Hemimean family: Difference between revisions
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
The '''hemimean family''' of [[temperament]]s are [[rank-3 temperament]]s [[ | {{Technical data page}} | ||
The '''hemimean family''' of [[temperament]]s are [[rank-3 temperament]]s which [[temper out]] [[3136/3125]]. | |||
The hemimean comma, 3136/3125, is the ratio between the [[126/125|septimal semicomma (126/125)]] and the [[225/224|septimal kleisma (225/224)]]. This fact alone makes hemimean a very notable rank-3 temperament, as any non-meantone tuning of hemimean will split the [[81/80|syntonic comma (81/80)]] into two equal parts, each representing 126/125~225/224. | The hemimean comma, 3136/3125, is the ratio between the [[126/125|septimal semicomma (126/125)]] and the [[225/224|septimal kleisma (225/224)]]. This fact alone makes hemimean a very notable rank-3 temperament, as any non-meantone tuning of hemimean will split the [[81/80|syntonic comma (81/80)]] into two equal parts, each representing 126/125~225/224. | ||
Line 25: | Line 26: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] | * [[7-odd-limit|7-]] and [[9-odd-limit]] | ||
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 6/5 0 0 2/5 }}, {{monzo| 0 0 0 1 }}] | : [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 6/5 0 0 2/5 }}, {{monzo| 0 0 0 1 }}] | ||
: [[eigenmonzo basis| | : [[eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.3.7 | ||
{{Optimal ET sequence|legend=1| 12, 19, 31, 68, 80, 87, 99, 217, 229, 328, 347, 446, 675c }} | {{Optimal ET sequence|legend=1| 12, 19, 31, 68, 80, 87, 99, 217, 229, 328, 347, 446, 675c }} | ||
Line 38: | Line 39: | ||
As the second generator of hemimean, [[28/25]], is close to [[19/17]], and as the latter is the [[mediant]] of [[10/9]] and [[9/8]], it is natural to extend hemimean to the 2.3.5.7.17.19 subgroup by tempering out ([[28/25]])/([[19/17]]) = [[476/475]], or equivalently stated, the [[semiparticular]] (5/4)/(19/17)<sup>2</sup> = [[1445/1444]]. Notice 3136/3125 = (476/475)([[2128/2125]]) and that 2128/2125 = ([[1216/1215]])([[1701/1700]]), so it makes sense to temper out 1216/1215 and/or 1701/1700 as well. An interesting tuning not in the optimal ET sequence is [[111edo]]. This temperament finds the harmonic 17 and 19 at (+5, +1) and (+5, +2), respectively, with virtually no additional error. | As the second generator of hemimean, [[28/25]], is close to [[19/17]], and as the latter is the [[mediant]] of [[10/9]] and [[9/8]], it is natural to extend hemimean to the 2.3.5.7.17.19 subgroup by tempering out ([[28/25]])/([[19/17]]) = [[476/475]], or equivalently stated, the [[semiparticular]] (5/4)/(19/17)<sup>2</sup> = [[1445/1444]]. Notice 3136/3125 = (476/475)([[2128/2125]]) and that 2128/2125 = ([[1216/1215]])([[1701/1700]]), so it makes sense to temper out 1216/1215 and/or 1701/1700 as well. An interesting tuning not in the optimal ET sequence is [[111edo]]. This temperament finds the harmonic 17 and 19 at (+5, +1) and (+5, +2), respectively, with virtually no additional error. | ||
