Hemifamity family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m {{Technical data page}}<br><br>
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Technical data page}}<br><br>
{{Technical data page}}
The '''hemifamity family''' of [[rank-3 temperament|rank-3]] [[temperament]]s [[tempering out|tempers out]] [[5120/5103]] = {{monzo| 10 -6 1 -1 }}. These temperaments divide an exact or approximate septimal quartertone, [[36/35]] into two equal steps, each representing [[81/80]]~[[64/63]], the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same [[chain of fifths]] inflected by the same comma to the opposite sides. In addition we may identify [[10/7]] by the augmented fourth (C-F#) and [[50/49]] by the [[Pythagorean comma]].  
The '''hemifamity family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[5120/5103]] ({{monzo|legend=1| 10 -6 1 -1 }}), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, [[36/35]] into two equal steps, each representing [[81/80]]~[[64/63]], the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same [[chain of fifths]] inflected by the same comma to the opposite sides. In addition we may identify [[10/7]] by the augmented fourth (C–F#) and [[50/49]] by the [[Pythagorean comma]]. Hemifamity can be compared to [[garibaldi]], with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.  


It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have [[5/4]] at the down major third (C-vE) and [[7/4]] at the down minor seventh (C-vBb).  
It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have [[5/4]] at the down major third (C–vE) and [[7/4]] at the down minor seventh (C–vBb).  


== Hemifamity ==
== Hemifamity ==
Line 19: Line 19:
: Angle (3/2, 10/9) = 82.112 degrees
: Angle (3/2, 10/9) = 82.112 degrees


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.7918, ~5/4 = 386.0144
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144


[[Minimax tuning]]: c = 5120/5103
[[Minimax tuning]]: c = 5120/5103
* [[7-odd-limit]]: 3 and 7 1/7c sharp, 5 just
* [[7-odd-limit]]: 3 and 7 1/7c sharp, 5 just
: {{monzo list| 1 0 0 0 | 10/7 1/7 1/7 -1/7 | 0 0 1 0 | 10/7 -6/7 1/7 6/7 }}
: {{monzo list| 1 0 0 0 | 10/7 1/7 1/7 -1/7 | 0 0 1 0 | 10/7 -6/7 1/7 6/7 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.7/3
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.7/3
* [[9-odd-limit]]: 3 1/8c sharp, 5 just, 7 1/4c sharp
* [[9-odd-limit]]: 3 1/8c sharp, 5 just, 7 1/4c sharp
: {{monzo list| 1 0 0 0 | 5/4 1/4 1/8 -1/8 | 0 0 1 0 | 5/2 -3/2 1/4 3/4 }}
: {{monzo list| 1 0 0 0 | 5/4 1/4 1/8 -1/8 | 0 0 1 0 | 5/2 -3/2 1/4 3/4 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.9/7
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.9/7


{{Optimal ET sequence|legend=1| 41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd }}
{{Optimal ET sequence|legend=1| 41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd }}


[[Badness]]: 0.153 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.153 × 10<sup>-3</sup>


[[Projection pair]]s: 7 5120/729
[[Projection pair]]s: 7 5120/729
Line 41: Line 41:
=== Overview to extensions ===
=== Overview to extensions ===
==== 11- and 13-limit extensions ====
==== 11- and 13-limit extensions ====
Strong extensions of hemifamity are [[#Pele|pele]], [[#Laka|laka]], [[#Akea|akea]], and [[#Lono|lono]]. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the [[11/8]] at the down diminished fifth (C-vGb); laka, up augmented third (C-^E#); akea, double-up fourth (C-^^F); lono, triple-down augmented fourth (C-v<sup>3</sup>F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the [[13/11]] at the minor third, tempering out [[352/351]], [[847/845]], and [[2080/2079]].  
Strong extensions of hemifamity are [[#Pele|pele]], [[#Laka|laka]], [[#Akea|akea]], and [[#Lono|lono]]. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the [[11/8]] at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v<sup>3</sup>F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the [[13/11]] at the minor third (C–Eb), tempering out [[352/351]], [[847/845]], and [[2080/2079]].  


