User:Ganaram inukshuk/Sandbox: Difference between revisions
No edit summary |
Templat testing |
||
Line 2: | Line 2: | ||
== Template test area== | == Template test area== | ||
{{JI ratios in ED|ED= | {{JI ratios in ED|ED=72|Prime Limit=23}} | ||
{{JI ratios in ED|ED=5|Prime Limit=5}} | {{JI ratios in ED|ED=5|Prime Limit=5}} |
Revision as of 00:13, 26 January 2024
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Template test area
Degree | Cents | Approximated JI intervals | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2-limit | 3-limit | 5-limit | 7-limit | 11-limit | 13-limit | 17-limit | 19-limit | 23-limit | ||
0 | 0.000 | 1/1 | ||||||||
1 | 16.667 | 96/95 | ||||||||
2 | 33.333 | 49/48 | 56/55 | 52/51 | ||||||
3 | 50.000 | 36/35 | 33/32 | 34/33 35/34 |
||||||
4 | 66.667 | 25/24 | 28/27 | 80/77 | 26/25 27/26 |
|||||
5 | 83.333 | 21/20 | 22/21 | |||||||
6 | 100.000 | 52/49 | 17/16 18/17 |
|||||||
7 | 116.667 | 16/15 | 15/14 | |||||||
8 | 133.333 | 27/25 | ||||||||
9 | 150.000 | 12/11 | ||||||||
10 | 166.667 | 11/10 | 56/51 | |||||||
11 | 183.333 | 10/9 | 49/44 | |||||||
12 | 200.000 | 9/8 | 28/25 | 64/57 | ||||||
13 | 216.667 | 25/22 | 17/15 | 26/23 | ||||||
14 | 233.333 | 8/7 | 55/48 | 39/34 | ||||||
15 | 250.000 | 15/13 52/45 |
22/19 | |||||||
16 | 266.667 | 7/6 | 64/55 | |||||||
17 | 283.333 | 33/28 | 20/17 | 46/39 | ||||||
18 | 300.000 | 25/21 | 19/16 | |||||||
19 | 316.667 | 6/5 | ||||||||
20 | 333.333 | 40/33 | 17/14 | 23/19 | ||||||
21 | 350.000 | 49/40 60/49 |
11/9 27/22 |
|||||||
22 | 366.667 | 26/21 | 21/17 68/55 |
|||||||
23 | 383.333 | 5/4 | 56/45 | 96/77 | ||||||
24 | 400.000 | 44/35 | 34/27 | 24/19 | ||||||
25 | 416.667 | 80/63 | 14/11 | 33/26 | 51/40 | 88/69 | ||||
26 | 433.333 | 9/7 | 50/39 | |||||||
27 | 450.000 | 35/27 | 13/10 | 22/17 | 57/44 | |||||
28 | 466.667 | 21/16 64/49 |
72/55 | 17/13 | ||||||
29 | 483.333 | 33/25 | 45/34 | |||||||
30 | 500.000 | 4/3 | ||||||||
31 | 516.667 | 27/20 | 35/26 | |||||||
32 | 533.333 | 49/36 | 15/11 | 34/25 | 19/14 | |||||
33 | 550.000 | 48/35 | 11/8 | |||||||
34 | 566.667 | 25/18 | 18/13 | 68/49 | ||||||
35 | 583.333 | 7/5 | 88/63 | 80/57 | ||||||
36 | 600.000 | 17/12 24/17 |
||||||||
37 | 616.667 | 10/7 | 63/44 | 57/40 | ||||||
38 | 633.333 | 36/25 | 13/9 | 49/34 | ||||||
39 | 650.000 | 35/24 | 16/11 | |||||||
40 | 666.667 | 72/49 | 22/15 | 25/17 | 28/19 | |||||
41 | 683.333 | 40/27 | 52/35 | |||||||
42 | 700.000 | 3/2 | ||||||||
43 | 716.667 | 50/33 | 68/45 | |||||||
44 | 733.333 | 32/21 49/32 |
55/36 | 26/17 | ||||||
45 | 750.000 | 54/35 | 20/13 | 17/11 | 88/57 | |||||
46 | 766.667 | 14/9 | 39/25 | |||||||
47 | 783.333 | 63/40 | 11/7 | 52/33 | 80/51 | 69/44 | ||||
