User:Zhenlige/Sandbox

From Xenharmonic Wiki
Jump to navigation Jump to search
律制/Temperament 级/Level 1 2 3
[-19 12⟩ 81/80 64/63 Schisma P157 Atom
12 1 0 0 0 0 0 0
19 1.x -1 0 1 -1 1 11
22 1.x 2 1 0 1 -1 -10
31 1.x -1 0 1 -1 1 11
53 2 1 1 1 0 0 1
94 2.x 2 2 2 0 0 2
118 2.x
171 ?
311 ?
7edo
"too flat"
19edo
meantone
12edo
subpyth
65edo
sub-nearpyth
53edo
near-Pyth
41edo
argent
29edo
gentle
17edo
superpyth
22edo
"too sharp"
5edo


Approximation of prime harmonics in 72edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
Error Absolute (¢) +0.00 -1.96 -2.98 -2.16 -1.32 -7.19 -4.96 +2.49 +5.06 +3.76 +4.96 -1.34 +4.27 +5.15 +1.16 -6.84 +7.50 -0.22 +4.03 +3.64 +5.54 +2.13 -0.05 -4.21 -3.23 -6.52 -7.13 -6.43 -5.15 -0.88
Relative (%) +0.0 -11.7 -17.9 -13.0 -7.9 -43.2 -29.7 +14.9 +30.4 +22.5 +29.8 -8.1 +25.6 +30.9 +7.0 -41.0 +45.0 -1.3 +24.2 +21.8 +33.3 +12.8 -0.3 -25.3 -19.4 -39.1 -42.8 -38.6 -30.9 -5.3
Steps
(reduced)
72
(0)
114
(42)
167
(23)
202
(58)
249
(33)
266
(50)
294
(6)
306
(18)
326
(38)
350
(62)
357
(69)
375
(15)
386
(26)
391
(31)
400
(40)
412
(52)
424
(64)
427
(67)
437
(5)
443
(11)
446
(14)
454
(22)
459
(27)
466
(34)
475
(43)
479
(47)
481
(49)
485
(53)
487
(55)
491
(59)
Approximation of prime harmonics in 380zpi
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
Error Absolute (¢) +0.82 -0.65 -1.07 +0.15 +1.53 -4.15 -1.59 +5.99 -7.89 +7.76 -7.63 +2.95 -7.99 -7.06 +5.74 -2.12 -4.33 +4.67 -7.65 -7.97 -6.03 +7.32 +5.20 +1.12 +2.21 -1.04 -1.63 -0.88 +0.42 +4.74
Relative (%) +4.9 -3.9 -6.4 +0.9 +9.2 -24.9 -9.5 +35.9 -47.3 +46.5 -45.7 +17.7 -47.9 -42.3 +34.4 -12.7 -26.0 +28.0 -45.9 -47.8 -36.2 +43.9 +31.2 +6.7 +13.2 -6.2 -9.8 -5.3 +2.5 +28.4
Steps
(reduced)
72
(0)
114
(42)
167
(23)
202
(58)
249
(33)
266
(50)
294
(6)
306
(18)
325
(37)
350
(62)
356
(68)
375
(15)
385
(25)
390
(30)
400
(40)
412
(52)
423
(63)
427
(67)
436
(4)
442
(10)
445
(13)
454
(22)
459
(27)
466
(34)
475
(43)
479
(47)
481
(49)
485
(53)
487
(55)
491
(59)
Argent dual: P5/P4 in one tuning = m7/P5 in the other
5edo 7edo
12edo 17edo
19edo 27edo
22edo 31edo
29edo 41edo
46edo 65edo
50edo 71edo
53edo 75edo
70edo 99edo
94edo 133edo
118edo 167edo
171edo 242edo

The argent approximation starts to break down over this point.

Lumatone.svg
B
C
C
D
D
D
D
D
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
G
G
G
G
G
G
G
G
G
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
G
G
G
G
G
G
G
G
G
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
G
G
G
G
G
G
G
G
G
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
G
G
G
G
G
G
A
A
A