==== Subgroup extensions ====
==== Subgroup extensions ====
Line 49: Line 49:
{{Main| Counterpyth }}
{{Main| Counterpyth }}


Developed analogous to [[parapyth]], counterpyth is an extension of hemifamity with an even milder fifth, as it finds [[19/15]] at the major third (C-E) and [[19/10]] at the major seventh (C-B). Notice the factorization 5120/5103 = ([[400/399]])([[1216/1215]]). Other important ratios are [[21/19]] at the diminished third (C-Ebb) and [[19/14]] at the augmented third (C-E#).  
Developed analogous to [[parapyth]], counterpyth is an extension of hemifamity with an even milder fifth, as it finds [[19/15]] at the major third (C–E) and [[19/10]] at the major seventh (C–B). Notice the factorization {{nowrap| 5120/5103 {{=}} ([[400/399]])([[1216/1215]]) }}. Other important ratios are [[21/19]] at the diminished third (C–Ebb) and [[19/14]] at the augmented third (C–E#).  


It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.  
It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.  
Line 59: Line 59:
Mapping: {{mapping| 1 0 0 10 -6 | 0 1 0 -6 5 | 0 0 1 1 1 }}
Mapping: {{mapping| 1 0 0 10 -6 | 0 1 0 -6 5 | 0 0 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.6411, ~5/4 = 385.4452
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452


Optimal ET sequence: {{Optimal ET sequence| 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh }}
{{Optimal ET sequence|legend=0| 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh }}


Badness: 0.212 × 10<sup>-3</sup>
Badness (Smith): 0.212 × 10<sup>-3</sup>


== Pele ==
== Pele ==
Line 81: Line 81:
: Angle(3/2, 56/55) = 90.4578 degrees
: Angle(3/2, 56/55) = 90.4578 degrees


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 703.2829, ~5/4 = 386.5647
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 17/10 0 1/10 0 -1/10 }}, {{monzo| 17/5 -2 6/5 0 -1/5 }}, {{monzo| 16/5 -2 3/5 0 2/5 }}, {{monzo| 17/5 -2 1/5 0 4/5 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 17/10 0 1/10 0 -1/10 }}, {{monzo| 17/5 -2 6/5 0 -1/5 }}, {{monzo| 16/5 -2 3/5 0 2/5 }}, {{monzo| 17/5 -2 1/5 0 4/5 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/5.11/9
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.11/9


{{Optimal ET sequence|legend=1| 29, 41, 58, 87, 99e, 145, 186e }}
{{Optimal ET sequence|legend=1| 29, 41, 58, 87, 99e, 145, 186e }}


[[Badness]]: 0.648 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.648 × 10<sup>-3</sup>


[[Projection pair]]s: 7 5120/729 11 655360/59049
[[Projection pair]]s: 7 5120/729 11 655360/59049
Line 101: Line 101:
Mapping: {{mapping| 1 0 0 10 17 22 | 0 1 0 -6 -10 -13 | 0 0 1 1 1 1 }}
Mapping: {{mapping| 1 0 0 10 17 22 | 0 1 0 -6 -10 -13 | 0 0 1 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 703.4398, ~5/4 = 386.8933
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933


Minimax tuning:  
Minimax tuning:  
* 13-odd-limit eigenmonzo (unchanged-interval) basis: 2.9/5.13/9
* 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
* 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.5/3.13/9
* 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9


Optimal ET sequence: {{Optimal ET sequence| 29, 41, 46, 58, 87, 145, 232 }}
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 145, 232 }}


Badness: 0.703 × 10<sup>-3</sup>
Badness (Smith): 0.703 × 10<sup>-3</sup>


=== 17-limit ===
=== 17-limit ===
Line 118: Line 118:
Mapping: {{mapping| 1 0 0 10 17 22 8 | 0 1 0 -6 -10 -13 -1 | 0 0 1 1 1 1 -1 }}
Mapping: {{mapping| 1 0 0 10 17 22 8 | 0 1 0 -6 -10 -13 -1 | 0 0 1 1 1 1 -1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 703.5544, ~5/4 = 387.9654
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654


Optimal ET sequence: {{Optimal ET sequence| 29, 41, 46, 58, 87, 99ef, 145 }}
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 99ef, 145 }}


Badness: 0.930 × 10<sup>-3</sup>
Badness (Smith): 0.930 × 10<sup>-3</sup>


== Laka ==
== Laka ==
{{Main| Laka }}
{{Main| Laka }}
Laka can be described as the {{nowrap| 41 & 53 & 58 }} temperament, tempering out [[540/539]]. [[Gene Ward Smith]] considered it to be a [[17-limit]] temperament, assigning †442/441 ({{nowrap| 41g & 53 & 58 }}) as the main extension. It should be noted that {{nowrap| 41 & 53g & 58 }} also makes for a possible extension.
<blockquote>
It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.
</blockquote>
—[[Graham Breed]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101682.html#101776 Yahoo! Tuning Group | ''Laka 17-limit minimax planar temperament'']</ref>
It makes most sense as a 2.3.5.7.11.13.19-[[subgroup]] temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.


