Hemifamity family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 160934173 - Original comment: **
 
(66 intermediate revisions by 10 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The '''hemifamity family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[5120/5103]] ({{monzo|legend=1| 10 -6 1 -1 }}), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, [[36/35]] into two equal steps, each representing [[81/80]]~[[64/63]], the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same [[chain of fifths]] inflected by the same comma to the opposite sides. In addition we may identify [[10/7]] by the augmented fourth (C–F#) and [[50/49]] by the [[Pythagorean comma]]. Hemifamity can be compared to [[garibaldi]], with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-09-07 16:22:01 UTC</tt>.<br>
 
: The original revision id was <tt>160934173</tt>.<br>
It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have [[5/4]] at the down major third (C–vE) and [[7/4]] at the down minor seventh (C–vBb).
: The revision comment was: <tt></tt><br>
 
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
== Hemifamity ==
<h4>Original Wikitext content:</h4>
[[Subgroup]]: 2.3.5.7
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">
 
===Vital statistics===
[[Comma list]]: [[5120/5103]]
c = 5120/5103
 
7-limit minimax: 3 and 7 1/7c sharp, 5 just
{{Mapping|legend=1| 1 0 0 10 | 0 1 0 -6 | 0 0 1 1 }}
9-limit minimax: 3 1/8c sharp, 5 just, 7 1/4c sharp
 
Lattice basis: 3/2 length 0.5670, 10/9 length 1.8063
: mapping generators: ~2, ~3, ~5
Angle(3/2, 10/9) = 82.112 degrees
 
Map to lattice: [&lt;0 1 2 -4|, &lt;0 0 1 1|]
[[Mapping to lattice]]: [{{val| 0 1 2 -4 }}, {{val| 0 0 1 1 }}]
EDOs: 99, 140, 239, 292, 490, 531</pre></div>
 
<h4>Original HTML content:</h4>
Lattice basis:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Hemifamity family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;br /&gt;
: 3/2 length = 0.5670, 10/9 length = 1.8063
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;a name="x--Vital statistics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Vital statistics&lt;/h3&gt;
: Angle (3/2, 10/9) = 82.112 degrees
c = 5120/5103&lt;br /&gt;
 
7-limit minimax: 3 and 7 1/7c sharp, 5 just&lt;br /&gt;
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144
9-limit minimax: 3 1/8c sharp, 5 just, 7 1/4c sharp&lt;br /&gt;
 
Lattice basis: 3/2 length 0.5670, 10/9 length 1.8063&lt;br /&gt;
[[Minimax tuning]]: c = 5120/5103
Angle(3/2, 10/9) = 82.112 degrees&lt;br /&gt;
* [[7-odd-limit]]: 3 and 7 1/7c sharp, 5 just
Map to lattice: [&amp;lt;0 1 2 -4|, &amp;lt;0 0 1 1|]&lt;br /&gt;
: {{monzo list| 1 0 0 0 | 10/7 1/7 1/7 -1/7 | 0 0 1 0 | 10/7 -6/7 1/7 6/7 }}
EDOs: 99, 140, 239, 292, 490, 531&lt;/body&gt;&lt;/html&gt;</pre></div>
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.7/3
* [[9-odd-limit]]: 3 1/8c sharp, 5 just, 7 1/4c sharp
: {{monzo list| 1 0 0 0 | 5/4 1/4 1/8 -1/8 | 0 0 1 0 | 5/2 -3/2 1/4 3/4 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.9/7
 
{{Optimal ET sequence|legend=1| 41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd }}
 
[[Badness]] (Smith): 0.153 × 10<sup>-3</sup>
 
[[Projection pair]]s: 7 5120/729
 
; Music
* [http://www.archive.org/details/Choraled ''Choraled''] [http://www.archive.org/download/Choraled/Genewardsmith-Choraled.mp3 play] by [[Gene Ward Smith]]
* [http://clones.soonlabel.com/public/micro/hemifamity27/hemifamity27-IF-20100917.mp3 ''Hemifamity27''] by [[Chris Vaisvil]]
 
=== Overview to extensions ===
==== 11- and 13-limit extensions ====
Strong extensions of hemifamity are [[#Pele|pele]], [[#Laka|laka]], [[#Akea|akea]], and [[#Lono|lono]]. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the [[11/8]] at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v<sup>3</sup>F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the [[13/11]] at the minor third (C–Eb), tempering out [[352/351]], [[847/845]], and [[2080/2079]].
 
