|
Tags: Mobile edit Mobile web edit |
(12 intermediate revisions by 7 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2014-11-08 09:33:52 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>530093828</tt>.<br>
| | | nLargeSteps = 10 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 7 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 5 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 3 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, with intervals of 2L-L-2L-L-2L-L-L between its small steps, is like the neutral thirds version of Schismic temperament. It has a generator between 5/17edo (352 16/17) and 3/10edo (360 cents), making it an improper MOS of Beatles temperament (generator = c. 19/64 ~ 356.25 cents).
| | | Pattern = LLsLsLLsLsLLsLsLs |
| || 3/10 || || || || || 360 || | | }} |
| || || || || || 17/57 || 357 17/19 || | | {{MOS intro}} The range of the bright generator makes it an [[improper]] MOS of [[Beatles]] temperament (generator = c. 19\64 ~ 356.25{{cent}}). |
| || || || || 14/47 || || 357 21/47 ||
| |
| || || || || || 25/84 || 357 1/7 ||
| |
| || || || 11/37 || || || 356 28/37 || | |
| || || || || || 30/101 || 356 44/101 ||
| |
| || || || || 19/64 || || 356.25 ||
| |
| || || || || || 27/91 || 356 4/91 ||
| |
| || || 8/27 || || || || 355 5/9 ||
| |
| || || || || || 29/98 || 355 5/49 || | |
| || || || || 21/71 || || 354 66/71 || | |
| || || || || || 34/115 || 354 18/23 ||
| |
| || || || 13/44 || || || 354 6/11 ||
| |
| || || || || || 31/105 || 354 2/7 ||
| |
| || || || || 18/61 || || 354 6/61 ||
| |
| || || || || || 23/78 || 353 11/13 ||
| |
| || 5/17 || || || || || 352 16/17 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>10L 7s</title></head><body>This MOS, with intervals of 2L-L-2L-L-2L-L-L between its small steps, is like the neutral thirds version of Schismic temperament. It has a generator between 5/17edo (352 16/17) and 3/10edo (360 cents), making it an improper MOS of Beatles temperament (generator = c. 19/64 ~ 356.25 cents).<br />
| |
|
| |
|
| | == Modes == |
| | {{MOS modes}} |
|
| |
|
| <table class="wiki_table">
| | == Intervals == |
| <tr>
| | {{MOS intervals}} |
| <td>3/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>360<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/57<br />
| |
| </td>
| |
| <td>357 17/19<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>14/47<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>357 21/47<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>25/84<br />
| |
| </td>
| |
| <td>357 1/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>356 28/37<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>30/101<br />
| |
| </td>
| |
| <td>356 44/101<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/64<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>356.25<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>27/91<br />
| |
| </td>
| |
| <td>356 4/91<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>8/27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>355 5/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>29/98<br />
| |
| </td>
| |
| <td>355 5/49<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21/71<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>354 66/71<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>34/115<br />
| |
| </td>
| |
| <td>354 18/23<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/44<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>354 6/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>31/105<br />
| |
| </td>
| |
| <td>354 2/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/61<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>354 6/61<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23/78<br />
| |
| </td>
| |
| <td>353 11/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5/17<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>352 16/17<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | == Scale tree == |
| | {{MOS tuning spectrum}} |
10L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 7 small steps, repeating every octave. 10L 7s is a child scale of 7L 3s, expanding it by 7 tones. Generators that produce this scale range from 352.9 ¢ to 360 ¢, or from 840 ¢ to 847.1 ¢. The range of the bright generator makes it an improper MOS of Beatles temperament (generator = c. 19\64 ~ 356.25 ¢).