[[Subgroup]]: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11
Line 133: Line 142:
{{Mapping|legend=1| 1 0 0 10 -18 | 0 1 0 -6 15 | 0 0 1 1 -1 }}
{{Mapping|legend=1| 1 0 0 10 -18 | 0 1 0 -6 15 | 0 0 1 1 -1 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.5133, ~5/4 = 385.5563
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563


[[Minimax tuning]]
[[Minimax tuning]]
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 4/3 0 2/21 -1/21 1/21 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 2 0 3/7 2/7 -2/7 }}, {{monzo| 2 0 3/7 -5/7 5/7 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 4/3 0 2/21 -1/21 1/21 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 2 0 3/7 2/7 -2/7 }}, {{monzo| 2 0 3/7 -5/7 5/7 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.11/7
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.11/7


{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee }}
{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee }}


[[Badness]]: 0.825 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.825 × 10<sup>-3</sup>


[[Projection pair]]s: 5120/729 11 14348907/1310720
[[Projection pair]]s: 5120/729 11 14348907/1310720
Line 153: Line 162:
Mapping: {{mapping| 1 0 0 10 -18 -13 | 0 1 0 -6 15 12 | 0 0 1 1 -1 -1 }}
Mapping: {{mapping| 1 0 0 10 -18 -13 | 0 1 0 -6 15 12 | 0 0 1 1 -1 -1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.4078, ~5/4 = 385.5405
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 13/8 -1/2 1/8 0 0 1/8 }}, {{monzo| 13/4 -3 5/4 0 0 1/4 }}, {{monzo| 7/2 0 1/2 0 0 -1/2 }}, {{monzo| 25/8 -9/2 5/8 0 0 13/8 }}, {{monzo| 13/4 -3 1/4 0 0 5/4 }}]
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 13/8 -1/2 1/8 0 0 1/8 }}, {{monzo| 13/4 -3 5/4 0 0 1/4 }}, {{monzo| 7/2 0 1/2 0 0 -1/2 }}, {{monzo| 25/8 -9/2 5/8 0 0 13/8 }}, {{monzo| 13/4 -3 1/4 0 0 5/4 }}]
: eigenmonzo (unchanged-interval) basis: 2.11.13/7
: unchanged-interval (eigenmonzo) basis: 2.11.13/7


{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 111, 152f, 415dff }}*
{{Optimal ET sequence|legend=0| 41, 53, 58, 94, 111, 152f, 415dff }}*


<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]


Badness: 0.822 × 10<sup>-3</sup>
Badness (Smith): 0.822 × 10<sup>-3</sup>


=== 2.3.5.7.11.13.19 subgroup ===
=== 2.3.5.7.11.13.19 subgroup ===
Line 173: Line 182:
Mapping: {{mapping| 1 0 0 10 -18 -13 -6 | 0 1 0 -6 15 12 5 | 0 0 1 1 -1 -1 1 }}
Mapping: {{mapping| 1 0 0 10 -18 -13 -6 | 0 1 0 -6 15 12 5 | 0 0 1 1 -1 -1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.4062, ~5/4 = 385.5254
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254


Optimal ET sequence: {{Optimal ET sequence| 41, 53, 58h, 94, 111, 152f, 415dffhh }}*
{{Optimal ET sequence|legend=0| 41, 53, 58h, 94, 111, 152f, 415dffhh }}*


<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]