==== Subgroup extensions ====
A notable 2.3.5.7.19 subgroup extension, counterpyth, is given right below.
 
=== Counterpyth ===
{{Main| Counterpyth }}
 
Developed analogous to [[parapyth]], counterpyth is an extension of hemifamity with an even milder fifth, as it finds [[19/15]] at the major third (C–E) and [[19/10]] at the major seventh (C–B). Notice the factorization {{nowrap| 5120/5103 {{=}} ([[400/399]])⋅([[1216/1215]]) }}. Other important ratios are [[21/19]] at the diminished third (C–Ebb) and [[19/14]] at the augmented third (C–E#).
 
It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.
 
Subgroup: 2.3.5.7.19
 
Comma list: 400/399, 1216/1215
 
Mapping: {{mapping| 1 0 0 10 -6 | 0 1 0 -6 5 | 0 0 1 1 1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452
 
{{Optimal ET sequence|legend=0| 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh }}
 
Badness (Smith): 0.212 × 10<sup>-3</sup>
 
== Pele ==
{{Main| Pele }}
{{See also| Pentacircle clan }}
 
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 441/440, 896/891
 
{{Mapping|legend=1| 1 0 0 10 17 | 0 1 0 -6 -10 | 0 0 1 1 1 }}
 
[[Mapping to lattice]]: [{{val| 0 1 4 -2 -6 }}, {{val| 0 0 -1 -1 -1 }}]
 
Lattice basis:
: 3/2 length = 0.3812, 56/55 length = 1.5893
: Angle(3/2, 56/55) = 90.4578 degrees
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647
 
[[Minimax tuning]]:  
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 17/10 0 1/10 0 -1/10 }}, {{monzo| 17/5 -2 6/5 0 -1/5 }}, {{monzo| 16/5 -2 3/5 0 2/5 }}, {{monzo| 17/5 -2 1/5 0 4/5 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.11/9
 
{{Optimal ET sequence|legend=1| 29, 41, 58, 87, 99e, 145, 186e }}
 
[[Badness]] (Smith): 0.648 × 10<sup>-3</sup>
 
[[Projection pair]]s: 7 5120/729 11 655360/59049
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 352/351, 364/363
 
Mapping: {{mapping| 1 0 0 10 17 22 | 0 1 0 -6 -10 -13 | 0 0 1 1 1 1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933
 
Minimax tuning:  
* 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
* 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9
 
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 145, 232 }}
 
Badness (Smith): 0.703 × 10<sup>-3</sup>
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 196/195, 256/255, 352/351, 364/363
 
Mapping: {{mapping| 1 0 0 10 17 22 8 | 0 1 0 -6 -10 -13 -1 | 0 0 1 1 1 1 -1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654
 
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 99ef, 145 }}
 
Badness (Smith): 0.930 × 10<sup>-3</sup>
 
== Laka ==
{{Main| Laka }}
 
Laka can be described as the {{nowrap| 41 & 53 & 58 }} temperament, tempering out [[540/539]]. [[Gene Ward Smith]] considered it to be a [[17-limit]] temperament, assigning †442/441 ({{nowrap| 41g & 53 & 58 }}) as the main extension. It should be noted that {{nowrap| 41 & 53g & 58 }} also makes for a possible extension.
 
<blockquote>
It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.
</blockquote>
—[[Graham Breed]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101682.html#101776 Yahoo! Tuning Group | ''Laka 17-limit minimax planar temperament'']</ref>
 
It makes most sense as a 2.3.5.7.11.13.19-[[subgroup]] temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.
 
