List of superparticular intervals
This is a list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 23-limit.
Størmer's theorem states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. OEIS: A002071 gives the number of superparticular ratios in each prime limit, OEIS: A145604 shows the increment from limit to limit, and OEIS: A117581 gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
List of superparticular intervals
Ratio | Cents | Factorization | Monzo | Name(s) | Meta[1] |
---|---|---|---|---|---|
2-limit (complete) | |||||
2/1 | 1200.000 | 2/1 | [1⟩ | Octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic | |
3-limit (complete) | |||||
3/2 | 701.955 | 3/2 | [-1 1⟩ | Perfect fifth, octave-reduced 3rd harmonic, diapente | |
4/3 | 498.045 | 22/3 | [2 -1⟩ | Perfect fourth, octave-reduced 3rd subharmonic, diatessaron | S2 |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, octave-reduced 9th harmonic or harmonic ninth | S3 |
5-limit (complete) | |||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | Classic(al)/just major third, octave-reduced 5th harmonic | |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | Classic(al)/just minor third | |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | Classic(al) (whole) tone, classic major second, minor whole tone | |
16/15 | 111.731 | 24/(3*5) | [4 -1 -1⟩ | Classic(al)/just diatonic semitone, 15th subharmonic | S4 |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | Classic(al)/just chromatic semitone, chroma, Zarlinian semitone | S5 |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | Syntonic comma, Didymus comma | S9 |
7-limit (complete) | |||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (Septimal) subminor third, septimal minor third | |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (Septimal) supermajor second, septimal whole tone, octave-reduced 7th subharmonic | |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | Septimal major semitone, septimal diatonic semitone | |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | Septimal minor semitone, large septimal chroma | |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | Septimal 1/3-tone, small septimal chroma, (septimal) subminor second, septimal minor second, trienstonic comma | |
36/35 | 48.770 | (22*32)/(5*7) | [2 2 -1 -1⟩ | Septimal 1/4-tone, septimal diesis | S6 |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | Slendro diesis, large septimal diesis, large septimal 1/6-tone | S7 |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | Jubilisma, tritonic diesis, small septimal diesis, small septimal 1/6-tone | |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | Septimal comma, Archytas' comma | S8 |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | Starling comma, septimal semicomma | |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | Marvel comma, septimal kleisma | S15 |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | Breedsma | S49 |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | Ragisma | |