Badness: 0.661 × 10<sup>-3</sup>
Badness (Smith): 0.661 × 10<sup>-3</sup>


=== 17-limit ===
=== 17-limit ===
Line 191: Line 200:
* 17-odd-limit
* 17-odd-limit
: [{{monzo| 1 0 0 0 0 0 0 }}, {{monzo| 13/12 0 0 1/12 1/6 -1/12 0 }}, {{monzo| -7/4 0 0 5/4 3/2 -5/4 0 }}, {{monzo| 7/4 0 0 3/4 1/2 -3/4 0 }}, {{monzo| 0 0 0 0 1 0 0 }}, {{monzo| 7/4 0 0 -1/4 1/2 1/4 0 }}, {{monzo| 35/12 0 0 23/12 5/6 -23/12 0 }}]
: [{{monzo| 1 0 0 0 0 0 0 }}, {{monzo| 13/12 0 0 1/12 1/6 -1/12 0 }}, {{monzo| -7/4 0 0 5/4 3/2 -5/4 0 }}, {{monzo| 7/4 0 0 3/4 1/2 -3/4 0 }}, {{monzo| 0 0 0 0 1 0 0 }}, {{monzo| 7/4 0 0 -1/4 1/2 1/4 0 }}, {{monzo| 35/12 0 0 23/12 5/6 -23/12 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.11.13/7
: unchanged-interval (eigenmonzo) basis: 2.11.13/7


Optimal ET sequence: {{Optimal ET sequence| 58, 94, 111, 152f, 205, 263df }}
{{Optimal ET sequence|legend=0| 58, 94, 111, 152f, 205, 263df }}


Badness: 1.19 × 10<sup>-3</sup>
Badness (Smith): 1.19 × 10<sup>-3</sup>


== Akea ==
== Akea ==
[[File:Lattice Akea.png|thumb|Lattice for 13-limit akea.]]
[[File:Lattice Akea-commatic.png|thumb|Ditto, but rearranged to basis {~2, ~3, ~81/80}.]]
[[Subgroup]]: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


Line 204: Line 216:
{{Mapping|legend=1| 1 0 0 10 -3 | 0 1 0 -6 7 | 0 0 1 1 -2 }}
{{Mapping|legend=1| 1 0 0 10 -3 | 0 1 0 -6 7 | 0 0 1 1 -2 }}


: mapping generators: ~2, ~3, ~5
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8909, ~5/4 = 385.3273


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5.11/5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5.11/5


{{Optimal ET sequence|legend=1| 34, 41, 53, 87, 140, 181, 321 }}
{{Optimal ET sequence|legend=1| 34, 41, 53, 87, 140, 181, 321 }}


[[Badness]]: 0.998 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.998 × 10<sup>-3</sup>


=== 13-limit ===
=== 13-limit ===
Line 230: Line 240:
Mapping to lattice: [{{val| 0 1 3 -3 1 -2 }}, {{val| 0 0 -1 -1 2 2 }}]
Mapping to lattice: [{{val| 0 1 3 -3 1 -2 }}, {{val| 0 0 -1 -1 2 2 }}]


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.9018, ~5/4 = 385.4158
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 0 }}, {{monzo| 26/9 0 -7/9 1/9 2/3 0 }}]
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 0 }}, {{monzo| 26/9 0 -7/9 1/9 2/3 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.7/5.11/5
: unchanged-interval (eigenmonzo) basis: 2.7/5.11/5


{{Optimal ET sequence|legend=1| 34, 41, 46, 53, 87, 140, 321, 461e }}
{{Optimal ET sequence|legend=0| 34, 41, 46, 53, 87, 140, 321, 461e }}


Badness: 0.822 × 10<sup>-3</sup>
Badness (Smith): 0.822 × 10<sup>-3</sup>


Scales: [[akea46_13]]
Scales: [[akea46_13]]
Line 250: Line 260:
{{Mapping|legend=1| 1 0 0 10 6 | 0 1 0 -6 -6 | 0 0 1 1 3 }}
{{Mapping|legend=1| 1 0 0 10 6 | 0 1 0 -6 -6 | 0 0 1 1 3 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8941, ~5/4 = 388.5932
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932


{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 111, 268cd }}
{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 111, 268cd }}


[[Badness]]: 1.18 × 10<sup>-3</sup>
[[Badness]] (Smith): 1.18 × 10<sup>-3</sup>


=== 13-limit ===
=== 13-limit ===
Line 263: Line 273:
Mapping: {{mapping| 1 0 0 10 6 11 | 0 1 0 -6 -6 -9 | 0 0 1 1 3 3 }}
Mapping: {{mapping| 1 0 0 10 6 11 | 0 1 0 -6 -6 -9 | 0 0 1 1 3 3 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.8670, ~5/4 = 388.6277
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277