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 540/539, 5120/5103
 
{{Mapping|legend=1| 1 0 0 10 -18 | 0 1 0 -6 15 | 0 0 1 1 -1 }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563
 
[[Minimax tuning]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 4/3 0 2/21 -1/21 1/21 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 2 0 3/7 2/7 -2/7 }}, {{monzo| 2 0 3/7 -5/7 5/7 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.11/7
 
{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee }}
 
[[Badness]] (Smith): 0.825 × 10<sup>-3</sup>
 
[[Projection pair]]s: 5120/729 11 14348907/1310720
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 352/351, 540/539, 729/728
 
Mapping: {{mapping| 1 0 0 10 -18 -13 | 0 1 0 -6 15 12 | 0 0 1 1 -1 -1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405
 
Minimax tuning:
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 13/8 -1/2 1/8 0 0 1/8 }}, {{monzo| 13/4 -3 5/4 0 0 1/4 }}, {{monzo| 7/2 0 1/2 0 0 -1/2 }}, {{monzo| 25/8 -9/2 5/8 0 0 13/8 }}, {{monzo| 13/4 -3 1/4 0 0 5/4 }}]
: unchanged-interval (eigenmonzo) basis: 2.11.13/7
 
{{Optimal ET sequence|legend=0| 41, 53, 58, 94, 111, 152f, 415dff }}*
 
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
 
Badness (Smith): 0.822 × 10<sup>-3</sup>
 
=== 2.3.5.7.11.13.19 subgroup ===
Subgroup: 2.3.5.7.11.13.19
 
Comma list: 352/351, 400/399, 456/455, 495/494
 
Mapping: {{mapping| 1 0 0 10 -18 -13 -6 | 0 1 0 -6 15 12 5 | 0 0 1 1 -1 -1 1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254
 
{{Optimal ET sequence|legend=0| 41, 53, 58h, 94, 111, 152f, 415dffhh }}*
 
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
 
Badness (Smith): 0.661 × 10<sup>-3</sup>
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 352/351, 442/441, 540/539, 561/560
 
Mapping: {{mapping| 1 0 0 10 -18 -13 32 | 0 1 0 -6 15 12 -22 | 0 0 1 1 -1 -1 3 }}
 
Minimax tuning:  
* 17-odd-limit
: [{{monzo| 1 0 0 0 0 0 0 }}, {{monzo| 13/12 0 0 1/12 1/6 -1/12 0 }}, {{monzo| -7/4 0 0 5/4 3/2 -5/4 0 }}, {{monzo| 7/4 0 0 3/4 1/2 -3/4 0 }}, {{monzo| 0 0 0 0 1 0 0 }}, {{monzo| 7/4 0 0 -1/4 1/2 1/4 0 }}, {{monzo| 35/12 0 0 23/12 5/6 -23/12 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.11.13/7
 
{{Optimal ET sequence|legend=0| 58, 94, 111, 152f, 205, 263df }}
 
Badness (Smith): 1.19 × 10<sup>-3</sup>
 
== Akea ==
[[File:Lattice Akea.png|thumb|Lattice for 13-limit akea.]]
[[File:Lattice Akea-commatic.png|thumb|Ditto, but rearranged to basis {~2, ~3, ~81/80}.]]
 
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 385/384, 2200/2187
 
{{Mapping|legend=1| 1 0 0 10 -3 | 0 1 0 -6 7 | 0 0 1 1 -2 }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273
 
[[Minimax tuning]]:  
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5.11/5
 
{{Optimal ET sequence|legend=1| 34, 41, 53, 87, 140, 181, 321 }}
 
[[Badness]] (Smith): 0.998 × 10<sup>-3</sup>
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 325/324, 352/351, 385/384
 
Mapping: {{mapping| 1 0 0 10 -3 2 | 0 1 0 -6 7 4 | 0 0 1 1 -2 -2 }}
 
Lattice basis:
: 3/2 length = 0.5354, 27/20 length = 1.0463
: Angle (3/2, 27/20) = 80.5628 degrees
 
Mapping to lattice: [{{val| 0 1 3 -3 1 -2 }}, {{val| 0 0 -1 -1 2 2 }}]
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158
 
Minimax tuning:
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 0 }}, {{monzo| 26/9 0 -7/9 1/9 2/3 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.7/5.11/5
 
{{Optimal ET sequence|legend=0| 34, 41, 46, 53, 87, 140, 321, 461e }}
 
Badness (Smith): 0.822 × 10<sup>-3</sup>
 
Scales: [[akea46_13]]
 