48 | 800.000 | 35/22 | 27/17 | 19/12 | ||||||
49 | 816.667 | 8/5 | 45/28 | 77/48 | ||||||
50 | 833.333 | 21/13 | 34/21 55/34 |
|||||||
51 | 850.000 | 49/30 80/49 |
18/11 44/27 |
|||||||
52 | 866.667 | 33/20 | 28/17 | 38/23 | ||||||
53 | 883.333 | 5/3 | ||||||||
54 | 900.000 | 42/25 | 32/19 | |||||||
55 | 916.667 | 56/33 | 17/10 | 39/23 | ||||||
56 | 933.333 | 12/7 | 55/32 | |||||||
57 | 950.000 | 26/15 45/26 |
19/11 | |||||||
58 | 966.667 | 7/4 | 96/55 | 68/39 | ||||||
59 | 983.333 | 44/25 | 30/17 | 23/13 | ||||||
60 | 1000.000 | 16/9 | 25/14 | 57/32 | ||||||
61 | 1016.667 | 9/5 | 88/49 | |||||||
62 | 1033.333 | 20/11 | 51/28 | |||||||
63 | 1050.000 | 11/6 | ||||||||
64 | 1066.667 | 50/27 | ||||||||
65 | 1083.333 | 15/8 | 28/15 | |||||||
66 | 1100.000 | 49/26 | 17/9 32/17 |
|||||||
67 | 1116.667 | 40/21 | 21/11 | |||||||
68 | 1133.333 | 48/25 | 27/14 | 77/40 | 25/13 52/27 |
|||||
69 | 1150.000 | 35/18 | 64/33 | 33/17 68/35 |
||||||
70 | 1166.667 | 96/49 | 55/28 | 51/26 | ||||||
71 | 1183.333 | 95/48 | ||||||||
72 | 1200.000 | 2/1 |
Degree | Cents | Approximated JI intervals | ||
---|---|---|---|---|
2-limit | 3-limit | 5-limit | ||
0 | 0.000 | 1/1 | ||
1 | 240.000 | 9/8 32/27 |
10/9 | |
2 | 480.000 | 4/3 | 27/20 32/25 | |
3 | 720.000 | 3/2 | 25/16 40/27 | |
4 | 960.000 | 16/9 27/16 |
9/5 | |
5 | 1200.000 | 2/1 |
Degree | Cents | Approximated JI intervals | ||
---|---|---|---|---|
3-limit | 5-limit | 7-limit | ||
0 | 0.000 | 1/1 | ||
1 | 146.304 | 27/25 | ||
2 | 292.608 | 25/21 | ||
3 | 438.913 | 9/7 35/27 | ||
4 | 585.217 | 7/5 | ||
5 | 731.521 | 75/49 | ||
6 | 877.825 | 5/3 | 81/49 | |
7 | 1024.130 | 9/5 | 49/27 | |
8 | 1170.434 | 49/25 | ||
9 | 1316.738 | 15/7 | ||
10 | 1463.042 | 7/3 81/35 | ||
11 | 1609.347 | 63/25 | ||
12 | 1755.651 | 25/9 | ||
13 | 1901.955 | 3/1 |
Degree | Cents | Approximated JI intervals | ||
---|---|---|---|---|
3-limit | 5-limit | 7-limit | ||
0 | 0.000 | 1/1 | ||
1 | 203.910 | 9/8 |
Generalized ET/ED intro
For nonoctave equaves: k equal divisions of p/q (abbreviated kedp/q) is a non-octave tuning system based on dividing p/q into k equal pieces of exactly/about s¢ each. Each step of kedp/q represents the frequency ratio of (p/q)1/k or the kth root of p/q.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Expanded MOS intro
The following pieces of information may be worth adding:
- Distinguishing between TAMNAMS names from other, noteworthy non-TAMNAMS names. Equave-agnostic names can be treated as TAMNAMS name for appropriate mosses (EG, 4L 1s).
- The specific step pattern for the true mos. (The template will have a link to the page for rotations.)
- Simple edos (or ed<p/q>) that support the mos.