{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 104c, 111, 268cd }}
{{Optimal ET sequence|legend=0| 46, 53, 58, 99, 104c, 111, 268cd }}


Badness: 0.908 × 10<sup>-3</sup>
Badness (Smith): 0.908 × 10<sup>-3</sup>


== Kapo ==
== Kapo ==
Line 278: Line 288:
: mapping generators: ~2, ~3, ~128/99
: mapping generators: ~2, ~3, ~128/99


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8776, ~128/99 = 441.7516
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]:  
* [[11-odd-limit]]:  
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 8/5 2/5 0 -1/15 -2/15 }}, {{monzo| 14/5 6/5 0 7/15 -16/15 }}, {{monzo| 16/5 -6/5 0 13/15 -4/15 }}, {{monzo| 16/5 -6/5 0 -2/15 11/15 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 8/5 2/5 0 -1/15 -2/15 }}, {{monzo| 14/5 6/5 0 7/15 -16/15 }}, {{monzo| 16/5 -6/5 0 13/15 -4/15 }}, {{monzo| 16/5 -6/5 0 -2/15 11/15 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7.11/9
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7.11/9


{{Optimal ET sequence|legend=1| 41, 87, 111, 152, 239, 391 }}
{{Optimal ET sequence|legend=1| 41, 87, 111, 152, 239, 391 }}


[[Badness]]: 0.994 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.994 × 10<sup>-3</sup>


== Namaka ==
== Namaka ==
Line 298: Line 308:
: mapping generators: ~2, ~400/231, ~5
: mapping generators: ~2, ~400/231, ~5


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~400/231 = 951.4956, ~5/4 = 386.7868
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868


{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}
{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}


[[Badness]]: 1.74 × 10<sup>-3</sup>
[[Badness]] (Smith): 1.74 × 10<sup>-3</sup>


=== 13-limit ===
=== 13-limit ===
Line 311: Line 321:
Mapping: {{mapping| 1 0 0 10 -6 -1 | 0 2 0 -12 9 3 | 0 0 1 1 1 1 }}
Mapping: {{mapping| 1 0 0 10 -6 -1 | 0 2 0 -12 9 3 | 0 0 1 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~26/15 = 951.4871, ~5/4 = 386.6606
Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606
 
{{Optimal ET sequence|legend=0| 29, 53, 58, 87, 111, 140, 198 }}


{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}
Badness (Smith): 0.781 × 10<sup>-3</sup>


Badness: 0.781 × 10<sup>-3</sup>
== Notes ==


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Hemifamity family| ]] <!-- main article -->
[[Category:Hemifamity family| ]] <!-- main article -->
[[Category:Hemifamity| ]] <!-- key article -->
[[Category:Hemifamity| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]
[[Category:Listen]]
[[Category:Listen]]

Latest revision as of 00:41, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The hemifamity family of rank-3 temperaments tempers out 5120/5103 (monzo[10 -6 1 -1), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, 36/35 into two equal steps, each representing 81/80~64/63, the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same chain of fifths inflected by the same comma to the opposite sides. In addition we may identify 10/7 by the augmented fourth (C–F#) and 50/49 by the Pythagorean comma. Hemifamity can be compared to garibaldi, with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.

It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have 5/4 at the down major third (C–vE) and 7/4 at the down minor seventh (C–vBb).

Hemifamity

Subgroup: 2.3.5.7

Comma list: 5120/5103

Mapping[1 0 0 10], 0 1 0 -6], 0 0 1 1]]

mapping generators: ~2, ~3, ~5

Mapping to lattice: [0 1 2 -4], 0 0 1 1]]

Lattice basis:

3/2 length = 0.5670, 10/9 length = 1.8063
Angle (3/2, 10/9) = 82.112 degrees

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144

Minimax tuning: c = 5120/5103

[[1 0 0 0, [10/7 1/7 1/7 -1/7, [0 0 1 0, [10/7 -6/7 1/7 6/7]
unchanged-interval (eigenmonzo) basis: 2.5.7/3
[[1 0 0 0, [5/4 1/4 1/8 -1/8, [0 0 1 0, [5/2 -3/2 1/4 3/4]
unchanged-interval (eigenmonzo) basis: 2.5.9/7

Optimal ET sequence41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd

Badness (Smith): 0.153 × 10-3

Projection pairs: 7 5120/729

Music

Overview to extensions

11- and 13-limit extensions

Strong extensions of hemifamity are pele, laka, akea, and lono. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the 11/8 at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v3F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the 13/11 at the minor third (C–Eb), tempering out 352/351, 847/845, and 2080/2079.