== Lono ==
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 176/175, 5120/5103
 
{{Mapping|legend=1| 1 0 0 10 6 | 0 1 0 -6 -6 | 0 0 1 1 3 }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932
 
{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 111, 268cd }}
 
[[Badness]] (Smith): 1.18 × 10<sup>-3</sup>
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 176/175, 351/350, 847/845
 
Mapping: {{mapping| 1 0 0 10 6 11 | 0 1 0 -6 -6 -9 | 0 0 1 1 3 3 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277
 
{{Optimal ET sequence|legend=0| 46, 53, 58, 99, 104c, 111, 268cd }}
 
Badness (Smith): 0.908 × 10<sup>-3</sup>
 
== Kapo ==
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 3025/3024, 5120/5103
 
{{Mapping|legend=1| 1 0 0 10 7 | 0 1 1 -5 -2 | 0 0 2 2 -1 }}
 
: mapping generators: ~2, ~3, ~128/99
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516
 
[[Minimax tuning]]:
* [[11-odd-limit]]:
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 8/5 2/5 0 -1/15 -2/15 }}, {{monzo| 14/5 6/5 0 7/15 -16/15 }}, {{monzo| 16/5 -6/5 0 13/15 -4/15 }}, {{monzo| 16/5 -6/5 0 -2/15 11/15 }}]
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7.11/9
 
{{Optimal ET sequence|legend=1| 41, 87, 111, 152, 239, 391 }}
 
[[Badness]] (Smith): 0.994 × 10<sup>-3</sup>
 
== Namaka ==
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 3388/3375, 5120/5103
 
{{Mapping|legend=1| 1 0 0 10 -6 | 0 2 0 -12 9 | 0 0 1 1 1 }}
 
: mapping generators: ~2, ~400/231, ~5
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868
 
{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}
 
[[Badness]] (Smith): 1.74 × 10<sup>-3</sup>
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 352/351, 676/675, 847/845
 
Mapping: {{mapping| 1 0 0 10 -6 -1 | 0 2 0 -12 9 3 | 0 0 1 1 1 1 }}
 
Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606
 
{{Optimal ET sequence|legend=0| 29, 53, 58, 87, 111, 140, 198 }}
 
Badness (Smith): 0.781 × 10<sup>-3</sup>
 
== Notes ==
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Hemifamity family| ]] <!-- main article -->
[[Category:Hemifamity| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Listen]]

Latest revision as of 00:41, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The hemifamity family of rank-3 temperaments tempers out 5120/5103 (monzo[10 -6 1 -1), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, 36/35 into two equal steps, each representing 81/80~64/63, the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same chain of fifths inflected by the same comma to the opposite sides. In addition we may identify 10/7 by the augmented fourth (C–F#) and 50/49 by the Pythagorean comma. Hemifamity can be compared to garibaldi, with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.

It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have 5/4 at the down major third (C–vE) and 7/4 at the down minor seventh (C–vBb).

Hemifamity

Subgroup: 2.3.5.7

Comma list: 5120/5103

Mapping[1 0 0 10], 0 1 0 -6], 0 0 1 1]]

mapping generators: ~2, ~3, ~5

Mapping to lattice: [0 1 2 -4], 0 0 1 1]]

Lattice basis:

3/2 length = 0.5670, 10/9 length = 1.8063
Angle (3/2, 10/9) = 82.112 degrees

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144

Minimax tuning: c = 5120/5103

[[1 0 0 0, [10/7 1/7 1/7 -1/7, [0 0 1 0, [10/7 -6/7 1/7 6/7]
unchanged-interval (eigenmonzo) basis: 2.5.7/3
[[1 0 0 0, [5/4 1/4 1/8 -1/8, [0 0 1 0, [5/2 -3/2 1/4 3/4]
unchanged-interval (eigenmonzo) basis: 2.5.9/7

Optimal ET sequence41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd

Badness (Smith): 0.153 × 10-3

Projection pairs: 7 5120/729

Music

Overview to extensions

11- and 13-limit extensions

Strong extensions of hemifamity are pele, laka, akea, and lono. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the 11/8 at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v3F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the 13/11 at the minor third (C–Eb), tempering out 352/351, 847/845, and 2080/2079.