11-limit (complete) | |||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (Large) undecimal neutral second, undecimal submajor second, Ptolemy's second | |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (Small) undecimal neutral second | |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | Undecimal minor semitone | |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | Undecimal 1/4-tone, undecimal diesis, al-Farabi's 1/4-tone, octave-reduced 33rd harmonic | |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | Undecimal 1/5-tone | |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | Telepathma, eleventyfive comma, undecimal diasecundal comma | |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | Undecimal tritonic comma, konbini comma | |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | Mothwellsma, small undecimal comma | |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | Ptolemisma, Ptolemy's comma | S10 |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | Biyatisma, undecimal seconds comma | S11 |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | Valinorsma | |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | Rastma, neutral thirds comma | |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | Keenanisma | |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | Werckisma, Werckmeister's undecimal septenarian schisma | S21 |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | Swetisma, Swets' comma | |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | Lehmerisma | S55 |
9801/9800 | 0.17665 | (11/(5*7))2*34/23 | [-3 4 -2 -2 2⟩ | Kalisma, Gauss comma | S99 |
13-limit (complete) | |||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | (Large) tridecimal 2/3-tone, tridecimal neutral second | |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | (Small) tridecimal 2/3-tone, trienthird | |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | (Large) tridecimal 1/3-tone | |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | (Small) tridecimal 1/3-tone | |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | Tridecimal minor diesis | |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | Wilsorma, 13th-partial chroma | |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | Winmeanma | |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | Negustma | |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma | |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | Animist comma, small tridecimal comma | |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | Grossma | S12 |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | Buzurgisma, dhanvantarisma | S13 |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | Mynucuma | S14 |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | Marveltwin comma | |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | Ratwolfsma | |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | Minthma | |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | Gentle comma | |
625/624 | 2.7722 | (5/2)4/(3*13) | [-4 -1 4 0 0 -1⟩ | Tunbarsma | S25 |
676/675 | 2.5629 | (2*13/5)2/33 | [2 -3 -2 0 0 2⟩ | Island comma | S26 |
729/728 | 2.3764 | (32/2)3/(7*13) | [-3 6 0 -1 0 -1⟩ | Squbema | S27 |
1001/1000 | 1.7304 | 7*11*13/(2*5)3 | [-3 0 -3 1 1 1⟩ | Sinbadma | |
1716/1715 | 1.0092 | 22*3*11*13/(5*73) | [2 1 -1 -3 1 1⟩ | Lummic comma | |
2080/2079 | 0.83252 | 25*5*13/(33*7*11) | [5 -3 1 -1 -1 1⟩ | Ibnsinma | |
4096/4095 | 0.42272 | (26/3)2/(5*7*13) | [12 -2 -1 -1 0 -1⟩ | Schismina, tridecimal schisma | S65 |
4225/4224 | 0.40981 | (5*13)2/(27*3*11) | [-7 -1 2 0 -1 2⟩ | Leprechaun comma | S66 |
6656/6655 | 0.26012 | (23/11)3*13/5 | [9 0 -1 0 -3 1⟩ | Jacobin comma | |
10648/10647 | 0.16260 | (2*11)3/((3*13)2*7) | [3 -2 0 -1 3 -2⟩ | Harmonisma | |