Subgroup extensions

A notable 2.3.5.7.19 subgroup extension, counterpyth, is given right below.

Counterpyth

Developed analogous to parapyth, counterpyth is an extension of hemifamity with an even milder fifth, as it finds 19/15 at the major third (C–E) and 19/10 at the major seventh (C–B). Notice the factorization 5120/5103 = (400/399)⋅(1216/1215). Other important ratios are 21/19 at the diminished third (C–Ebb) and 19/14 at the augmented third (C–E#).

It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.

Subgroup: 2.3.5.7.19

Comma list: 400/399, 1216/1215

Mapping: [1 0 0 10 -6], 0 1 0 -6 5], 0 0 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452

Optimal ET sequence: 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh

Badness (Smith): 0.212 × 10-3

Pele

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891

Mapping[1 0 0 10 17], 0 1 0 -6 -10], 0 0 1 1 1]]

Mapping to lattice: [0 1 4 -2 -6], 0 0 -1 -1 -1]]

Lattice basis:

3/2 length = 0.3812, 56/55 length = 1.5893
Angle(3/2, 56/55) = 90.4578 degrees

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647

Minimax tuning:

[[1 0 0 0 0, [17/10 0 1/10 0 -1/10, [17/5 -2 6/5 0 -1/5, [16/5 -2 3/5 0 2/5, [17/5 -2 1/5 0 4/5]
unchanged-interval (eigenmonzo) basis: 2.9/5.11/9

Optimal ET sequence29, 41, 58, 87, 99e, 145, 186e

Badness (Smith): 0.648 × 10-3

Projection pairs: 7 5120/729 11 655360/59049

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363

Mapping: [1 0 0 10 17 22], 0 1 0 -6 -10 -13], 0 0 1 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933

Minimax tuning:

  • 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
  • 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9

Optimal ET sequence: 29, 41, 46, 58, 87, 145, 232

Badness (Smith): 0.703 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 364/363

Mapping: [1 0 0 10 17 22 8], 0 1 0 -6 -10 -13 -1], 0 0 1 1 1 1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654

Optimal ET sequence: 29, 41, 46, 58, 87, 99ef, 145

Badness (Smith): 0.930 × 10-3

Laka

Laka can be described as the 41 & 53 & 58 temperament, tempering out 540/539. Gene Ward Smith considered it to be a 17-limit temperament, assigning †442/441 (41g & 53 & 58) as the main extension. It should be noted that 41 & 53g & 58 also makes for a possible extension.

It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.

Graham Breed[1]

It makes most sense as a 2.3.5.7.11.13.19-subgroup temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5120/5103

Mapping[1 0 0 10 -18], 0 1 0 -6 15], 0 0 1 1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563

Minimax tuning

[[1 0 0 0 0, [4/3 0 2/21 -1/21 1/21, [0 0 1 0 0, [2 0 3/7 2/7 -2/7, [2 0 3/7 -5/7 5/7]
unchanged-interval (eigenmonzo) basis: 2.5.11/7

Optimal ET sequence41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee

Badness (Smith): 0.825 × 10-3

Projection pairs: 5120/729 11 14348907/1310720

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 729/728

Mapping: [1 0 0 10 -18 -13], 0 1 0 -6 15 12], 0 0 1 1 -1 -1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [13/8 -1/2 1/8 0 0 1/8, [13/4 -3 5/4 0 0 1/4, [7/2 0 1/2 0 0 -1/2, [25/8 -9/2 5/8 0 0 13/8, [13/4 -3 1/4 0 0 5/4]
unchanged-interval (eigenmonzo) basis: 2.11.13/7

Optimal ET sequence: 41, 53, 58, 94, 111, 152f, 415dff*

* optimal patent val: 205

Badness (Smith): 0.822 × 10-3

2.3.5.7.11.13.19 subgroup

Subgroup: 2.3.5.7.11.13.19

Comma list: 352/351, 400/399, 456/455, 495/494

Mapping: [1 0 0 10 -18 -13 -6], 0 1 0 -6 15 12 5], 0 0 1 1 -1 -1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254