Subgroup extensions

A notable 2.3.5.7.19 subgroup extension, counterpyth, is given right below.

Counterpyth

Developed analogous to parapyth, counterpyth is an extension of hemifamity with an even milder fifth, as it finds 19/15 at the major third (C–E) and 19/10 at the major seventh (C–B). Notice the factorization 5120/5103 = (400/399)⋅(1216/1215). Other important ratios are 21/19 at the diminished third (C–Ebb) and 19/14 at the augmented third (C–E#).

It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.

Subgroup: 2.3.5.7.19

Comma list: 400/399, 1216/1215

Mapping: [1 0 0 10 -6], 0 1 0 -6 5], 0 0 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452

Optimal ET sequence: 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh

Badness (Smith): 0.212 × 10-3

Pele

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891

Mapping[1 0 0 10 17], 0 1 0 -6 -10], 0 0 1 1 1]]

Mapping to lattice: [0 1 4 -2 -6], 0 0 -1 -1 -1]]

Lattice basis:

3/2 length = 0.3812, 56/55 length = 1.5893
Angle(3/2, 56/55) = 90.4578 degrees

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647

Minimax tuning:

[[1 0 0 0 0, [17/10 0 1/10 0 -1/10, [17/5 -2 6/5 0 -1/5, [16/5 -2 3/5 0 2/5, [17/5 -2 1/5 0 4/5]
unchanged-interval (eigenmonzo) basis: 2.9/5.11/9

Optimal ET sequence29, 41, 58, 87, 99e, 145, 186e

Badness (Smith): 0.648 × 10-3

Projection pairs: 7 5120/729 11 655360/59049

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363

Mapping: [1 0 0 10 17 22], 0 1 0 -6 -10 -13], 0 0 1 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933

Minimax tuning:

  • 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
  • 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9

Optimal ET sequence: 29, 41, 46, 58, 87, 145, 232

Badness (Smith): 0.703 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 364/363

Mapping: [1 0 0 10 17 22 8], 0 1 0 -6 -10 -13 -1], 0 0 1 1 1 1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654

Optimal ET sequence: 29, 41, 46, 58, 87, 99ef, 145

Badness (Smith): 0.930 × 10-3

Laka

Laka can be described as the 41 & 53 & 58 temperament, tempering out 540/539. Gene Ward Smith considered it to be a 17-limit temperament, assigning †442/441 (41g & 53 & 58) as the main extension. It should be noted that 41 & 53g & 58 also makes for a possible extension.

It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.

Graham Breed[1]

It makes most sense as a 2.3.5.7.11.13.19-subgroup temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5120/5103

Mapping[1 0 0 10 -18], 0 1 0 -6 15], 0 0 1 1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563

Minimax tuning

[[1 0 0 0 0, [4/3 0 2/21 -1/21 1/21, [0 0 1 0 0, [2 0 3/7 2/7 -2/7, [2 0 3/7 -5/7 5/7]
unchanged-interval (eigenmonzo) basis: 2.5.11/7

Optimal ET sequence41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee

Badness (Smith): 0.825 × 10-3

Projection pairs: 5120/729 11 14348907/1310720

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 729/728

Mapping: [1 0 0 10 -18 -13], 0 1 0 -6 15 12], 0 0 1 1 -1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [13/8 -1/2 1/8 0 0 1/8, [13/4 -3 5/4 0 0 1/4, [7/2 0 1/2 0 0 -1/2, [25/8 -9/2 5/8 0 0 13/8, [13/4 -3 1/4 0 0 5/4]
unchanged-interval (eigenmonzo) basis: 2.11.13/7

Optimal ET sequence: 41, 53, 58, 94, 111, 152f, 415dff*

* optimal patent val: 205

Badness (Smith): 0.822 × 10-3

2.3.5.7.11.13.19 subgroup

Subgroup: 2.3.5.7.11.13.19

Comma list: 352/351, 400/399, 456/455, 495/494

Mapping: [1 0 0 10 -18 -13 -6], 0 1 0 -6 15 12 5], 0 0 1 1 -1 -1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254