- Support for TAMEX names, or how the mos relates to another, ancestral TAMNAMS-named mos. Extensions include chromatic, enharmonic, subchromatic, and descendant. This requires standardizing the naming scheme for descendant mosses before it can be added.
- TAMEX is short for temperament-agnostic moment-of-symmetry scale extension naming system.
- Whether the mos exhibits Rothenberg propriety.
Base wording
xL ys<p/q>, named mosname (also called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), repeating every equave. Modes of this scale are based on the step pattern of step-pattern. Equal divisions of the equave that support this scale include basic-ed, hard-ed, and soft-ed. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
nxL nys<p/q>, named mosname (also called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale, containing nx large steps(s) and ny small step(s), with a period of x large step(s) and y small steps(s) that repeats every equave-fraction, or n times every equave. Modes of this scale are based on the step pattern of step-pattern. Equal divisions of the equave that support this scale include basic-ed, hard-ed, and soft-ed. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
Supplemental info
For monosmall and monosmall-per-period mosses: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
For mosses that descend from a TAMNAMS-named mos: xL ys<p/q> is a kth-order descendant scale of zL ws<p/q>, an extension of zL ws<p/q> scales with a step-ratio-range step ratio.
Examples
5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Equal divisions of the octave that support this scale's step pattern include 17edo, 22edo, and 29edo. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.
Mbox template test
These would be their own templates.
Stub page:
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
Page needs cleanup (with example reason):
This article may require cleanup.
Reason: page contains advanced concepts. You can edit this page to improve it. |
Page under construction:
This article is being created or in the process of being rewritten, and is not yet ready for use. You are welcome to help with editing this page. |
Math symbols test
Isolated symbols
[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]
Sample text
Pulled from muddle page.
Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.
The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.
Interval and degree tables
The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.
Mode | UDP | Rotational order | mosunison | 1-mosstep | 2-mosstep | 3-mosstep | 4-mosstep | 5-mosstep | 6-mosstep | mosoctave |
---|---|---|---|---|---|---|---|---|---|---|
LssLsss | 6|0 | 0 | 0 | L | L+s | L+2s | 2L+2s | 2L+3s | 2L+4s | 2L+5s |
LsssLss | 5|1 | 3 | 0 | L | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLssLss | 4|2 | 6 | 0 | s | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLsssLs | 3|3 | 2 | 0 | s | L+s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLssLs | 2|4 | 5 | 0 | s | 2s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLsssL | 1|5 | 1 | 0 | s | 2s | L+2s | L+3s | L+4s | L+5s | 2L+5s |
sssLssL | 0|6 | 4 | 0 | s | 2s | 3s | L+3s | L+4s | L+5s | 2L+5s |
Mode | UDP | Rotational order | 0-mosdegree | 1-mosdegree | 2-mosdegree | 3-mosdegree | 4-mosdegree | 5-mosdegree | 6-mosdegree | 7-mosdegree |
---|---|---|---|---|---|---|---|---|---|---|
LssLsss | 6|0 | 0 | perfect | major | major | perfect | augmented | major | major | perfect |
LsssLss | 5|1 | 3 | perfect | major | major | perfect | perfect | major | major | perfect |
sLssLss | 4|2 | 6 | perfect | minor | major | perfect | perfect | major | major | perfect |
sLsssLs | 3|3 | 2 | perfect | minor | major | perfect | perfect | minor | major | perfect |
ssLssLs | 2|4 | 5 | perfect | minor | minor | perfect | perfect | minor | major | perfect |
ssLsssL | 1|5 | 1 | perfect | minor | minor | perfect | perfect | minor | minor | perfect |
sssLssL | 0|6 | 4 | perfect | minor | minor | diminished | perfect | minor | minor | perfect |
Note: don't merge cells on a table with sorting.