Optimal ET sequence: 41, 53, 58h, 94, 111, 152f, 415dffhh*

* optimal patent val: 205

Badness (Smith): 0.661 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 442/441, 540/539, 561/560

Mapping: [1 0 0 10 -18 -13 32], 0 1 0 -6 15 12 -22], 0 0 1 1 -1 -1 3]]

Minimax tuning:

  • 17-odd-limit
[[1 0 0 0 0 0 0, [13/12 0 0 1/12 1/6 -1/12 0, [-7/4 0 0 5/4 3/2 -5/4 0, [7/4 0 0 3/4 1/2 -3/4 0, [0 0 0 0 1 0 0, [7/4 0 0 -1/4 1/2 1/4 0, [35/12 0 0 23/12 5/6 -23/12 0]
unchanged-interval (eigenmonzo) basis: 2.11.13/7

Optimal ET sequence: 58, 94, 111, 152f, 205, 263df

Badness (Smith): 1.19 × 10-3

Akea

Lattice for 13-limit akea.
Ditto, but rearranged to basis {~2, ~3, ~81/80}.

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2200/2187

Mapping[1 0 0 10 -3], 0 1 0 -6 7], 0 0 1 1 -2]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273

Minimax tuning:

[[1 0 0 0 0, [5/3 0 1/6 -1/6 0, [26/9 0 13/18 -7/18 -1/3, [26/9 0 -5/18 11/18 -1/3, [26/9 0 -5/18 -7/18 2/3]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence34, 41, 53, 87, 140, 181, 321

Badness (Smith): 0.998 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 385/384

Mapping: [1 0 0 10 -3 2], 0 1 0 -6 7 4], 0 0 1 1 -2 -2]]

Lattice basis:

3/2 length = 0.5354, 27/20 length = 1.0463
Angle (3/2, 27/20) = 80.5628 degrees

Mapping to lattice: [0 1 3 -3 1 -2], 0 0 -1 -1 2 2]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [5/3 0 1/6 -1/6 0 0, [26/9 0 13/18 -7/18 -1/3 0, [26/9 0 -5/18 11/18 -1/3 0, [26/9 0 -5/18 -7/18 2/3 0, [26/9 0 -7/9 1/9 2/3 0]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence: 34, 41, 46, 53, 87, 140, 321, 461e

Badness (Smith): 0.822 × 10-3

Scales: akea46_13

Lono

Subgroup: 2.3.5.7.11

Comma list: 176/175, 5120/5103

Mapping[1 0 0 10 6], 0 1 0 -6 -6], 0 0 1 1 3]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932

Optimal ET sequence46, 53, 58, 99, 111, 268cd

Badness (Smith): 1.18 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 847/845

Mapping: [1 0 0 10 6 11], 0 1 0 -6 -6 -9], 0 0 1 1 3 3]]

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277

Optimal ET sequence: 46, 53, 58, 99, 104c, 111, 268cd

Badness (Smith): 0.908 × 10-3

Kapo

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 5120/5103

Mapping[1 0 0 10 7], 0 1 1 -5 -2], 0 0 2 2 -1]]

mapping generators: ~2, ~3, ~128/99

Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516

Minimax tuning:

[[1 0 0 0 0, [8/5 2/5 0 -1/15 -2/15, [14/5 6/5 0 7/15 -16/15, [16/5 -6/5 0 13/15 -4/15, [16/5 -6/5 0 -2/15 11/15]
unchanged-interval (eigenmonzo) basis: 2.9/7.11/9

Optimal ET sequence41, 87, 111, 152, 239, 391

Badness (Smith): 0.994 × 10-3

Namaka

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 5120/5103

Mapping[1 0 0 10 -6], 0 2 0 -12 9], 0 0 1 1 1]]

mapping generators: ~2, ~400/231, ~5

Optimal tuning (CTE): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868

Optimal ET sequence29, 53, 58, 87, 111, 140, 198

Badness (Smith): 1.74 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 676/675, 847/845

Mapping: [1 0 0 10 -6 -1], 0 2 0 -12 9 3], 0 0 1 1 1 1]]

Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606

Optimal ET sequence: 29, 53, 58, 87, 111, 140, 198

Badness (Smith): 0.781 × 10-3

Notes