Optimal ET sequence: 41, 53, 58h, 94, 111, 152f, 415dffhh*

* optimal patent val: 205

Badness (Smith): 0.661 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 442/441, 540/539, 561/560

Mapping: [1 0 0 10 -18 -13 32], 0 1 0 -6 15 12 -22], 0 0 1 1 -1 -1 3]]

Minimax tuning:

  • 17-odd-limit
[[1 0 0 0 0 0 0, [13/12 0 0 1/12 1/6 -1/12 0, [-7/4 0 0 5/4 3/2 -5/4 0, [7/4 0 0 3/4 1/2 -3/4 0, [0 0 0 0 1 0 0, [7/4 0 0 -1/4 1/2 1/4 0, [35/12 0 0 23/12 5/6 -23/12 0]
unchanged-interval (eigenmonzo) basis: 2.11.13/7

Optimal ET sequence: 58, 94, 111, 152f, 205, 263df

Badness (Smith): 1.19 × 10-3

Akea

Lattice for 13-limit akea.
Ditto, but rearranged to basis {~2, ~3, ~81/80}.

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2200/2187

Mapping[1 0 0 10 -3], 0 1 0 -6 7], 0 0 1 1 -2]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273

Minimax tuning:

[[1 0 0 0 0, [5/3 0 1/6 -1/6 0, [26/9 0 13/18 -7/18 -1/3, [26/9 0 -5/18 11/18 -1/3, [26/9 0 -5/18 -7/18 2/3]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence34, 41, 53, 87, 140, 181, 321

Badness (Smith): 0.998 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 385/384

Mapping: [1 0 0 10 -3 2], 0 1 0 -6 7 4], 0 0 1 1 -2 -2]]

Lattice basis:

3/2 length = 0.5354, 27/20 length = 1.0463
Angle (3/2, 27/20) = 80.5628 degrees

Mapping to lattice: [0 1 3 -3 1 -2], 0 0 -1 -1 2 2]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [5/3 0 1/6 -1/6 0 0, [26/9 0 13/18 -7/18 -1/3 0, [26/9 0 -5/18 11/18 -1/3 0, [26/9 0 -5/18 -7/18 2/3 0, [26/9 0 -7/9 1/9 2/3 0]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence: 34, 41, 46, 53, 87, 140, 321, 461e

Badness (Smith): 0.822 × 10-3

Scales: akea46_13

Lono

Subgroup: 2.3.5.7.11

Comma list: 176/175, 5120/5103

Mapping[1 0 0 10 6], 0 1 0 -6 -6], 0 0 1 1 3]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932

Optimal ET sequence46, 53, 58, 99, 111, 268cd

Badness (Smith): 1.18 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 847/845

Mapping: [1 0 0 10 6 11], 0 1 0 -6 -6 -9], 0 0 1 1 3 3]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277

Optimal ET sequence: 46, 53, 58, 99, 104c, 111, 268cd

Badness (Smith): 0.908 × 10-3

Kapo

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 5120/5103

Mapping[1 0 0 10 7], 0 1 1 -5 -2], 0 0 2 2 -1]]

mapping generators: ~2, ~3, ~128/99

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516

Minimax tuning:

[[1 0 0 0 0, [8/5 2/5 0 -1/15 -2/15, [14/5 6/5 0 7/15 -16/15, [16/5 -6/5 0 13/15 -4/15, [16/5 -6/5 0 -2/15 11/15]
unchanged-interval (eigenmonzo) basis: 2.9/7.11/9

Optimal ET sequence41, 87, 111, 152, 239, 391

Badness (Smith): 0.994 × 10-3

Namaka

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 5120/5103

Mapping[1 0 0 10 -6], 0 2 0 -12 9], 0 0 1 1 1]]

mapping generators: ~2, ~400/231, ~5

Optimal tuning (CTE): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868

Optimal ET sequence29, 53, 58, 87, 111, 140, 198

Badness (Smith): 1.74 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 676/675, 847/845

Mapping: [1 0 0 10 -6 -1], 0 2 0 -12 9 3], 0 0 1 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606

Optimal ET sequence: 29, 53, 58, 87, 111, 140, 198

Badness (Smith): 0.781 × 10-3

Notes