123201/123200 | 0.014052 | (3/2)6*(13/5)2/(7*11) | [-6 6 -2 -1 -1 2⟩ | Chalmersia | S351 |
17-limit (complete) | |||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | Large septendecimal semitone, octave-reduced 17th harmonic | |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | Small septendecimal semitone, Arabic lute index finger | |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | Large septendecimal 1/4-tone | |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | Small septendecimal 1/4-tone | |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | Large septendecimal 1/6-tone | |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | Small septendecimal 1/6-tone | |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | Septendecimal comma (?) | |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | Lynchisma | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | Septendecimal major second comma | |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | ||
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | ||
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | ||
256/255 | 6.7759 | 28/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | Septendecimal kleisma, octave-reduced 255th subharmonic | S16 |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | Tannisma | |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | Semitonisma | S17 |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | Ursulisma | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | ||
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | ||
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | Dakotisma | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | September comma, septembrisma | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | Horizma, horizon comma | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | Ainos comma, ainma | |
1089/1088 | 1.5905 | (3*11)2/(26*17) | [-6 2 0 0 2 0 -1⟩ | Twosquare comma | S33 |
1156/1155 | 1.4983 | (2*17)2/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | Quadrantonisma | S34 |
1225/1224 | 1.4138 | (5*7)2/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | Noellisma | S35 |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | ||
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | Palingenetic comma, palingenesis | |
2058/2057 | 0.84143 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | Xenisma | |
2431/2430 | 0.71230 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | ||
2500/2499 | 0.69263 | (2*52)2/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | Sperasma | S50 |
2601/2600 | 0.66573 | (3*17)2/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | Sextantonisma | S51 |
4914/4913 | 0.35234 | (2*33*7*13)/173 | [1 3 0 1 0 1 -3⟩ | ||
5832/5831 | 0.29688 | (2*32)3/(73*17) | [3 6 0 -3 0 0 -1⟩ | Chlorisma | |
12376/12375 | 0.13989 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | flashma | |
14400/14399 | 0.12023 | (23*3*5)2/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | Sparkisma | S120 |
28561/28560 | 0.060616 | 134/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | S169 | |
31213/31212 | 0.055466 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | ||
37180/37179 | 0.046564 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | ||
194481/194480 | 0.008902 | (3*7)4/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | Scintillisma | S441 |
336141/336140 | 0.005150 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | ||
19-limit (complete) | |||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | Large undevicesimal semitone | |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | Small undevicesimal semitone | |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | Undevicesimal 2/9-tone | |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | Hendrix comma | |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | Large undevicesimal 1/9-tone | |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | Small undevicesimal 1/9-tone | |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | 19th-partial chroma | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | ||
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | Ganassisma, Ganassi's comma | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | ||
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | ||
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | Yama comma | |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | Spleen comma | |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | ||
324/323 | 5.3516 | (2*32)2/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | Nusu comma | S18 |
343/342 | 5.0547 | 73/(2*32*19) | [-1 -2 0 3 0 0 0 -1⟩ | ||
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | Go comma | S19 |
400/399 | 4.3335 | (22*5)2/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | S20 | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | ||
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | ||
495/494 | 3.5010 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | ||
513/512 | 3.3780 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | Undevicesimal comma, undevicesimal schisma, Boethius' comma, 513th harmonic | |
969/968 | 1.7875 | (3*17*19)/(23*112) | [-3 1 0 0 -2 0 1 1⟩ | ||
1216/1215 | 1.4243 | (26*19)/(35*5) | [6 -5 -1 0 0 0 0 1⟩ | Password comma, Eratosthenes' comma | |
1331/1330 | 1.3012 | 113/(2*5*7*19) | [-1 0 -1 -1 3 0 0 -1⟩ | ||
1445/1444 | 1.1985 | 5*(17/(2*19))2 | [-2 0 1 0 0 0 2 -2⟩ | Aureusma | |
1521/1520 | 1.1386 | (3*13)2/(24*5*19) | [-4 2 -1 0 0 2 0 -1⟩ | Pinkanberry | S39 |
1540/1539 | 1.1245 | (22*5*7*11)/(34*19) | [2 -4 1 1 1 0 0 -1⟩ | ||
1729/1728 | 1.0016 | (7*13*19)/(22*3)3 | [-6 -3 0 1 0 1 0 1⟩ | Ramanujanisma | |
2376/2375 | 0.7288 | (23*33*11)/(53*19) | [3 3 -3 0 1 0 0 -1⟩ | ||
2432/2431 | 0.7120 | (27*19)/(11*13*17) | [7 0 0 0 -1 -1 -1 1⟩ | Blumeyer comma | |
2926/2925 | 0.5918 | (2*7*11*19)/(32*52*13) | [1 -2 -2 1 1 -1 0 1⟩ | ||
3136/3135 | 0.5521 | (23*7)2/(3*5*11*19) | [6 -1 -1 2 -1 0 0 -1⟩ | S56 | |
3250/3249 | 0.5328 | (2*53*13)/(3*19)2 | [1 -2 3 0 0 1 0 -2⟩ | ||
4200/4199 | 0.4123 | (23*3*52*7)/(13*17*19) | [3 1 2 1 0 -1 -1 -1⟩ | ||
5776/5775 | 0.2998 | (22*19)2/(3*52*7*11) | [4 -1 -2 -1 -1 0 0 2⟩ | S76 | |
5929/5928 | 0.2920 | (7*11)2/(23*3*13*19) | [-3 -1 0 2 2 -1 0 -1⟩ | S77 | |
5985/5984 | 0.2893 | (32*5*7*19)/(25*11*17) | [-5 2 1 1 -1 0 -1 1⟩ | ||
6175/6174 | 0.2804 | (52*13*19)/(2*32*73) | [-1 -2 2 -3 0 1 0 1⟩ | ||
6860/6859 | 0.2524 | (22*5*73)/193 | [2 0 1 3 0 0 0 -3⟩ | ||
10241/10240 | 0.1691 | (72*11*19)/(211*5) | [-11 0 -1 2 1 0 0 1⟩ | ||
10830/10829 | 0.1599 | (2*3*5*192)/(72*13*17) | [1 1 1 -2 0 -1 -1 2⟩ | ||
12636/12635 | 0.1370 | (22*35*13)/(5*7*192) | [2 5 -1 -1 0 1 0 -2⟩ | ||