Modes
Modes of 10L 7s
UDP |
Cyclic order |
Step pattern
|
16|0 |
1 |
LLsLsLLsLsLLsLsLs
|
15|1 |
6 |
LLsLsLLsLsLsLLsLs
|
14|2 |
11 |
LLsLsLsLLsLsLLsLs
|
13|3 |
16 |
LsLLsLsLLsLsLLsLs
|
12|4 |
4 |
LsLLsLsLLsLsLsLLs
|
11|5 |
9 |
LsLLsLsLsLLsLsLLs
|
10|6 |
14 |
LsLsLLsLsLLsLsLLs
|
9|7 |
2 |
LsLsLLsLsLLsLsLsL
|
8|8 |
7 |
LsLsLLsLsLsLLsLsL
|
7|9 |
12 |
LsLsLsLLsLsLLsLsL
|
6|10 |
17 |
sLLsLsLLsLsLLsLsL
|
5|11 |
5 |
sLLsLsLLsLsLsLLsL
|
4|12 |
10 |
sLLsLsLsLLsLsLLsL
|
3|13 |
15 |
sLsLLsLsLLsLsLLsL
|
2|14 |
3 |
sLsLLsLsLLsLsLsLL
|
1|15 |
8 |
sLsLLsLsLsLLsLsLL
|
0|16 |
13 |
sLsLsLLsLsLLsLsLL
|
Intervals
Intervals of 10L 7s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 70.6 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
70.6 ¢ to 120.0 ¢
|
2-mosstep
|
Minor 2-mosstep
|
m2ms
|
L + s
|
120.0 ¢ to 141.2 ¢
|
Major 2-mosstep
|
M2ms
|
2L
|
141.2 ¢ to 240.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
L + 2s
|
120.0 ¢ to 211.8 ¢
|
Major 3-mosstep
|
M3ms
|
2L + s
|
211.8 ¢ to 240.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
2L + 2s
|
240.0 ¢ to 282.4 ¢
|
Major 4-mosstep
|
M4ms
|
3L + s
|
282.4 ¢ to 360.0 ¢
|
5-mosstep
|
Diminished 5-mosstep
|
d5ms
|
2L + 3s
|
240.0 ¢ to 352.9 ¢
|
Perfect 5-mosstep
|
P5ms
|
3L + 2s
|
352.9 ¢ to 360.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
3L + 3s
|
360.0 ¢ to 423.5 ¢
|
Major 6-mosstep
|
M6ms
|
4L + 2s
|
423.5 ¢ to 480.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
4L + 3s
|
480.0 ¢ to 494.1 ¢
|
Major 7-mosstep
|
M7ms
|
5L + 2s
|
494.1 ¢ to 600.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
4L + 4s
|
480.0 ¢ to 564.7 ¢
|
Major 8-mosstep
|
M8ms
|
5L + 3s
|
564.7 ¢ to 600.0 ¢
|
9-mosstep
|
Minor 9-mosstep
|
m9ms
|
5L + 4s
|
600.0 ¢ to 635.3 ¢
|
Major 9-mosstep
|
M9ms
|
6L + 3s
|
635.3 ¢ to 720.0 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
5L + 5s
|
600.0 ¢ to 705.9 ¢
|
Major 10-mosstep
|
M10ms
|
6L + 4s
|
705.9 ¢ to 720.0 ¢
|
11-mosstep
|
Minor 11-mosstep
|
m11ms
|
6L + 5s
|
720.0 ¢ to 776.5 ¢
|
Major 11-mosstep
|
M11ms
|
7L + 4s
|
776.5 ¢ to 840.0 ¢
|
12-mosstep
|
Perfect 12-mosstep
|
P12ms
|
7L + 5s
|
840.0 ¢ to 847.1 ¢
|
Augmented 12-mosstep
|
A12ms
|
8L + 4s
|
847.1 ¢ to 960.0 ¢
|
13-mosstep
|
Minor 13-mosstep
|
m13ms
|
7L + 6s
|
840.0 ¢ to 917.6 ¢
|
Major 13-mosstep
|
M13ms
|
8L + 5s
|
917.6 ¢ to 960.0 ¢
|
14-mosstep
|
Minor 14-mosstep
|
m14ms
|
8L + 6s
|
960.0 ¢ to 988.2 ¢
|
Major 14-mosstep
|
M14ms
|
9L + 5s
|