The S-expression-based comma list for the 2.3.5.7.17.19 subgroup extension is { [[1216/1215|S16/S18]], [[1445/1444|S17/S19]], [[1701/1700|S18/S20]](, ([[136/135|S16*S17]])/([[190/189|S19*S20]]) = [[476/475|S16/S18 * S17/S19 * S18/S20]]) }. | The [[S-expression]]-based comma list for the 2.3.5.7.17.19 subgroup extension is {[[1216/1215|S16/S18]], [[1445/1444|S17/S19]], [[1701/1700|S18/S20]](, ([[136/135|S16*S17]])/([[190/189|S19*S20]]) = [[476/475|S16/S18 * S17/S19 * S18/S20]])}. | ||
Subgroup: 2.3.5.7.17 | Subgroup: 2.3.5.7.17 | ||
Line 66: | Line 67: | ||
=== Semiorion === | === Semiorion === | ||
Semiorion is an alternative subgroup extension of lower complexity, which splits the octave into two. The S-expression-based comma list for the 2.3.5.7.17.19 subgroup extension is {[[289/288|S17]], [[361/360|S19]], [[1216/1215|S16/S18]](, [[1701/1700|S18/S20]], [[476/475]] = [[2128/2125|S16/S20]] * [[1445/1444|S17/S19]])}. | Semiorion is an alternative subgroup extension of lower complexity, which splits the octave into two. The [[S-expression]]-based comma list for the 2.3.5.7.17.19 subgroup extension is {[[289/288|S17]], [[361/360|S19]], [[1216/1215|S16/S18]](, [[1701/1700|S18/S20]], [[476/475]] = [[2128/2125|S16/S20]] * [[1445/1444|S17/S19]])}. | ||
Subgroup: 2.3.5.7.17 | Subgroup: 2.3.5.7.17 | ||
Line 115: | Line 116: | ||
* [[11-odd-limit]] | * [[11-odd-limit]] | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 27/22 6/11 -5/22 -3/11 5/22 }}, {{monzo| 24/11 -4/11 -2/11 2/11 2/11 }}, {{monzo| 27/11 -10/11 -5/11 5/11 5/11 }}, {{monzo| 24/11 -4/11 -13/11 2/11 13/11 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 27/22 6/11 -5/22 -3/11 5/22 }}, {{monzo| 24/11 -4/11 -2/11 2/11 2/11 }}, {{monzo| 27/11 -10/11 -5/11 5/11 5/11 }}, {{monzo| 24/11 -4/11 -13/11 2/11 13/11 }}] | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.9/7.11/5 | ||
{{Optimal ET sequence|legend=1| 12, 19e, 31, 68e, 87, 99e, 118, 130, 217, 248 }} | {{Optimal ET sequence|legend=1| 12, 19e, 31, 68e, 87, 99e, 118, 130, 217, 248 }} | ||
Line 165: | Line 166: | ||
* [[11-odd-limit]] | * [[11-odd-limit]] | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 0 1 0 0 0 }}, {{monzo| 8/5 3/5 1/5 0 -1/5 }}, {{monzo| 1 3/2 1/2 0 -1/2 }}, {{monzo| 8/5 3/5 -4/5 0 4/5 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 0 1 0 0 0 }}, {{monzo| 8/5 3/5 1/5 0 -1/5 }}, {{monzo| 1 3/2 1/2 0 -1/2 }}, {{monzo| 8/5 3/5 -4/5 0 4/5 }}] | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.3.11/5 | ||
{{Optimal ET sequence|legend=1| 12e, 18e, 19, 31, 68e, 80, 99e, 130, 210e, 241, 340ce, 371ce, 470cdee, 501cde, 581cdee, 711ccdee }} | {{Optimal ET sequence|legend=1| 12e, 18e, 19, 31, 68e, 80, 99e, 130, 210e, 241, 340ce, 371ce, 470cdee, 501cde, 581cdee, 711ccdee }} | ||
Line 187: | Line 188: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Hemimean family| ]] <!-- main article --> | [[Category:Hemimean family| ]] <!-- main article --> | ||
[[Category:Hemimean]] | [[Category:Hemimean]] | ||
[[Category:Rank 3]] | [[Category:Rank 3]] |
Latest revision as of 00:39, 24 June 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The hemimean family of temperaments are rank-3 temperaments which temper out 3136/3125.