13377/13376 | 0.1294 | (3*73*13)/(26*11*19) | [-6 1 0 3 -1 1 0 -1⟩ | ||
14080/14079 | 0.1230 | (28*5*11)/(3*13*192) | [8 -1 1 0 1 -1 0 -2⟩ | ||
14365/14364 | 0.1205 | (5*132*17)/(22*33*7*19) | [-2 -3 1 -1 0 1 1 -1⟩ | ||
23409/23408 | 0.07396 | (32*17)2/(24*7*11*19) | [-4 4 0 -1 -1 0 1 -1⟩ | S153 | |
27456/27455 | 0.06306 | (26*3*11)/(5*172*19) | [6 1 -1 0 1 0 -2 -1⟩ | ||
28900/28899 | 0.05991 | (2*5*17)2/(32*132*19) | [2 -2 2 0 0 -2 2 -1⟩ | S170 | |
43681/43680 | 0.03963 | (11*19)2/(25*3*5*7*13) | [-5 -1 -1 -1 2 -1 0 2⟩ | S209 | |
89376/89375 | 0.01937 | (25*3*72*19)/(54*11*13) | [5 1 -4 2 -1 -1 0 1⟩ | ||
104976/104975 | 0.01649 | (2*32)4/(52*13*17*19) | [4 8 -2 0 0 0 -1 -1 -1⟩ | S324 | |
165376/165375 | 0.01047 | (29*17*19)/(33*53*72) | [9 -3 -3 -2 0 0 1 1⟩ | Decimillisma | |
228096/228095 | 0.007590 | (28*34*11)/(5*74*19) | [8 4 -1 -4 1 0 0 -1⟩ | ||
601426/601425 | 0.002879 | (2*72*17*192)/(37*52*11) | [1 -7 -2 2 -1 0 1 2⟩ | ||
633556/633555 | 0.002733 | (22*7*113*17)/(33*5*13*192) | [2 -3 -1 1 3 -1 1 -2⟩ | ||
709632/709631 | 0.002440 | (210*32*7*11)/(133*17*19) | [10 2 0 1 1 -3 -1 -1⟩ | ||
5909761/5909760 | 0.0002929 | (11*13*17)2/(28*35*5*19) | [-8 -5 -1 0 2 2 2 -1⟩ | S2431 | |
11859211/11859210 | 0.0001460 | (7*13*194)/(2*34*5*114) | [-1 -4 -1 1 -4 1 0 4⟩ | ||
23-limit (complete) | |||||
23/22 | 76.956 | 23/(2*11) | [-1 0 0 0 -1 0 0 0 1⟩ | Greater vicesimotertial semitone | |
24/23 | 73.681 | (23*3)/23 | [3 1 0 0 0 0 0 0 -1⟩ | Small vicesimotertial semitone | |
46/45 | 38.051 | (2*23)/(32*5) | [1 -2 -1 0 0 0 0 0 1⟩ | Vicesimotertial 1/5-tone | |
69/68 | 25.274 | (3*23)/(22*17) | [-2 1 0 0 0 0 -1 0 1⟩ | Large vicesimotertial 1/8-tone | |
70/69 | 24.910 | (2*5*7)/(3*23) | [1 -1 1 1 0 0 0 0 -1⟩ | Small vicesimotertial 1/8-tone | |
92/91 | 18.921 | (22*23)/(7*13) | [2 0 0 -1 0 -1 0 0 1⟩ | ||
115/114 | 15.120 | (5*23)/(2*3*19) | [-1 -1 1 0 0 0 0 -1 1⟩ | ||
161/160 | 10.787 | (7*23)/(25*5) | [-5 0 -1 1 0 0 0 0 1⟩ | ||
162/161 | 10.720 | (2*34)/(7*23) | [1 4 0 -1 0 0 0 0 -1⟩ | ||
208/207 | 8.3433 | (24*13)/(32*23) | [4 -2 0 0 0 1 0 0 -1⟩ | ||
231/230 | 7.5108 | (3*7*11)/(2*5*23) | [-1 1 -1 1 1 0 0 0 -1⟩ | ||
253/252 | 6.8564 | (11*23)/((2*3)2*7) | [-2 -2 0 -1 1 0 0 0 1⟩ | ||
276/275 | 6.2840 | (22*3*23)/(52*11) | [2 1 -2 0 -1 0 0 0 1⟩ | ||
300/299 | 5.7804 | ((2*5)2*3)/(13*23) | [2 1 2 0 0 -1 0 0 -1⟩ | ||
323/322 | 5.3682 | (17*19)/(2*7*23) | [-1 0 0 -1 0 0 1 1 -1⟩ | ||
391/390 | 4.4334 | (17*23)/(2*3*5*13) | [-1 -1 -1 0 0 -1 1 0 1⟩ | ||
392/391 | 4.4221 | (23*72)/(17*23) | [3 0 0 2 0 0 -1 0 -1⟩ | ||
460/459 | 3.7676 | (22*5*23)/(33*17) | [2 -3 1 0 0 0 -1 0 1⟩ | ||
484/483 | 3.5806 | (2*11)2/(3*7*23) | [2 -1 0 -1 2 0 0 0 -1⟩ | S22 | |
507/506 | 3.4180 | (3*132)/(2*11*23) | [-1 1 0 0 -1 2 0 0 -1⟩ | ||
529/528 | 3.2758 | 232/(24*3*11) | [-4 -1 0 0 -1 0 0 0 2⟩ | S23 | |
576/575 | 3.0082 | (23*3)2/(23*52) | [6 2 -2 0 0 0 0 0 -1⟩ | S24 | |
736/735 | 2.3538 | (25*23)/(3*5*72) | [5 -1 -1 -2 0 0 0 0 1⟩ | ||
760/759 | 2.2794 | (23*5*19)/(3*11*23) | [3 -1 1 0 -1 0 0 1 -1⟩ | ||
875/874 | 1.9797 | (53*7)/(2*19*23) | [-1 0 3 1 0 0 0 -1 -1⟩ | ||
897/896 | 1.9311 | (3*13*23)/(27*7) | [-7 1 0 -1 0 1 0 0 1⟩ | ||
1105/1104 | 1.5674 | (5*13*17)/(24*3*23) | [-4 -1 1 0 0 1 1 0 -1⟩ | ||
1197/1196 | 1.4469 | (32*17*19)/(22*13*23) | [-2 2 0 0 0 -1 1 1 -1⟩ | ||
1288/1287 | 1.3446 | (23*7*23)/(32*11*13) | [3 -2 0 1 -1 -1 0 0 1⟩ | ||
1496/1495 | 1.1576 | (23*11*17)/(5*13*23) | [3 0 -1 0 1 -1 1 0 -1⟩ | ||
