28/27 16/15 5/4 9/7 4/3 11/8 16/11 3/2 14/9 8/5 15/8 27/14 2/1 as ssLsssmsssLss
m = s -> ssLsssssssLss; s = 0 -> LsL
17-ET: (3, 1, 1); 19-ET: (4, 1, 1); 22-ET: (5, 2, 1) 24-ET: (6, 2, 1); 27-ET: (7, 3, 1); 41-ET: (9, 3, 2); 46-ET: (11, 4, 2); 63-ET: (15, 5, 3); 68-ET: (16, 6, 3); 87-ET: (20, 7,4)
(2/1, 3/2, 9/7: 245/243, 385/384)[16] Sensamagic
2L 13m 1s = (~25/22, 28/27~36/35~33/32, ~45/44)
~ 28/27 16/15 40/33 5/4 9/7 4/3 11/8 45/32 16/11 3/2 14/9 8/5 20/11 15/8 27/14 2/1 as mmLmmmmsmmmmLmmm
m = s -> ssLsssssssssLsss Shrutar[16] MODMOS; s = 0 -> ssLssssssssLsss
17-ET: (2, 1, 0); 19-ET: (3, 1, 0); 22-ET: (4, 1, 1) 24-ET: (5, 1, 1); 27-ET: (6, 1, 2); 41-ET: (7, 2, 1); 46-ET: (9, 2, 2); 63-ET: (12, 3, 2); 68-ET: (13, 3, 3); 87-ET: (16, 4, 3)
(2/1, 3/2, 9/7: 245/243, 385/384)[31] Sensamagic
2L 16m 13s = (10/9~54/49, ~45/44, 176/175~121/120)
~ 45/44 28/27 35/33 16/15 12/11 11/10 9/8 154/135 7/6 9/7 405/308 4/3 15/11 11/8 45/32 64/45 16/11 22/15 3/2 616/405 14/9 12/7 135/77 16/9 20/11 11/6 15/8 66/35 27/14 88/45 2/1 as msmsmsmsmLmsmsmsmsmsmLmsmsmsmsm
m = s -> sssssssssLsssssssssssLsssssssss; s = 0 -> sssssLssssssLsssss Shrutar[18] MODMOS
41-ET: (6, 1, 1); 46-ET: (7, 2, 0); 63-ET: (10, 2, 1); 68-ET: (10, 3, 0); 87-ET: (13, 3, 1)
(2/1, 3/2, 9/7: 729/728)[7]
2L 1m 4s = (~26/21, ~9/8, 28/27~27/26)
~ 28/27 9/7 4/3 3/2 14/9 27/14 2/1 sLsmsLs
m = s -> sLsssLs; s = 0 -> LsL
5-ET: (2, 1, 0); 17-ET: (5, 3, 1); 19-ET: (6, 3, 1); 22f-ET: (7, 4, 1) 24-ET: (8, 4, 1); 36-ET: (11, 6, 2); 41-ET: (13, 7, 2); 53-ET: (16, 9, 3); 58-ET: (18, 10, 3); 77-ET: (24, 13, 4); 94-ET: (29, 16, 5)
(2/1, 3/2, 9/7: 729/728)[10]
2L 1m 7s = (~117/98, ~13/12, 28/27~27/26)
~ 28/27 26/21 9/7 4/3 13/9 3/2 14/9 13/7 27/14 2/1 sLssmssLss
m = s -> sLsssssLss; s = 0 -> LsL
17-ET: (4, 2, 1); 19-ET: (5, 2, 1); 22f-ET: (6, 3, 1) 24-ET: (7, 3, 1); 36-ET: (9, 4, 2); 41-ET: (11, 5, 2); 53-ET: (13, 6, 3); 58-ET: (15, 7, 3); 77-ET: (20, 9, 4); 94-ET: (24, 11, 5)
(2/1, 3/2, 9/7: 729/728)[13]
2L 1m 10s = (~169/147, ~117/112, 28/27~27/26)
~ 28/27 14/13 26/21 9/7 4/3 18/13 13/9 3/2 14/9 21/13 13/7 27/14 2/1 ssLsssmsssLss
m = s -> ssLsssssssLss; s = 0 -> LsL
17-ET: (3, 1, 1); 19-ET: (4, 1, 1); 22f-ET: (5, 2, 1) 24-ET: (6, 2, 1); 36-ET: (7, 2, 2); 41-ET: (9, 3, 2); 53-ET: (10, 3, 3); 58-ET: (12, 4, 3); 77-ET: (16, 5, 4); 94-ET: (19, 6, 5)
(2/1, 3/2, 9/7: 351/350, 676/675)[13]
2L 1m 10s = (~169/147, ~117/112, 28/27~27/26~26/25)
~ 28/27 14/13 26/21 9/7 4/3 18/13 13/9 3/2 14/9 21/13 13/7 27/14 2/1 ssLsssmsssLss
m = s -> ssLsssssssLss; s = 0 -> LsL
17-ET: (3, 1, 1); 19-ET: (4, 1, 1); 24-ET: (6, 2, 1); 53-ET: (10, 3, 3); 58-ET: (12, 4, 3); 77-ET: (16, 5, 4); 111-ET: (22, 7, 6); 130-ET: (26, 8, 7)
(2/1, 3/2, 9/7: 351/350, 676/675)[16]
2L 13m 1s = (~845/756, 28/27~27/26~26/25, ~169/168)
~ 26/25 14/13 25/21 26/21 9/7 4/3 18/13 39/28 13/9 3/2 14/9 21/13 25/14 13/7 23/13 2/1 as mmLmmmmsmmmmLmmm
m = s -> ssLsssssssssLsss; s = 0 -> ssLssssssssLsss
17-ET: (2, 1, 0); 19-ET: (3, 1, 0); 24-ET: (5, 1, 1); 53-ET: (7, 3, 0); 58-ET: (9, 3, 1); 77-ET: (12, 4, 1); 111-ET: (16, 6, 1); 130-ET: (19, 7, 1)
(2/1, 3/2, 9/7: 351/350, 676/675)[31]
2L 13m 16s = (~10/9, ~336/325, 169/168~225/224)
~169/168 26/25 117/112 14/13 13/12 28/25 9/8 378/325 7/6 9/7 325/252 4/3 75/56 18/13 39/28 56/39 13/9 112/75 3/2 14/9 12/7 325/189 16/9 25/14 24/13 13/7 224/117 25/13 336/169 2/1 as smsmsmsmsLsmsmsmsmsmsLsmsmsmsms
m = s -> sssssssssLsssssssssssLsssssssss; s = 0 -> ssssLsssssLssss Catakleismic[15] MODMOS
53-ET: (7, 3, 0); 58-ET: (8, 2, 1); 77-ET: (11, 3, 1); 111-ET: (15, 5, 1); 130-ET: (18, 6, 1)