The hemimean comma, 3136/3125, is the ratio between the septimal semicomma (126/125) and the septimal kleisma (225/224). This fact alone makes hemimean a very notable rank-3 temperament, as any non-meantone tuning of hemimean will split the syntonic comma (81/80) into two equal parts, each representing 126/125~225/224.
Other equivalences characteristic to hemimean are 128/125~50/49 and 49/45~(25/24)2.
Hemimean
Subgroup: 2.3.5.7
Comma list: 3136/3125 (hemimean)
Mapping: [⟨1 0 0 -3], ⟨0 1 0 0], ⟨0 0 2 5]]
- mapping generators: ~2, ~3, ~56/25
Mapping to lattice: [⟨0 0 2 5], ⟨0 1 0 0]]
Lattice basis:
- 28/25 length = 0.5055, 3/2 length = 1.5849
- Angle (28/25, 3/2) = 90 degrees
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9550, ~28/25 = 193.6499
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [0 1 0 0⟩, [6/5 0 0 2/5⟩, [0 0 0 1⟩]
- Unchanged-interval (eigenmonzo) basis: 2.3.7
Optimal ET sequence: 12, 19, 31, 68, 80, 87, 99, 217, 229, 328, 347, 446, 675c
Badness: 0.160 × 10-3
Complexity spectrum: 5/4, 7/5, 4/3, 6/5, 8/7, 7/6, 9/8, 10/9, 9/7
Projection pairs: 5 3136/625 7 68841472/9765625 to 2.3.25/7
Hemimean orion
As the second generator of hemimean, 28/25, is close to 19/17, and as the latter is the mediant of 10/9 and 9/8, it is natural to extend hemimean to the 2.3.5.7.17.19 subgroup by tempering out (28/25)/(19/17) = 476/475, or equivalently stated, the semiparticular (5/4)/(19/17)2 = 1445/1444. Notice 3136/3125 = (476/475)(2128/2125) and that 2128/2125 = (1216/1215)(1701/1700), so it makes sense to temper out 1216/1215 and/or 1701/1700 as well. An interesting tuning not in the optimal ET sequence is 111edo. This temperament finds the harmonic 17 and 19 at (+5, +1) and (+5, +2), respectively, with virtually no additional error.
The S-expression-based comma list for the 2.3.5.7.17.19 subgroup extension is {S16/S18, S17/S19, S18/S20(, (S16*S17)/(S19*S20) = S16/S18 * S17/S19 * S18/S20)}.
Subgroup: 2.3.5.7.17
Comma list: 1701/1700, 3136/3125
Sval mapping: [⟨1 0 0 -3 -5], ⟨0 1 0 0 5], ⟨0 0 2 5 1]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.1960, ~28/25 = 193.6548
Optimal ET sequence: 12, 19g, 31g, …, 87, 99, 217, 229, 316, 328h, 446, 545c, 873cg
Badness: 0.573
2.3.5.7.17.19 subgroup
Subgroup: 2.3.5.7.17.19
Comma list: 476/475, 1216/1215, 1445/1444
Sval mapping: [⟨1 0 0 -3 -5 -6], ⟨0 1 0 0 5 5], ⟨0 0 2 5 1 2]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.132, ~19/17 = 193.647
Optimal ET sequence: 12, 19gh, 31gh, …, 87, 99, 118, 210gh, 217, 229, 328h, 446
Badness: 0.456
Semiorion
Semiorion is an alternative subgroup extension of lower complexity, which splits the octave into two. The S-expression-based comma list for the 2.3.5.7.17.19 subgroup extension is {S17, S19, S16/S18(, S18/S20, 476/475 = S16/S20 * S17/S19)}.
Subgroup: 2.3.5.7.17
Comma list: 289/288, 3136/3125
Sval mapping: [⟨2 0 0 -6 5], ⟨0 1 0 0 1], ⟨0 0 2 5 0]]
- sval mapping generators: ~17/12, ~3, ~56/25
Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.3471, ~28/25 = 193.6499
Optimal ET sequence: 12, 30d, 38d, 50, 62, 68, 106d, 118, 248g, 316g
Badness: 1.095
2.3.5.7.17.19 subgroup
Subgroup: 2.3.5.7.17.19
Comma list: 289/288, 361/360, 476/475
Mapping: [⟨2 0 0 -6 5 3], ⟨0 1 0 0 1 1], ⟨0 0 2 5 0 1]]
Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.509, ~28/25 = 193.669
Optimal ET sequence: 12, …, 50, 68, 106d, 118, 248g, 316g
Badness: 0.569
Belobog
Subgroup: 2.3.5.7.11
Comma list: 441/440, 3136/3125
Mapping: [⟨1 0 0 -3 -9], ⟨0 1 0 0 2], ⟨0 0 2 5 8]]
- mapping generators: ~2, ~3, ~56/25
Mapping to lattice: [⟨0 -2 2 5 4], ⟨0 -1 0 0 -2]]
Lattice basis:
- 28/25 length = 0.3829, 16/15 length = 1.1705
- Angle (28/25, 16/15) = 93.2696
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.7205, ~28/25 = 193.5545
- [[1 0 0 0 0⟩, [27/22 6/11 -5/22 -3/11 5/22⟩, [24/11 -4/11 -2/11 2/11 2/11⟩, [27/11 -10/11 -5/11 5/11 5/11⟩, [24/11 -4/11 -13/11 2/11 13/11⟩]
- Unchanged-interval (eigenmonzo) basis: 2.9/7.11/5
Optimal ET sequence: 12, 19e, 31, 68e, 87, 99e, 118, 130, 217, 248
Badness: 0.609 × 10-3
Projection pairs: 5 3136/625 7 68841472/9765625 11 1700108992512/152587890625 to 2.3.25/7
Scales: belobog31
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 441/440, 1001/1000, 3136/3125
Mapping: [⟨1 0 0 -3 -9 15], ⟨0 1 0 0 2 -2], ⟨0 0 2 5 8 -7]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.8219, ~28/25 = 193.5816
Optimal ET sequence: 31, 43, 56, 74, 87, 118, 130, 217, 248, 347e, 378, 465, 595e
Badness: 1.11 × 10-3
Bellowblog
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 625/624
Mapping: [⟨1 0 0 -3 -9 -4], ⟨0 1 0 0 2 -1], ⟨0 0 2 5 8 8]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.5667, ~28/25 = 193.2493
Optimal ET sequence: 12f, 19e, 31, 56, 68e, 87, 118, 186ef, 205d
Badness: 1.26 × 10-3
Siebog
Subgroup: 2.3.5.7.11
Comma list: 540/539, 3136/3125
Mapping: [⟨1 0 0 -3 8], ⟨0 1 0 0 3], ⟨0 0 2 5 -8]]
- mapping generators: ~2, ~3, ~56/25
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.1636, ~28/25 = 193.8645
- [[1 0 0 0 0⟩, [0 1 0 0 0⟩, [8/5 3/5 1/5 0 -1/5⟩, [1 3/2 1/2 0 -1/2⟩, [8/5 3/5 -4/5 0 4/5⟩]
- Unchanged-interval (eigenmonzo) basis: 2.3.11/5
Optimal ET sequence: 12e, 18e, 19, 31, 68e, 80, 99e, 130, 210e, 241, 340ce, 371ce, 470cdee, 501cde, 581cdee, 711ccdee
Badness: 0.870 × 10-3
Triglav
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 3136/3125
Mapping: [⟨1 0 2 2 1], ⟨0 1 2 5 2], ⟨0 0 -4 -10 -1]]
- mapping generators: ~2, ~3, ~18/11
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2875, ~18/11 = 854.3132
Optimal ET sequence: 24d, 31, 80, 87, 111, 118, 198, 316, 514c, 545c
Badness: 0.819 × 10-3