Mode | Mode name | UDP | Rotational order | mosunison | 1-mosstep | 2-mosstep | 3-mosstep | 4-mosstep | 5-mosstep | 6-mosstep | mosoctave |
---|---|---|---|---|---|---|---|---|---|---|---|
LssLsss | antilocrian | 6|0 | 0 | 0 | L | L+s | L+2s | 2L+2s | 2L+3s | 2L+4s | 2L+5s |
LsssLss | antiphrygian | 5|1 | 3 | 0 | L | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLssLss | anti-aeolian | 4|2 | 6 | 0 | s | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLsssLs | antidorian | 3|3 | 2 | 0 | s | L+s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLssLs | antimixolydian | 2|4 | 5 | 0 | s | 2s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLsssL | anti-ionian | 1|5 | 1 | 0 | s | 2s | L+2s | L+3s | L+4s | L+5s | 2L+5s |
sssLssL | antilydian | 0|6 | 4 | 0 | s | 2s | 3s | L+3s | L+4s | L+5s | 2L+5s |
Mode | Mode name | UDP | Rotational order | 0-mosdegree | 1-mosdegree | 2-mosdegree | 3-mosdegree | 4-mosdegree | 5-mosdegree | 6-mosdegree | 7-mosdegree |
---|---|---|---|---|---|---|---|---|---|---|---|
LssLsss | antilocrian | 6|0 | 0 | perfect | major | major | perfect | augmented | major | major | perfect |
LsssLss | antiphrygian | 5|1 | 3 | perfect | major | major | perfect | perfect | major | major | perfect |
sLssLss | anti-aeolian | 4|2 | 6 | perfect | minor | major | perfect | perfect | major | major | perfect |
sLsssLs | antidorian | 3|3 | 2 | perfect | minor | major | perfect | perfect | minor | major | perfect |
ssLssLs | antimixolydian | 2|4 | 5 | perfect | minor | minor | perfect | perfect | minor | major | perfect |
ssLsssL | anti-ionian | 1|5 | 1 | perfect | minor | minor | perfect | perfect | minor | minor | perfect |
sssLssL | antilydian | 0|6 | 4 | perfect | minor | minor | diminished | perfect | minor | minor | perfect |
Alternate mos tables
Pattern | Number of notes | Number of periods | Name | Prefix |
---|---|---|---|---|
1L 1s | 2 | 1 | trivial | triv- |
1L 1s | 2 | 1 | monowood | monowd- |
1L 2s | 3 | 1 | antrial | atri- |
2L 1s | 3 | 1 | trial | tri- |
1L 3s | 4 | 1 | antetric | atetra- |
2L 2s | 4 | 2 | biwood | biwd- |
3L 1s | 4 | 1 | tetric | tetra- |
1L 4s | 5 | 1 | pedal | ped- |
2L 3s | 5 | 1 | pentic | pent- |
3L 2s | 5 | 1 | antipentic | apent- |
4L 1s | 5 | 1 | manual | manu- |
1L 5s | 6 | 1 | antimachinoid | amech- |
2L 4s | 6 | 2 | anticitric | acitro- |
3L 3s | 6 | 3 | triwood | triwd- |
4L 2s | 6 | 2 | citric | citro- |
5L 1s | 6 | 1 | machinoid | mech- |
1L 6s | 7 | 1 | onyx | on- |
2L 5s | 7 | 1 | antidiatonic | pel- |
3L 4s | 7 | 1 | mosh | mosh- |
4L 3s | 7 | 1 | smitonic | smi- |
5L 2s | 7 | 1 | diatonic | none |
6L 1s | 7 | 1 | arch(a)eotonic | arch- |
1L 7s | 8 | 1 | antipine | apine- |
2L 6s | 8 | 2 | antiekic | anek- |
3L 5s | 8 | 1 | checkertonic | check- |
4L 4s | 8 | 4 | tetrawood; diminished | tetwd- |
5L 3s | 8 | 1 | oneirotonic | neiro- |
6L 2s | 8 | 2 | ekic | ek- |
7L 1s | 8 | 1 | pine | pine- |