1863/1862 | 0.92952 | (34*23)/(2*72*19) | [-1 4 0 -2 0 0 0 -1 1⟩ | ||
2024/2023 | 0.85556 | (23*11*23)/(7*172) | [3 0 0 -1 1 0 -2 0 1⟩ | ||
2025/2024 | 0.85514 | (32*5)2/(23*11*23) | [-3 4 2 0 -1 0 0 0 -1⟩ | S45 | |
2185/2184 | 0.79251 | (5*19*23)/(23*3*7*13) | [-3 -1 1 -1 0 -1 0 1 1⟩ | ||
2300/2299 | 0.75287 | (22*52*23)/(112*19) | [2 0 2 0 -2 0 0 -1 1⟩ | ||
2646/2645 | 0.65441 | (2*33*72)/(5*232) | [1 3 -1 2 0 0 0 0 -2⟩ | ||
2737/2736 | 0.63265 | (7*17*23)/(24*32*19) | [-4 -2 0 1 0 0 1 -1 1⟩ | ||
3060/3059 | 0.56586 | (22*32*5*17)/(7*19*23) | [2 2 1 -1 0 0 1 -1 -1⟩ | ||
3381/3380 | 0.51212 | (3*72*23)/(22*5*132) | [-2 1 -1 2 0 -2 0 0 1⟩ | ||
3520/3519 | 0.49190 | (26*5*11)/(32*17*23) | [6 -2 1 0 1 0 -1 0 -1⟩ | ||
3888/3887 | 0.44533 | (24*35)/(132*23) | [4 5 0 0 0 -2 0 0 -1⟩ | ||
4693/4692 | 0.36893 | (13*192)/(22*3*17*23) | [-2 -1 0 0 0 1 -1 2 -1⟩ | ||
4761/4760 | 0.36367 | (3*23)2/(23*5*7*17) | [-3 2 -1 -1 0 0 -1 0 2⟩ | S69 | |
5083/5082 | 0.34063 | (13*17*23)/(2*3*7*112) | [-1 -1 0 -1 -2 1 1 0 1⟩ | ||
7866/7865 | 0.22010 | (2*32*19*23)/(5*112*13) | [1 2 -1 0 -2 -1 0 1 1⟩ | ||
8281/8280 | 0.20907 | (7*13)2/(23*32*5*23) | [-3 -2 -1 2 0 2 0 0 -1⟩ | S91 | |
8625/8624 | 0.20073 | (3*53*23)/(24*72*11) | [-4 1 3 -2 -1 0 0 0 1⟩ | ||
10626/10625 | 0.16293 | (2*3*7*11*23)/(54*17) | [1 1 -4 1 1 0 -1 0 1⟩ | ||
11271/11270 | 0.15361 | (3*13*172)/(2*5*72*23) | [-1 1 -1 -2 0 1 2 0 -1⟩ | ||
11662/11661 | 0.14846 | (2*73*17)/(3*132*23) | [1 0 0 3 0 -2 1 0 -1⟩ | ||
12168/12167 | 0.14228 | (23*32*132)/(233) | [3 2 0 0 0 2 0 0 -3⟩ | ||
16929/16928 | 0.10227 | (34*11*19)/(25*232) | [-5 4 0 0 1 0 0 1 -2⟩ | ||
19551/19550 | 0.088552 | (3*73*19)/(2*52*17*23) | [-1 1 -2 3 0 0 -1 1 -1⟩ | ||
21505/21504 | 0.080506 | (5*11*17*23)/(210*3*7) | [-10 -1 1 -1 1 0 1 0 1⟩ | ||
21736/21735 | 0.079650 | (23*11*13*19)/(33*5*7*23) | [3 -3 -1 -1 1 1 0 1 -1⟩ | ||
23276/23275 | 0.074380 | (22*11*232)/(52*72*19) | [2 0 -2 -2 1 0 0 -1 2⟩ | ||
25025/25024 | 0.069182 | (52*7*11*13)/(26*17*23) | [-6 0 2 1 1 1 -1 0 -1⟩ | ||
25921/25920 | 0.066790 | (7*23)2/(26*34*5) | [-6 -4 -1 2 0 0 0 0 2⟩ | S161 | |
43264/43263 | 0.040016 | (24*13)2/(32*11*19*23) | [8 -2 0 0 -1 2 0 -1 -1⟩ | S208 | |
52326/52325 | 0.033086 | (2*34*17*19)/(52*7*13*23) | [1 4 -2 -1 0 -1 1 1 -1⟩ | ||
71875/71874 | 0.024087 | (55*23)/(2*33*113) | [-1 -3 5 0 -3 0 0 0 1⟩ | ||
75141/75140 | 0.023040 | (33*112*23)/(22*5*13*172) | [-2 3 -1 0 2 -1 -2 0 1⟩ | ||
76545/76544 | 0.022617 | (37*5*7)/(28*13*23) | [-8 7 1 1 0 -1 0 0 -1⟩ | ||
104329/104328 | 0.016594 | (17*19)2/(23*34*7*23) | [-3 -4 0 -1 -1 0 2 2 -1⟩ | S323 | |
122452/122451 | 0.014138 | (22*113*23)/(3*74*17) | [2 -1 0 -4 3 0 -1 0 1⟩ | ||
126225/126224 | 0.013716 | (33*52*11*17)/(24*73*23) | [-4 3 2 -3 1 0 1 0 -1⟩ | ||
152881/152880 | 0.011324 | (17*23)2/(24*3*5*72*13) | [-4 -1 -1 -2 0 -1 2 0 2⟩ | S391 | |
202125/202124 | 0.0085652 | (3*53*72*11)/(22*133*23) | [-2 1 3 2 1 -3 0 0 -1⟩ | ||
264385/264384 | 0.0065482 | (5*112*19*23)/(26*35*17) | [-6 -5 1 0 2 0 -1 1 1⟩ | ||
282625/282624 | 0.0061256 | (53*7*17*19)/(212*3*23) | [-12 -1 3 1 0 0 1 1 -1⟩ | ||
328510/328509 | 0.0052700 | (2*5*7*13*192)/(3*23)3 | [1 -3 1 1 0 1 0 0 -3⟩ | ||
2023425/2023424 | 0.00085560 | (32*52*17*232)/(213*13*19) | [-13 2 2 0 0 -1 1 -1 2⟩ | ||
4096576/4096575 | 0.00042261 | (23*11*23)2/(34*52*7*172) | [6 -4 -2 -1 2 0 -2 0 2⟩ | S2024 | |
5142501/5142500 | 0.00033665 | (33*72*132*23)/(22*54*112*17) | [-2 3 -4 2 -2 2 -1 0 1⟩ | ||
29-limit (incomplete) | |||||
29/28 | 60.751 | 29/(22*7) | Large vicesimononal 1/4-tone | ||
30/29 | 58.692 | (2*3*5)/29 | Small vicesimononal 1/4-tone | ||
58/57 | 30.109 | (2*29)/(3*19) | |||
88/87 | 19.786 | (23*11)/(3*29) | |||
116/115 | 14.989 | (22*29)/(5*23) | |||
117/116 | 14.860 | (33*13)/(22*29) | |||
145/144 | 11.981 | (5*29)/(24*32) | |||
175/174 | 9.9211 | (52*7)/(2*3*29) | |||
204/203 | 8.5073 | ||||
232/231 | 7.4783 | ||||
261/260 | 6.6458 | ||||
290/289 | 5.9801 | ||||
320/319 | 5.4186 | ||||
378/377 | 4.5861 | ||||
406/405 | 4.2694 | ||||
494/493 | 3.5081 | ||||
551/550 | 3.1448 | ||||
552/551 | 3.1391 | ||||
609/608 | 2.8451 | ||||
638/637 | 2.7157 | ||||
726/725 | 2.3863 | ||||
31-limit (incomplete) | |||||
31/30 | 56.767 | 31/(2*3*5) | Large tricesimoprimal quartertone | ||
32/31 | 54.964 | 25/31 | Small tricesimoprimal quartertone, 31st subharmonic | ||
63/62 | 27.700 | (32*7)/(2*31) | |||
93/92 | 18.716 | (3*31)/(22*23) | |||
125/124 | 13.906 | (53)/(22*31) | Twizzler | ||
621/620 | 2.7901 | (3³*23)/(2²*5*31) | Owowhatsthisma | ||
3969/3968 | 0.43624 | (34*72)/(27*31) | Yunzee comma | S63 | |
37-limit (incomplete) | |||||
37/36 | 47.434 | 37/(22*32) | Large 37-limit quartertone, 37th-partial chroma | ||
38/37 | 46.169 | (2*19)/37 | Small 37-limit quartertone | ||
75/74 | 23.238 | (3*52)/(2*37) | |||
41-limit (incomplete) | |||||
41/40 | 42.749 | 41/(23*5) | Large 41-limit fifth-tone | ||
42/41 | 41.719 | (2*3*7)/41 | Small 41-limit fifth-tone | ||
82/81 | 21.242 | (2*41)/34 | 41st-partial chroma | ||
43-limit (incomplete) | |||||
43/42 | 40.737 | 43/(2*3*7) | Large 43-limit fifth-tone | ||
44/43 | 39.800 | (22*11)/43 | Small 43-limit fifth-tone | ||
86/85 | 20.249 | (2*43)/(5*17) | |||
87/86 | 20.014 | (3*29)/(2*43) | |||
129/128 | 13.473 | (3*43)/27 | 43rd-partial chroma | ||
47-limit (incomplete) | |||||
47/46 | 37.232 | 47/(2*23) | |||
48/47 | 36.448 | (24*3)/47 | |||
94/93 | 18.516 | (2*47)/(3*31) | |||
95/94 | 18.320 | (5*19)/(2*47) | |||
53-limit (incomplete) | |||||
53/52 | 32.977 | 53/(22*13) | |||
54/53 | 32.360 | (2*33)/53 | |||
59-limit (incomplete) | |||||
59/58 | 29.594 | 59/(2*29) | |||
60/59 | 29.097 | (22*3*5)/59 | |||
61-limit (incomplete) | |||||
61/60 | 28.616 | 61/(22*3*5) | |||
62/61 | 28.151 | (2*31)/61 | |||
67-limit (incomplete) | |||||
67/66 | 26.034 | 67/(2*3*11) | |||
68/67 | 25.648 | (22*17)/67 | |||
71-limit (incomplete) | |||||
71/70 | 24.557 | 71/(2*5*7) | |||
72/71 | 24.213 | (23*32)/71 | |||
73-limit (incomplete) | |||||
73/72 | 23.879 | 73/(23*32) | |||
74/73 | 23.555 | (2*37)/73 | |||
79-limit (incomplete) | |||||
79/78 | 22.054 | 79/(2*3*13) | |||
80/79 | 21.777 | (24*5)/79 | |||
83-limit (incomplete) | |||||
83/82 | 20.985 | 83/(2*41) | |||
84/83 | 20.734 | (22*3*7)/83 | |||
89-limit (incomplete) | |||||
89/88 | 19.562 | 89/(23*11) | |||
90/89 | 19.344 | (2*32*5)/89 | |||
97-limit (incomplete) | |||||
97/96 | 17.940 | 97/(25*3) | |||
98/97 | 17.756 | (2*72)/97 | |||
101-limit (incomplete) | |||||
101/100 | 17.226 | 101/(22*52) | |||
102/101 | 17.057 | (2*3*17)/101 | |||
7777/7776 | 0.223 | 7*11*101/(25*35) |
See also
Notes
- ↑ Denoted by s-expressions, where sk is defined as (k/(k - 1))/((k + 1)/k). See square superparticular for details.
External links
- List of intervals on the Huygens-Fokker Foundation website