988.2 ¢ to 1080.0 ¢
|
15-mosstep
|
Minor 15-mosstep
|
m15ms
|
8L + 7s
|
960.0 ¢ to 1058.8 ¢
|
Major 15-mosstep
|
M15ms
|
9L + 6s
|
1058.8 ¢ to 1080.0 ¢
|
16-mosstep
|
Minor 16-mosstep
|
m16ms
|
9L + 7s
|
1080.0 ¢ to 1129.4 ¢
|
Major 16-mosstep
|
M16ms
|
10L + 6s
|
1129.4 ¢ to 1200.0 ¢
|
17-mosstep
|
Perfect 17-mosstep
|
P17ms
|
10L + 7s
|
1200.0 ¢
|
Scale tree
Scale tree and tuning spectrum of 10L 7s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\17
|
|
|
|
|
|
352.941
|
847.059
|
1:1
|
1.000
|
Equalized 10L 7s
|
|
|
|
|
|
28\95
|
353.684
|
846.316
|
6:5
|
1.200
|
|
|
|
|
|
23\78
|
|
353.846
|
846.154
|
5:4
|
1.250
|
|
|
|
|
|
|
41\139
|
353.957
|
846.043
|
9:7
|
1.286
|
|
|
|
|
18\61
|
|
|
354.098
|
845.902
|
4:3
|
1.333
|
Supersoft 10L 7s
|
|
|
|
|
|
49\166
|
354.217
|
845.783
|
11:8
|
1.375
|
|
|
|
|
|
31\105
|
|
354.286
|
845.714
|
7:5
|
1.400
|
|
|
|
|
|
|
44\149
|
354.362
|
845.638
|
10:7
|
1.429
|
|
|
|
13\44
|
|
|
|
354.545
|
845.455
|
3:2
|
1.500
|
Soft 10L 7s
|
|
|
|
|
|
47\159
|
354.717
|
845.283
|
11:7
|
1.571
|
|
|
|
|
|
34\115
|
|
354.783
|
845.217
|
8:5
|
1.600
|
|
|
|
|
|
|
55\186
|
354.839
|
845.161
|
13:8
|
1.625
|
|
|
|
|
21\71
|
|
|
354.930
|
845.070
|
5:3
|
1.667
|
Semisoft 10L 7s
|
|
|
|
|
|
50\169
|
355.030
|
844.970
|
12:7
|
1.714
|
|
|
|
|
|
29\98
|
|
355.102
|
844.898
|
7:4
|
1.750
|
|
|
|
|
|
|
37\125
|
355.200
|
844.800
|
9:5
|
1.800
|
|
|
8\27
|
|
|
|
|
355.556
|
844.444
|
2:1
|
2.000
|
Basic 10L 7s Scales with tunings softer than this are proper
|
|
|
|
|
|
35\118
|
355.932
|
844.068
|
9:4
|
2.250
|
|
|
|
|
|
27\91
|
|
356.044
|
843.956
|
7:3
|
2.333
|
|
|
|
|
|
|
46\155
|
356.129
|
843.871
|
12:5
|
2.400
|
|
|
|
|
19\64
|
|
|
356.250
|
843.750
|
5:2
|
2.500
|
Semihard 10L 7s
|
|
|
|
|
|
49\165
|
356.364
|
843.636
|
13:5
|
2.600
|
|
|
|
|
|
30\101
|
|
356.436
|
843.564
|
8:3
|
2.667
|
|
|
|
|
|
|
41\138
|
356.522
|
843.478
|
11:4
|
2.750
|
|
|
|
11\37
|
|
|
|
356.757
|
843.243
|
3:1
|
3.000
|
Hard 10L 7s
|
|
|
|
|
|
36\121
|
357.025
|
842.975
|
10:3
|
3.333
|
|
|
|
|
|
25\84
|
|
357.143
|
842.857
|
7:2
|
3.500
|
|
|
|
|
|
|
39\131
|
357.252
|
842.748
|
11:3
|
3.667
|
|
|
|
|
14\47
|
|
|
357.447
|
842.553
|
4:1
|
4.000
|
Superhard 10L 7s
|
|
|
|
|
|
31\104
|
357.692
|
842.308
|
9:2
|
4.500
|
|
|
|
|
|
17\57
|
|
357.895
|
842.105
|
5:1
|
5.000
|
|
|
|
|
|
|
20\67
|
358.209
|
841.791
|
6:1
|
6.000
|
|
3\10
|
|
|
|
|
|
360.000
|
840.000
|
1:0
|
→ ∞
|
Collapsed 10L 7s
|