1L 8s | 9 | 1 | antisubneutralic | ablu- |
2L 7s | 9 | 1 | balzano | bal- /bæl/ |
3L 6s | 9 | 3 | tcherepnin | cher- |
4L 5s | 9 | 1 | gramitonic | gram- |
5L 4s | 9 | 1 | semiquartal | cthon- |
6L 3s | 9 | 3 | hyrulic | hyru- |
7L 2s | 9 | 1 | superdiatonic | arm- |
8L 1s | 9 | 1 | subneutralic | blu- |
1L 9s | 10 | 1 | antisinatonic | asina- |
2L 8s | 10 | 2 | jaric | jara- |
3L 7s | 10 | 1 | sephiroid | seph- |
4L 6s | 10 | 2 | lime | lime- |
5L 5s | 10 | 5 | pentawood | penwd- |
6L 4s | 10 | 2 | lemon | lem- |
7L 3s | 10 | 1 | dicoid /'daɪkɔɪd/ | dico- |
8L 2s | 10 | 2 | taric | tara- |
9L 1s | 10 | 1 | sinatonic | sina- |
Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)
Generator | Bright gen. | Dark gen. | L | s | L/s | Ranges of mosses | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
1\2 | 600.000 | 600.000 | 1 | 1 | 1.000 | ||||||
6\11 | 654.545 | 545.455 | 6 | 5 | 1.200 | 2L 5s range (includes 2L 7s and 7L 2s) | |||||
5\9 | 666.667 | 533.333 | 5 | 4 | 1.250 | ||||||
9\16 | 675.000 | 525.000 | 9 | 7 | 1.286 | ||||||
4\7 | 685.714 | 514.286 | 4 | 3 | 1.333 | Basic 2L 3s | |||||
11\19 | 694.737 | 505.263 | 11 | 8 | 1.375 | 5L 2s range (includes 7L 5s and 5L 7s) | |||||
7\12 | 700.000 | 500.000 | 7 | 5 | 1.400 | ||||||
10\17 | 705.882 | 494.118 | 10 | 7 | 1.429 | ||||||
3\5 | 720.000 | 480.000 | 3 | 2 | 1.500 | Basic 2L 1s | |||||
11\18 | 733.333 | 466.667 | 11 | 7 | 1.571 | 5L 3s range | |||||
8\13 | 738.462 | 461.538 | 8 | 5 | 1.600 | ||||||
13\21 | 742.857 | 457.143 | 13 | 8 | 1.625 | ||||||
5\8 | 750.000 | 450.000 | 5 | 3 | 1.667 | Basic 3L 2s | |||||
12\19 | 757.895 | 442.105 | 12 | 7 | 1.714 | 3L 5s range | |||||
7\11 | 763.636 | 436.364 | 7 | 4 | 1.750 | ||||||
9\14 | 771.429 | 428.571 | 9 | 5 | 1.800 | ||||||
2\3 | 800.000 | 400.000 | 2 | 1 | 2.000 | Basic 1L 1s (dividing line between 2L 1s and 1L 2s) | |||||
9\13 | 830.769 | 369.231 | 9 | 4 | 2.250 | 3L 4s range (includes 3L 7s and 7L 3s) | |||||
7\10 | 840.000 | 360.000 | 7 | 3 | 2.333 | ||||||
12\17 | 847.059 | 352.941 | 12 | 5 | 2.400 | ||||||
5\7 | 857.143 | 342.857 | 5 | 2 | 2.500 | Basic 3L 1s | |||||
13\18 | 866.667 | 333.333 | 13 | 5 | 2.600 | 4L 3s range | |||||
8\11 | 872.727 | 327.273 | 8 | 3 | 2.667 | ||||||
11\15 | 880.000 | 320.000 | 11 | 4 | 2.750 | ||||||
3\4 | 900.000 | 300.000 | 3 | 1 | 3.000 | Basic 1L 2s | |||||
10\13 | 923.077 | 276.923 | 10 | 3 | 3.333 | Range of 1L 4s (includes 4L 5s and 5L 4s) | |||||
7\9 | 933.333 | 266.667 | 7 | 2 | 3.500 | ||||||
11\14 | 942.857 | 257.143 | 11 | 3 | 3.667 | ||||||
4\5 | 960.000 | 240.000 | 4 | 1 | 4.000 | Basic 1L 4s | |||||
9\11 | 981.818 | 218.182 | 9 | 2 | 4.500 | Range of 4L 1s (includes 5L 1s and 1L 5s) | |||||
5\6 | 1000.000 | 200.000 | 5 | 1 | 5.000 | ||||||
6\7 | 1028.571 | 171.429 | 6 | 1 | 6.000 | ||||||
1\1 | 1200.000 | 0.000 | 1 | 0 | → inf |
Module and template sandbox
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |